1
|
Dong W, Wang Z, Cai Z, Deng Y, Wang G, Zheng B. Highly efficient CO 2 capture and chemical fixation of a microporous (3, 36)-connected txt-type Cu(II)-MOF with multifunctional sites. Dalton Trans 2025; 54:745-753. [PMID: 39569821 DOI: 10.1039/d4dt01531b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Incorporating multiple functional sites in porous frameworks to enormously enhance the host-guest interactions is an effective strategy to obtain high-performance CO2 capture and chemical fixation MOF materials. Herein, we designed and constructed a microporous (3, 36)-connected txt-type Cu(II)-based MOF (HNUST-17) from dicopper(II)-paddlewheel clusters and a novel pyridine-based acylamide-linking V-shape diisophthalate ligand with amino groups. Interestingly, with a high density of multiple strong CO2-philic sites (open metal sites, acylamide and amino functionalities) integrated in the framework, which have been identified by GCMC (Grand canonical Monte Carlo) simulations and DFT (Density functional theory) calculations, HNUST-17 exhibits high and selective capture for CO2 over CH4 and N2 at ambient temperature. Moreover, HNUST-17 possesses efficiently catalytic activity and recyclability for chemical fixation of CO2 coupling with epoxides into cyclic carbonates in the presence of tetrabutylammonium bromide as the cocatalyst under mild, solvent-free conditions.
Collapse
Affiliation(s)
- Wenyu Dong
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Zhaoxu Wang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Zuxian Cai
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Yiqiang Deng
- School of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China.
| | - Guanyu Wang
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Baishu Zheng
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| |
Collapse
|
2
|
Ghosh S, Laha P, Mir NUD, Das P, Cha PR, Biswas S. Two Sustainable Pathways of MOF-Catalyzed Room Temperature Chemical Fixation of CO 2 inside Alkynes under Atmospheric Pressure. Inorg Chem 2024; 63:21450-21461. [PMID: 39481091 DOI: 10.1021/acs.inorgchem.4c03431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
The rising atmospheric CO2 levels necessitate the development of effective materials for its mitigation. Utilization of adsorbent materials for the reversible physisorption of CO2 has a significantly less impact. Recognizing this need, herein, we present a nitrogen-rich, aqua-stable, Ag(0)-nanoparticle-doped metal-organic framework (MOF) designed for the irreversible chemical conversion of CO2 into valuable fine chemicals. We demonstrate two sustainable pathways for CO2 fixation, utilizing the catalyst, 1'@Ag NPs. The designed catalyst facilitates the cyclization of propargylic amines and alcohols under ambient temperature and pressure conditions. Remarkably, this is the first MOF-based catalyst that allows for quantitative conversion of propargylic amines into 2-oxazolidinones at room temperature with atmospheric CO2 pressure. The process successfully transforms various propargylic amines and alcohols into 2-oxazolidinones and α-alkylidene cyclic carbonates under the CO2 atmosphere. Additionally, the catalyst shows excellent recyclability, maintaining its activity and structural integrity across multiple reuse cycles. Control experiments revealed that the catalytic efficiency of 1'@Ag NPs is attributed to the highly exposed alkynophilic Ag(0) sites on its pore walls. Computational studies further elucidate the mechanistic pathway for CO2 fixation. This work highlights the potential of 1'@Ag NPs to enhance environmental sustainability by converting CO2 into valuable bioactive chemicals under mild conditions.
Collapse
Affiliation(s)
- Subhrajyoti Ghosh
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Paltan Laha
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Nazir Ud Din Mir
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Pritam Das
- School of Advanced Material Engineering, Kookmin University, Seongbok-gu, Seoul 02707, Republic of Korea
| | - Pil-Ryung Cha
- School of Advanced Material Engineering, Kookmin University, Seongbok-gu, Seoul 02707, Republic of Korea
| | - Shyam Biswas
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
3
|
Zhang Z, Shen K, Zhang Q, Duan C, Jing X. A novel porphyrin MOF catalyst for efficient conversion of CO 2 with propargyl amines. Dalton Trans 2024; 53:10060-10064. [PMID: 38832725 DOI: 10.1039/d4dt01063a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The capture and conversion of carbon dioxide (CO2) into valuable chemical products under mild conditions is an important and challenging approach for contemporary industry. Carboxylic acid ligands are widely used in the development of functionalized metal organic framework materials due to their excellent stability. Herein, a novel mixed-metal organic framework Cu-TCPP(Fe) was assembled from iron-(Fe)-porphyrin ligands, which can efficiently catalyze the reaction of propargylic amines and CO2 to synthesize 2-oxazolidinones.
Collapse
Affiliation(s)
- Zhitao Zhang
- Add State Key Laboratory of Fine Chemicals, College of Chemistry, Dalian University of Technology, 116024, P. R. China.
| | - Kesheng Shen
- Add State Key Laboratory of Fine Chemicals, College of Chemistry, Dalian University of Technology, 116024, P. R. China.
| | - Qian Zhang
- Add State Key Laboratory of Fine Chemicals, College of Chemistry, Dalian University of Technology, 116024, P. R. China.
| | - Chunying Duan
- Add State Key Laboratory of Fine Chemicals, College of Chemistry, Dalian University of Technology, 116024, P. R. China.
| | - Xu Jing
- Add State Key Laboratory of Fine Chemicals, College of Chemistry, Dalian University of Technology, 116024, P. R. China.
| |
Collapse
|
4
|
Karmakar A, Santos AACD, Pagliaricci N, Pires J, Batista M, Alegria ECBA, Martin-Calvo A, Gutiérrez-Sevillano JJ, Calero S, Guedes da Silva MFC, Pettinari R, Pombeiro AJL. Halogen-Decorated Metal-Organic Frameworks for Efficient and Selective CO 2 Capture, Separation, and Chemical Fixation with Epoxides under Mild Conditions. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38605636 DOI: 10.1021/acsami.4c02560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
In the present work, three novel halogen-appended cadmium(II) metal-organic frameworks [Cd2(L1)2(4,4'-Bipy)2]n·4n(DMF) (1), [Cd2(L2)2(4,4'-Bipy)2]n·3n(DMF) (2), and [Cd(L3)(4,4'-Bipy)]n·2n(DMF) (3) [where L1 = 5-{(4-bromobenzyl)amino}isophthalate; L2 = 5-{(4-chlorobenzyl)amino}isophthalate; L3 = 5-{(4-fluorobenzyl)amino}isophthalate; 4,4'-Bipy = 4,4'-bipyridine; and DMF = N,N'-dimethylformamide] have been synthesized under solvothermal conditions and characterized by various analytical techniques. The single-crystal X-ray diffraction analysis demonstrated that all the MOFs feature a similar type of three-dimensional structure having a binuclear [Cd2(COO)4(N)4] secondary building block unit. Moreover, MOFs 1 and 2 contain one-dimensional channels along the b-axis, whereas MOF 3 possesses a 1D channel along the a-axis. In these MOFs, the pores are decorated with multifunctional groups, i.e., halogen and amine. The gas adsorption analysis of these MOFs demonstrate that they display high uptake of CO2 (up to 5.34 mmol/g) over N2 and CH4. The isosteric heat of adsorption (Qst) value for CO2 at zero loadings is in the range of 18-26 kJ mol-1. In order to understand the mechanism behind the better adsorption of CO2 by our MOFs, we have also performed configurational bias Monte Carlo simulation studies, which confirm that the interaction between our MOFs and CO2 is stronger compared to those with N2 and CH4. Various noncovalent interactions, e.g., halogen (X)···O, Cd···O, and O···O, between CO2 and the halogen atom, the Cd(II) metal center, and the carboxylate group from the MOFs are observed, respectively, which may be a reason for the higher carbon dioxide adsorption. Ideal adsorbed solution theory (IAST) calculations of MOF 1 demonstrate that the obtained selectivity values for CO2/CH4 (50:50) and CO2/N2 (15:85) are ca. 28 and 193 at 273 K, respectively. However, upon increasing the temperature to 298 K, the selectivity value (S = 34) decreases significantly for the CO2/N2 mixture. We have also calculated the breakthrough analysis curves for all the MOFs using mixtures of CO2/CH4 (50:50) and CO2/N2 (50:50 and 15:85) at different entering gas velocities and observed larger retention times for CO2 in comparison with other gases, which also signifies the stronger interaction between our MOFs and CO2. Moreover, due to the presence of Lewis acidic metal centers, these MOFs act as heterogeneous catalysts for the CO2 fixation reactions with different epoxides in the presence of tetrabutyl ammonium bromide (TBAB), for conversion into industrially valuable cyclic carbonates. These MOFs exhibit a high conversion (96-99%) of epichlorohydrin (ECH) to the corresponding cyclic carbonate 4-(chloromethyl)-1,3-dioxolan-2-one after 12 h of reaction time at 1 bar of CO2 pressure, at 65 °C. The MOFs can be reused up to four cycles without compromising their structural integrity as well as without losing their activity significantly.
Collapse
Affiliation(s)
- Anirban Karmakar
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Andreia A C D Santos
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Departamento de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro, 1, 1959-007 Lisbon, Portugal
| | - Noemi Pagliaricci
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- School of Pharmacy, University of Camerino, Via Madonna delle Carceri (ChIP), 62032 Camerino, Macerata, Italy
| | - João Pires
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Mary Batista
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Elisabete C B A Alegria
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Departamento de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro, 1, 1959-007 Lisbon, Portugal
| | - Ana Martin-Calvo
- Center for Nanoscience and Sustainable Technologies (CNATS), Universidad Pablo de Olavide, Ctra. de Utrera, km. 1, 41013 Seville, Spain
| | - Juan José Gutiérrez-Sevillano
- Center for Nanoscience and Sustainable Technologies (CNATS), Universidad Pablo de Olavide, Ctra. de Utrera, km. 1, 41013 Seville, Spain
| | - Sofia Calero
- Department of Applied Physics, Eindhoven University of Technology, Flux Building, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - M Fátima C Guedes da Silva
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Riccardo Pettinari
- School of Pharmacy, University of Camerino, Via Madonna delle Carceri (ChIP), 62032 Camerino, Macerata, Italy
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
5
|
Rezayati S, Morsali A. Functionalization of Magnetic UiO-66-NH 2 with a Chiral Cu(l-proline) 2 Complex as a Hybrid Asymmetric Catalyst for CO 2 Conversion into Cyclic Carbonates. Inorg Chem 2024; 63:6051-6066. [PMID: 38501387 DOI: 10.1021/acs.inorgchem.4c00376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
In this study, a chiral [Cu(l-proline)2] complex-modified Fe3O4@SiO2@UiO-66-NH2(Zr) metal-organic framework [Fe3O4@SiO2@UiO-66-NH-Cu(l-proline)2] via multifunctionalization strategies was designed and synthesized. One simple approach to chiralize an achiral MOF-structure that cannot be directly chiralized using a chiral secondary agent like 4-hydroxy-l-proline. Therefore, this chiral catalyst was synthesized with a simple and multistep method. Accordingly, Fe3O4@SiO2@UiO-66-NH2 has been synthesized via Fe3O4 modification with tetraethyl orthosilicate and subsequently with ZrCl4 and 2-aminoterephthalic acid. The presence of the silica layer helps to stabilize the Fe3O4 core, while the bonding between Zr4+ and the -OH groups in the silica layer promotes the development of Zr-MOFs on the Fe3O4 surface, and then the surfaces of the synthesized magnetic MOFs composite are functionalized with 1,2-dichloroethane and Cu(II) complex with 4-hydroxy-l-proline, [Cu(l-proline)2] to afford the magnetically chiral nanocatalyst. Multiple techniques were employed to characterize this magnetically chiral nanocatalyst such as Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectrometry (EDX), powder X-ray diffraction (PXRD), circular dichroism (CD), inductively coupled plasma (ICP), thermogravimetric analysis (TGA), vibrating-sample magnetometry (VSM), and Brunauer-Emmett-Teller (BET) analyses. Moreover, a magnetically chiral nanocatalyst shows the asymmetric CO2 fixation reaction under solvent-free conditions at 80 °C and in ethanol under reflux conditions with up to 99 and 98% ee, respectively. Furthermore, the reaction mechanism was illustrated concerning the total energy of the reactant, intermediates and product, and the structural parameters were analyzed.
Collapse
Affiliation(s)
- Sobhan Rezayati
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14117-13116, Tehran 14117-13116, Islamic Republic of Iran
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14117-13116, Tehran 14117-13116, Islamic Republic of Iran
| |
Collapse
|
6
|
Seal N, Palakkal AS, Pillai RS, Neogi S. Coordination Unsaturation and Basic Site-Immobilized Nanochannel in a Chemorobust MOF for 3-Fold-Increased High-Temperature Selectivity and Fixation of CO 2 under Mild Conditions with Nanomolar Recognition of Roxarsone. Inorg Chem 2023; 62:11528-11540. [PMID: 37440273 DOI: 10.1021/acs.inorgchem.3c01160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
A multifaceted metal-organic framework (MOF) with task-specific site-engineered pores can promise high-temperature and moisture-tolerant capture and non-redox fixation of CO2 under mild conditions as well as ultrasensitive detection of carcinogenic contaminants in water. Herein, we report a pillar-bilayered MOF that holds a nanochannel with contrasting functionalities for both these sustainable applications with improved performance characteristics. The twofold entangled robust framework exhibits CO2 adsorption at elevated temperatures with considerable MOF-gas interaction. Interestingly, CO2 selectivity unveils nearly a 3-fold improvement upon the rise of temperature, affording a CO2/N2 value of 820 at 313 K, which outperforms many porous adsorbents. Additionally, breakthrough simulation establishes complete separation and attests the potential of this MOF in the separation of flue gas mixture. Importantly, minor CO2 loss during multiple capture-release cycles and under a relative humidity of 75% promise practical usability of the material. Density functional theory (DFT) not only portrays the atomistic level snapshots of temperature-triggered CO2 inclusion inside this microporous vessel alongside the role of diverse CO2-philic sites but also validates the basis of N2-phobicity of an azo-functionalized linker on such increased selectivity. The guest-free MOF further demonstrates non-redox and recyclable CO2 fixation with wide epoxide tolerance under solvent-free mild conditions and even works at atmospheric pressure and room temperature. The crucial roles of high-density acid-base sites in both adsorption and catalysis are supported by control experiments and by comparing the activity of an unfunctionalized MOF. The hydrolytic stability and strong luminescence signature benefit the framework in aqueous-phase selective and fast responsive detection of detrimental roxarsone (ROX) with high quenching (7.56 × 104 M-1) and very low sensitivity (68 nM). Apart from varying degrees of an energy-transfer mechanism, the fluorosensing of ROX is comprehensively supported by in-depth DFT studies that manifest alteration of MOF energy levels in the presence of organoarsenic compounds and depict MOF-analyte supramolecular interactions.
Collapse
Affiliation(s)
- Nilanjan Seal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Inorganic Materials & Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute (CSMCRI), Bhavnagar, Gujarat 364002, India
| | - Athulya S Palakkal
- Department of Chemistry, School of Basic Sciences, SRM Institute of Science and Technology, Kattankulathur, Chennai 603 203, India
| | - Renjith S Pillai
- Analytical and Spectroscopy Division, ASCG/PCM, Indian Space Research Organization, Vikram Sarabhai Space Centre, Thiruvananthapuram 695 022 Kerala, India
| | - Subhadip Neogi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Inorganic Materials & Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute (CSMCRI), Bhavnagar, Gujarat 364002, India
| |
Collapse
|
7
|
Redkov A. Spiral growth of multicomponent crystals: theoretical aspects. Front Chem 2023; 11:1189729. [PMID: 37252372 PMCID: PMC10213516 DOI: 10.3389/fchem.2023.1189729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
This paper presents recent advances in the theory of multicomponent crystal growth from gas or solution, focusing on the most common step-flow mechanisms: Burton-Cabrera-Frank, Chernov, and Gilmer-Ghez-Cabrera. Analytical expressions for the spiral crystal growth rate are presented, taking into account the properties of all species involved in the growth process. The paper also outlines theoretical approaches to consider these mechanisms in multicomponent systems, providing a foundation for future developments and exploration of previously unexplored effects. Some special cases are discussed, including the formation of nanoislands of pure components on the surface and their self-organization, the impact of applied mechanical stress on the growth rate, and the mechanisms of its influence on growth kinetics. The growth due to chemical reactions on the surface is also considered. Possible future directions for developing the theory are outlined. A brief overview of numerical approaches and software codes that are useful in theoretical studies of crystal growth is also given.
Collapse
|
8
|
Singh M, Karmakar A, Seal N, Mondal PP, Kundu S, Neogi S. Redox-Active and Urea-Engineered-Entangled MOFs for High-Efficiency Water Oxidation and Elevated Temperature Advanced CO 2 Separation Cum Organic-Site-Driven Mild-Condition Cycloaddition. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24504-24516. [PMID: 37162125 DOI: 10.1021/acsami.3c03619] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Development of the multifaceted metal-organic framework (MOF) with in situ engineered task-specific sites can promise proficient oxygen evolution reaction (OER) and high-temperature adsorption cum mild-condition fixation of CO2. In fact, effective assimilation of these attributes onto a single material with advance performance characteristics is practically imperative in view of renewable energy application and carbon-footprint reduction. Herein, we developed a three-fold interpenetrated robust Co(II) framework that embraces both redox-active and hydrogen-bond donor moieties inside the microporous channel. The activated MOF demonstrates notable OER catalysis in alkaline medium via quasi-reversible Co2+/Co3+ couple and unveils low overpotential with impressive 53.5 mV/dec Tafel slope that overpowers some benchmark, commercial, as well as contemporary materials. In particular, significantly increased turnover frequency (3.313 s-1 at 400 mV) and fairly low charge-transfer resistance (3.02 Ω) compared to Co3O4, NiO, and majority of redox-active MOFs together with 91% Faradaic efficiency and notable framework durability after multiple OER cycles endorse high-performance water oxidation. Pore-wall decked urea groups benefit appreciable CO2 adsorption even at elevated temperatures with considerable MOF-CO2 interactions and exhibit recurrent capture-release cycles at diverse temperatures. Interestingly, CO2 selectivity displays radical upsurge with temperature rise, affording 40% improved CO2/N2 value of 200 at 313 K, which outperforms many porous adsorbents and delineates real-time CO2 scavenging potential. The guest-free MOF effectively catalyzes solvent-free CO2 cycloaddition with broad substrate tolerance and satisfactory reusability under relatively mild condition. Opposed to the common Lewis acid-mediated reaction, two-point hydrogen-bonding activates the substrate, as supported from controlled experiments, juxtaposing the performance of an un-functionalized MOF and fluorescence modification-derived framework-epoxide interaction, providing valuable insights on unconventional cycloaddition route in the MOF.
Collapse
Affiliation(s)
- Manpreet Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Inorganic Materials & Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar 364002, Gujarat, India
| | - Arun Karmakar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Nilanjan Seal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Inorganic Materials & Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar 364002, Gujarat, India
| | - Partha Pratim Mondal
- Inorganic Materials & Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar 364002, Gujarat, India
| | - Subrata Kundu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi 630003, Tamil Nadu, India
| | - Subhadip Neogi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Inorganic Materials & Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar 364002, Gujarat, India
| |
Collapse
|
9
|
He Y, Boone P, Lieber AR, Tong Z, Das P, Hornbostel KM, Wilmer CE, Rosi NL. Implementation of a Core-Shell Design Approach for Constructing MOFs for CO 2 Capture. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23337-23342. [PMID: 37141279 DOI: 10.1021/acsami.3c03457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Adsorption-based capture of CO2 from flue gas and from air requires materials that have a high affinity for CO2 and can resist water molecules that competitively bind to adsorption sites. Here, we present a core-shell metal-organic framework (MOF) design strategy where the core MOF is designed to selectively adsorb CO2, and the shell MOF is designed to block H2O diffusion into the core. To implement and test this strategy, we used the zirconium (Zr)-based UiO MOF platform because of its relative structural rigidity and chemical stability. Previously reported computational screening results were used to select optimal core and shell MOF compositions from a basis set of possible building blocks, and the target core-shell MOFs were prepared. Their compositions and structures were characterized using scanning electron microscopy, transmission electron microscopy, and powder X-ray diffraction. Multigas (CO2, N2, and H2O) sorption data were collected both for the core-shell MOFs and for the core and shell MOFs individually. These data were compared to determine whether the core-shell MOF architecture improved the CO2 capture performance under humid conditions. The combination of experimental and computational results demonstrated that adding a shell layer with high CO2/H2O diffusion selectivity can significantly reduce the effect of water on CO2 uptake.
Collapse
Affiliation(s)
- Yiwen He
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Paul Boone
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, Pennsylvania 15261, United States
| | - Austin R Lieber
- Department of Mechanical Engineering & Materials Science, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, Pennsylvania 15261, United States
| | - Zi Tong
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Prasenjit Das
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Katherine M Hornbostel
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, Pennsylvania 15261, United States
- Department of Mechanical Engineering & Materials Science, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, Pennsylvania 15261, United States
| | - Christopher E Wilmer
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, Pennsylvania 15261, United States
- Department of Electrical and Computer Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, Pennsylvania 15261, United States
- Clinical and Translational Science Institute, University of Pittsburgh, Meyran Avenue, Suite 7057, Pittsburgh, Pennsylvania 15213, United States
| | - Nathaniel L Rosi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
10
|
Di Y, Chen Y, Cao Y, Cui X, Liu Y, Zhou C, Di Y. The Investigation of CO2 Chemical Fixation and Fluorescent Recognition for YbIII-Organic Framework. Catal Letters 2023. [DOI: 10.1007/s10562-023-04270-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
11
|
Singh M, Neogi S. Largely Entangled Diamondoid Framework with High-Density Urea and Divergent Metal Nodes for Selective Scavenging of CO 2 and Molecular Dimension-Mediated Size-Exclusive H-Bond Donor Catalysis. Inorg Chem 2023; 62:871-884. [PMID: 36580539 DOI: 10.1021/acs.inorgchem.2c03684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pore environment modulation with high-density polarizing groups in metal-organic frameworks (MOFs) can effectively accomplish selective and multicyclic carbon dioxide (CO2) adsorption, whereas the incorporation of task-specific organic sites inside these porous vessels promise to evade self-quenching, solubility, and recyclability issues in hydrogen-bond donating (HBD) catalysis. However, concurrent amalgamation of both these attributes over a single platform is rare but extremely demanding in view of sustainable applications. We designed a robust diamondoid framework CSMCRI-17 (CSMCRI = Central Salt and Marine Chemicals Research Institute) from the mixed-ligand assembly of azo group-containing dicarboxylate ligand, urea-functionalized pyridyl linker, and Zn(II) nodes with specific divergent coordination. Seven-fold interpenetration to the microporous structure largely augments N-rich functionality that facilitates high CO2 uptake in the activated form (17a) with good CO2 selectivity over N2 and CH4 that outperform many reported materials. The framework displays very strong CO2 affinity and no reduction in adsorption capacity over multiple uptake-release cycles. Benefitting from the pore-wall decoration with urea functionality from the pillaring strut, 17a further demonstrates hydrogen-bond-mediated Friedel-Crafts alkylation of indole with β-nitrostyrene under mild conditions, with multicyclic usability and excellent reactivity toward wide ranges of substituted nucleophiles and electrophiles. Interestingly, interpenetration-generated optimum-sized pores induce poor conversion to sterically encumbered substrate via molecular dimension-mediated size selectivity that is alternatively ascribed from additional control experiments and support the occurrence of HBD reaction within the MOF cavity. The catalytic path is detailed in light of the change of emission intensity of the framework by the electrophile as well as the judicious choice of the substrate, which authenticates the prime role of urea moiety-governed two-point hydrogen bonding.
Collapse
Affiliation(s)
- Manpreet Singh
- Inorganic Materials & Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Subhadip Neogi
- Inorganic Materials & Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364002, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
12
|
Incorporation of metal-organic framework MOFs-5 into the polymer monolith via the surface covalent immobilization method for enhanced capillary liquid chromatographic separation of benzene homologues. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
A highly robust lutecium(III)-organic framework for the high catalytic performance on the chemical fixation CO2. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Sarkar C, Paul R, Dao DQ, Xu S, Chatterjee R, Shit SC, Bhaumik A, Mondal J. Unlocking Molecular Secrets in a Monomer-Assembly-Promoted Zn-Metalated Catalytic Porous Organic Polymer for Light-Responsive CO 2 Insertion. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37620-37636. [PMID: 35944163 DOI: 10.1021/acsami.2c06982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Anthropogenic carbon dioxide (CO2) emission is soaring day by day due to fossil fuel combustion to fulfill the daily energy requirements of our society. The CO2 concentration should be stabilized to evade the deadly consequences of it, as climate change is one of the major consequences of greenhouse gas emission. Chemical fixation of CO2 to other value-added chemicals requires high energy due to its stability at the highest oxidation state, creating a tremendous challenge to the scientific community to fix CO2 and prevent global warming caused by it. In this work, we have introduced a novel monomer-assembly-directed strategy to design va isible-light-responsive conjugated Zn-metalated porous organic polymer (Zn@MA-POP) with a dynamic covalent acyl hydrazone linkage, via a one-pot condensation between the self-assembled monomer 1,3,5-benzenetricarbohydrazide (TPH) and a Zn complex (Zn@COM). We have successfully explored as-synthesized Zn@MA-POP as a potential photocatalyst in visible-light-driven CO2 photofixation with styrene epoxide (SE) to styrene carbonate (SC). Nearly 90% desired product (SC) selectivity has been achieved with our Zn@MA-POP, which is significantly better than that for the conventional Zn@TiO2 (∼29%) and Zn@gC3N4 (∼26%) photocatalytic systems. The excellent light-harvesting nature with longer lifetime minimizes the radiative recombination rate of photoexcited electrons as a result of extended π-conjugation in Zn@MA-POP and increased CO2 uptake, eventually boosting the photocatalytic activity. Local structural results from a first-shell EXAFS analysis reveals the existence of a Zn(N2O4) core structure in Zn@MA-POP, which plays a pivotal role in activating the epoxide ring as well as capturing the CO2 molecules. An in-depth study of the POP-CO2 interaction via a density functional theory (DFT) analysis reveals two feasible interactions, Zn@MA-POP-CO2-A and Zn@MA-POP-CO2-B, of which the latter has a lower relative energy of 0.90 kcal/mol in comparison to the former. A density of states (DOS) calculation demonstrates the lowering of the LUMO energy (EL) of Zn@MA-POP by 0.35 and 0.42 eV, respectively, for the two feasible interactions, in comparison to Zn@COM. Moreover, the potential energy profile also unveils the spontaneous and exergonic photoconversion pathways for the SE to SC conversion. Our contribution is expected to spur further interest in the precise design of visible-light-active conjugated porous organic polymers for CO2 photofixation to value-added chemicals.
Collapse
Affiliation(s)
- Chitra Sarkar
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ratul Paul
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Duy Quang Dao
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - Shaojun Xu
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, U.K
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell OX11 0FA, U.K
| | - Rupak Chatterjee
- School of Materials Science, Indian Association for the Cultivation of Science, 2A & B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Subhash Chandra Shit
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Asim Bhaumik
- School of Materials Science, Indian Association for the Cultivation of Science, 2A & B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - John Mondal
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
15
|
Singh M, Neogi S. Selective and Multicyclic CO 2 Adsorption with Visible Light-Driven Photodegradation of Organic Dyes in a Robust Metal-Organic Framework Embracing Heteroatom-Affixed Pores. Inorg Chem 2022; 61:10731-10742. [PMID: 35796254 DOI: 10.1021/acs.inorgchem.2c00950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pore environment modulation with polarizing groups is one of the essential prerequisites for selective carbon dioxide (CO2) adsorption in metal-organic frameworks (MOFs), wherein judicious installation of the photocatalytic feature can promise visible light-triggered degradation of toxic organic dye molecules. However, astute amalgamation of both these attributes over a single MOF is rather rare, yet much anticipated in view of sustainable applications. Pore engineering is effectively harnessed in a Zn(II)-based three-dimensional (3D) MOF, CSMCRI-16 (CSMCRI = Central Salt and Marine Chemicals Research Institute), through mixed-ligand assembly of a N-rich linker (L), 4,4'-oxybis(benzoic acid) (H2oba) ligand, and [Zn2(CO2)4N2] paddle-wheel secondary building units (SBUs). The noninterpenetrated structure contains unbound nitrogen and accessible oxygen atom-decorated porous channels and exhibits admirable stability in diverse organic solvents, open air, and at elevated temperatures. The heteroatom-decorated porous channels facilitated excellent CO2 uptake in the activated MOF (16a) with high selectivity over N2 (CO2/N2: 155.3) at 273 K. The framework further exhibits reasonable CO2 affinity and multicyclic CO2 sorption recurrence without a significant loss in the uptake capacity. Benefitting from the presence of the [Zn2(CO2)4N2] cluster in conjugation with π-conjugated organic ligands, the extended 3D network revealed an optical band gap energy of 2.55 eV, which makes the MOF an efficient photocatalyst toward the degradation of the cationic dyes crystal violet (CV) and methylene blue (MB) in the presence of a simple 40 W visible light lamp without any assistance of external oxidants. The catalyst exhibits multicyclic performance and short reaction time in addition to the fact that catalytic efficiencies (CV: 97.2%, MB: 97.8%) are comparable to those of contemporary materials.
Collapse
Affiliation(s)
- Manpreet Singh
- Inorganic Materials & Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar 364002, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Subhadip Neogi
- Inorganic Materials & Catalysis Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar 364002, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
16
|
Kim BJ, Kang SW. Composites of poly(vinyl pyrrolidone) and polarized Ag nanoparticles for CO2 separation. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1179-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Ma R, Qiao C, Xia L, Xia Z, Yang Q, Xu Y, Xie G, Chen S, Gao S. Dynamic Metal-Iodide Bonds in a Tetracoordinated Cadmium-Based Metal-Organic Framework Boosting Efficient CO 2 Cycloaddition under Solvent- and Cocatalyst-Free Conditions. Inorg Chem 2022; 61:7484-7496. [PMID: 35511935 DOI: 10.1021/acs.inorgchem.2c00569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Due to the inherent thermodynamic stability and kinetic inertness of CO2, heterogeneous catalytic conversion of CO2 to cyclic carbonates often requires harsh operating conditions, high temperature and high pressure, and the addition of cocatalysts. Therefore, the development of efficient heterogeneous catalysts under cocatalyst-free and mild conditions for CO2 conversion has always been a challenge. Herein, an infrequent tetracoordinated Cd-MOF was synthesized and used to catalyze CO2 cycloaddition reactions efficiently without the addition of any cocatalyst, and its catalytic mechanism was systematically investigated through a series of experiments, including fluorescence analysis, X-ray photoelectron spectroscopy, microcalorimetry, and density functional theory (DFT) calculation. Cd-MOF features a 3D supermolecule structure with 1D 11.6 × 7.7 Å2 channels, and the abundant Lewis acid/base and I- sites located in the confined channel boost efficient CO2 conversion with a maximum yield of 98.2% and a turnover number value of 1080.11 at 60 °C and 0.5 MPa, far surpassing most pristine MOF-based catalytic systems. A combined experimental and DFT calculation demonstrates that the exposed Cd(II) Lewis acid sites rapidly participate in coordination to activate the epoxides, and the resulting large steric hindrance facilitates leaving of the coordinated iodide ions in a reversibly dynamic fashion convenient for the rate-determining step ring-opening as a strong nucleophile. Such a pristine MOF catalyst with self-independent catalytic ring-opening overcomes the complicated operation limitation of the traditional cocatalyst-free MOF systems based on encapsulating/postmodifying cocatalysts, providing a whole new strategy for the development of simple, green, and efficient heterogeneous catalysts for CO2 cycloaddition.
Collapse
Affiliation(s)
- Ren Ma
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Chengfang Qiao
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, College of Chemical Engineering and Modern Materials, Shangluo University, Shangluo 726000, China
| | - Li Xia
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Zhengqiang Xia
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Qi Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Yifan Xu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Gang Xie
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Sanping Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Shengli Gao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| |
Collapse
|
18
|
Xu T, Jia M, Liu X, Li J, Liu Y. Designing Multicomponent Metal-Organic Frameworks with Hierarchical Structure-Mimicking Distribution for High CO 2 Capture Performance. Inorg Chem 2022; 61:7663-7670. [PMID: 35503648 DOI: 10.1021/acs.inorgchem.2c01128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
By utilizing a mixed-ligand strategy, a novel multicomponent Cu-metal-organic framework (MOF) (JLU-MOF107) has been successfully synthesized. JLU-MOF107 has an unusual hierarchical structure-mimicking distribution structure. The triangular 4,4',4″-benzene-1,3,5-triyl-tribenzoate (BTB) ligand and the binuclear Cu cluster form a threefold interpenetration layer, while the linear ligand 1,4-phenylene-4,4'-bis(1,2,4-triazole) (p-tr2ph) and tetranuclear Cu cluster form a noninterpenetration pillared-layer structure. Then, the two types of layers are connected by tetranuclear Cu clusters to construct the final sandwichlike framework. JLU-MOF107 exhibits good water and humidity stability. Due to the presence of various active sites and pores, JLU-MOF107 shows an outstanding performance for CO2 capture (171.0 cm3 g-1 at 273 K). Density functional theory (DFT)-based calculations further prove the interactions between CO2 molecules and multiple active sites. The innovative synthesis of this multicomponent structure offers a new perspective on making hierarchical porous materials and multifunctional MOFs.
Collapse
Affiliation(s)
- Tong Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Mingwei Jia
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xin Liu
- Department of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jiantang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yunling Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
19
|
Kuruppathparambil RR, Robert TM, Pillai RS, Pillai SKB, Kalamblayil Shankaranarayanan SK, Kim D, Mathew D. Nitrogen-rich dual linker MOF catalyst for room temperature fixation of CO2 via cyclic carbonate synthesis: DFT assisted mechanistic study. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Ahmadi S, Ketabi S, Qomi M. CO 2 uptake prediction of metal–organic frameworks using quasi-SMILES and Monte Carlo optimization. NEW J CHEM 2022. [DOI: 10.1039/d2nj00596d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first report of quasi-SMILES-based QSPR models for CO2 capture of MOFs based on experimental data.
Collapse
Affiliation(s)
- Shahin Ahmadi
- Department of Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Ketabi
- Department of Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahnaz Qomi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Active Pharmaceutical Ingredients Research (APIRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
21
|
Niazipour S, Raoof JB, Ghani M. Template-directed synthesis of three-dimensional metal organic framework 199-derived highly porous copper nano-foam fiber for solid-phase microextraction of some antibiotics prior to their quantification by High performance liquid chromatography. J Chromatogr A 2021; 1660:462677. [PMID: 34818591 DOI: 10.1016/j.chroma.2021.462677] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 11/17/2022]
Abstract
The in-situ preparation of three-dimensional MOF-199 (3D MOF-199) derived from the electrochemically prepared highly porous nano Cu foam on the surface of a flexible copper wire is reported. The 3D-Cu foam coating was used as a precursor and template for fabrication of MOF-199. The microextraction ability of the in-situ prepared 3D-MOF-199 fiber was evaluated using the prepared fiber for solid phase microextraction (SPME) of selected antibiotics including amoxicillin, azithromycin, ciprofloxacin, cefixime and gentamicin coupled to high-performance liquid chromatography with UV detection. Under the optimized condition, the calibration curves were linear in the range of 1-100 µg L - 1 (r2 above 0.9921) for both water and urine matrices. Limits of detection and limits of quantification were 0.14-0.62 µg L - 1 and 0.53-2.17 µg L - 1 in the selected matrices, respectively. In addition, the repeatability of the method was evaluated by considering the relative standard deviation (RSD%). The intra-day and inter-day RSDs of the method with the single fiber was in the range of 2.8% to 4.9% and from 3.1% to 4.9%, respectively. Furthermore, the fiber-to-fiber reproducibility ranged from 2.9% to 5.5%. The enrichment factors were also in the range of 32 to 55. Finally, the method was successfully used for analysis of amoxicillin, azithromycin, ciprofloxacin, cefixime and gentamicin in urine samples. Relative recoveries for spiked urine samples were in the range of 90-105%.
Collapse
Affiliation(s)
- Samaneh Niazipour
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Jahan Bakhsh Raoof
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
| | - Milad Ghani
- Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
22
|
Zhu X, Wang R, Ge Y, Dong Y, Wu B. A new two-dimensional homochiral cadmium(II) coordination polymer: synthesis, structure determination, optical properties, and fluorescent sensing. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.2007891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Xu Zhu
- College of Chemistry, Zhengzhou University, Zhengzhou, PR China
| | - Ruiying Wang
- School of Chemical Engineering, Henan Technical Institute of Applied Technology, Zhengzhou, PR China
| | - Yafang Ge
- College of Chemistry, Zhengzhou University, Zhengzhou, PR China
| | - Yingling Dong
- College of Chemistry, Zhengzhou University, Zhengzhou, PR China
| | - Benlai Wu
- College of Chemistry, Zhengzhou University, Zhengzhou, PR China
| |
Collapse
|
23
|
Sun J, Li Z, Li X, Xue M, Yin J. DBU-Based Ionic Liquid Grafted SBA-15 Dual-Functional Catalyst for the Cycloaddition Reaction of CO2 and Epoxide. Catal Letters 2021. [DOI: 10.1007/s10562-021-03840-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Chen H, Zhang Z, Hu T, Zhang X. Nanochannel {InZn}-Organic Framework with a High Catalytic Performance on CO 2 Chemical Fixation and Deacetalization-Knoevenagel Condensation. Inorg Chem 2021; 60:16429-16438. [PMID: 34644055 DOI: 10.1021/acs.inorgchem.1c02262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The rare combination of InIII 5p and ZnII 3d in the presence of a structure-oriented TDP6- ligand led to a robust hybrid material of {(Me2NH2)[InZn(TDP)(OH2)]·4DMF·4H2O}n (NUC-42) with the interlaced hierarchical nanochannels (hexagonal and cylindrical) shaped by six rows of undocumented [InZn(CO2)6(OH2)] clusters, which represented the first 5p-3d nanochannel-based heterometallic metal-organic framework. With respect to the multifarious symbiotic Lewis acid-base and Brønsted acid sites in the high porous framework, the catalytic performance of activated NUC-42a upon CO2 cycloaddition with styrene oxide was evaluated under solvent-free conditions with 1 atm of CO2 pressure, which exhibited that the reaction could be well completed at ambient temperature within 48 h or at 60 °C within 4 h with high yield and selectivity. Moreover, because of the acidic function of metal sites and a central free pyridine in the TDP6- ligand, deacetalization-Knoevenagel condensation of acetals and malononitrile could be efficiently facilitated by an activated sample of NUC-42a under lukewarm conditions.
Collapse
Affiliation(s)
- Hongtai Chen
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Zhengguo Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Tuoping Hu
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| | - Xiutang Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, People's Republic of China
| |
Collapse
|
25
|
Hao L, Xia Q, Zhang Q, Masa J, Sun Z. Improving the performance of metal-organic frameworks for thermo-catalytic CO2 conversion: Strategies and perspectives. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63841-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
26
|
A review for Metal-Organic Frameworks (MOFs) utilization in capture and conversion of carbon dioxide into valuable products. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101715] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Arefi E, Khojastehnezhad A, Shiri A. A magnetic copper organic framework material as an efficient and recyclable catalyst for the synthesis of 1,2,3-triazole derivatives. Sci Rep 2021; 11:20514. [PMID: 34654831 PMCID: PMC8519936 DOI: 10.1038/s41598-021-00012-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/20/2021] [Indexed: 12/25/2022] Open
Abstract
In this study, a core-shell magnetic metal organic framework (MOF) catalyst was introduced based on Fe3O4 magnetic nanoparticles (MNPs) and copper organic frameworks. In this catalyst, Fe3O4 MNPs have been coated with MOFs in which copper was the inorganic nodes and 1,3,5-benzenetricarboxylic acid was the organic linkers. Then, the core-shell structures and catalytic efficiency have been confirmed properly and completely with various analyses such as FT-IR, TEM, SEM, TEM mapping, SEM mapping, EDX, PXRD, TGA, ICP and VSM. The Cu moieties in MOF and shell structures can catalyze the synthesis of 1,2,3-triazole derivatives with good to excellent yields in the presence of water as a green solvent. Moreover, this catalyst showed the high reusability due to the super paramagnetic properties.
Collapse
Affiliation(s)
- Elham Arefi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amir Khojastehnezhad
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Shiri
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
28
|
Tang J, Wei F, Ding S, Wang X, Xie G, Fan H. Azo-Functionalized Zirconium-Based Metal-Organic Polyhedron as an Efficient Catalyst for CO 2 Fixation with Epoxides. Chemistry 2021; 27:12890-12899. [PMID: 34288181 DOI: 10.1002/chem.202102089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Indexed: 11/11/2022]
Abstract
Chemical fixation of CO2 as C1 source at ambient temperature and low pressure is an energy-saving way to make use of the green-house gas, but it still remains a challenge since efficient catalyst with high catalytic active sites is required. Here, a novel monoclinic azo-functionalized Zr-based metal-organic polyhedron (Zr-AZDA) has been prepared and applied in CO2 fixation with epoxides. The inherent azo groups not only endow Zr-AZDA with good solubilization, but also act as basic sites to enrich CO2 showing efficient synergistic catalysis as confirmed by TPD-CO2 analysis. XPS results demonstrate that the Zr active sites in Zr-AZDA possess suitable Lewis acidity, which satisfies both substrates activation and products desorption. DFT calculation indicates the energy barrier of the rate-determining step in CO2 cycloaddition could be reduced remarkably (by ca. 60.9 %) in the presence of Zr-AZDA, which may rationalize the mild and efficient reaction condition employed (80 °C and 1 atm of CO2 ). The work provides an effective multi-functional cooperative method for improvement of CO2 cycloaddition.
Collapse
Affiliation(s)
- Jia Tang
- Department School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, P. R. China
| | - Fen Wei
- Department School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, P. R. China
| | - Shujiang Ding
- Department of Applied Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiaoxia Wang
- Department School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, P. R. China
| | - Guanqun Xie
- Department School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, P. R. China
| | - Hongbo Fan
- Department School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, P. R. China
| |
Collapse
|
29
|
Gao XJ, Zheng HG. The difference in the CO 2 adsorption capacities of different functionalized pillar-layered metal-organic frameworks (MOFs). Dalton Trans 2021; 50:9310-9316. [PMID: 34132290 DOI: 10.1039/d1dt00498k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The excessive use of fossil energy has caused the CO2 concentration in the atmosphere to increase year by year. MOFs are ideal CO2 adsorbents that can be used in CO2 capture due to their excellent characteristics. Studies of the structure-activity relationship between the small structural differences in MOFs and the CO2 adsorption capacities are helpful for the development of efficient MOF-based CO2 adsorbents. Therefore, a series of pillar-layered MOFs with similar structural and different functional groups were designed and synthesized. The CO2 adsorption tests were carried out at 273 K to explore the relationship between the small structural differences in MOFs caused by different functional groups and the CO2 adsorption capacities. Significantly, compound 6 which contains a pyridazinyl group has a 30.9% increase in CO2 adsorption capacity compared to compound 1 with no functionalized group.
Collapse
Affiliation(s)
- Xiang-Jing Gao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.
| | - He-Gen Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.
| |
Collapse
|
30
|
Liu L, Jayakumar S, Chen J, Tao L, Li H, Yang Q, Li C. Synthesis of Bifunctional Porphyrin Polymers for Catalytic Conversion of Dilute CO 2 to Cyclic Carbonates. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29522-29531. [PMID: 34133113 DOI: 10.1021/acsami.1c04624] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Development of efficient solid catalysts for catalytic conversion of dilute CO2 is of extreme importance for carbon capture and utilization. We report the synthesis of bifunctional polymers co-incorporated with porphyrin-Zn as Lewis acid sites and Br- as nucleophiles for the cycloaddition of dilute CO2 with epoxides in this work. It was found that the Br-/Zn ratio has a volcano relation with the activity of bifunctional polymers in a cycloaddition reaction, indicating the synergy effect between Lewis acid sites and nucleophiles. The turnover frequency (TOF) of the bifunctional polymer is more than four-fold that of the physical mixture of tetrabutylammonium bromide and porphyrin-Zn-incorporated polymer, implying the enhanced cooperation between Br- and porphyrin-Zn in the polymer network. The bifunctional polymer with optimized Br-/Zn afforded 99% conversion, 99% selectivity, and a TOF as high as 12,000 h-1 for the cycloaddition of CO2 and propylene oxide, which is among the most active solid catalysts ever reported. Furthermore, the bifunctional polymer could efficiently catalyze the cycloaddition of epichlorohydrin with dilute CO2 (7.5% CO2 balanced by N2) even under ambient conditions, demonstrating its potential application in industrial-scale production.
Collapse
Affiliation(s)
- Lina Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sanjeevi Jayakumar
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jian Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Lin Tao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - He Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qihua Yang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
31
|
Liang S, Ge FY, Ren SS, Lei MY, Gao XJ, Zheng HG. Molecular engineering in a family of pillared-layered metal-organic frameworks for tuning gas adsorption behavior. Dalton Trans 2021; 50:7409-7416. [PMID: 33969851 DOI: 10.1039/d1dt00431j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, inspired by a water-assisted three-dimensional supramolecular structure 1, we use a mixed-ligand strategy to form a 3D pillared-layered matrix by the introduction of linear ligands to compete against the water molecules. The resulting analogue microporous MOFs of 2-H, 2-F and 2-N, decorated with different functional groups, similarly show the CO2 uptake. Thanks to the negligible N2 adsorption capacity, enhanced selective adsorption towards CO2 is achieved in compound 2-N. That is, we present here an alternative plan for the high CO2 selective adsorption performance. In addition, the structure stability and moderate affinity for CO2 of these microporous MOFs endow them with excellent reusability.
Collapse
Affiliation(s)
- Shuai Liang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.
| | - Fa-Yuan Ge
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.
| | - Shuang-Shuang Ren
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.
| | - Ming-Yuan Lei
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.
| | - Xiang-Jing Gao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.
| | - He-Gen Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.
| |
Collapse
|
32
|
Wu D, Zhang PF, Yang GP, Hou L, Zhang WY, Han YF, Liu P, Wang YY. Supramolecular control of MOF pore properties for the tailored guest adsorption/separation applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213709] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
33
|
Chakraborty G, Das P, Mandal SK. Efficient and Highly Selective CO 2 Capture, Separation, and Chemical Conversion under Ambient Conditions by a Polar-Group-Appended Copper(II) Metal-Organic Framework. Inorg Chem 2021; 60:5071-5080. [PMID: 33703884 DOI: 10.1021/acs.inorgchem.1c00101] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A polar sulfone-appended copper(II) metal-organic framework (MOF; 1) has been synthesized from the dual-ligand approach comprised of tetrakis(4-pyridyloxymethylene)methane and dibenzothiophene-5,5'-dioxide-3,7-dicarboxylic acid under solvothermal conditions. This has been studied by different techniques that included single-crystal X-ray diffractometry, based on which the presence of Lewis acidic open-metal sites as well as polar sulfone groups aligned on the pore walls is identified. MOF 1 displays a high uptake of CO2 over N2 and CH4 with an excellent selectivity (S = 883) for CO2/N2 (15:85) at 298 K under flue gas combustion conditions. Additionally, the presence of Lewis acidic metal centers facilitates an efficient size-selective catalytic performance at ambient conditions for the conversion of CO2 into industrially valuable cyclic carbonates. The experimental investigations for this functional solvent-free heterogeneous catalyst are also found to be in good correlation with the computational studies provided by configurational bias Monte Carlo simulation for both CO2 capture and its conversion.
Collapse
Affiliation(s)
- Gouri Chakraborty
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Manauli PO, S.A.S. Nagar, Mohali, Punjab 140306, India
| | - Prasenjit Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Manauli PO, S.A.S. Nagar, Mohali, Punjab 140306, India
| | - Sanjay K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Manauli PO, S.A.S. Nagar, Mohali, Punjab 140306, India
| |
Collapse
|
34
|
Yang XL, Yan YT, Wang WJ, Hao ZZ, Zhang WY, Huang W, Wang YY. A 2-Fold Interpenetrated Nitrogen-Rich Metal-Organic Framework: Dye Adsorption and CO 2 Capture and Conversion. Inorg Chem 2021; 60:3156-3164. [PMID: 33591741 DOI: 10.1021/acs.inorgchem.0c03506] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A bifunctional ligand strategy for modification of the functional pores is of great significance in the structural design of metal-organic frameworks (MOFs). Herein, a new 2-fold interpenetrated "pillared-layer" 3D Co-MOF, {[Co(HL)(4,4'-bipy)]·DMF·2H2O}n (1), was successfully synthesized by using two kinds of ligands, imidazolecarboxylic acid and pyridine. The metal-carboxylic layers are pillared by the 4,4'-bipy ligand, displaying a 3D framework with rectangular 3D channels (high BET surface of 190.9 m2 g-1 and maximum aperture of 3.9 Å) that are decorated with abundant uncoordinated N and O atoms. 1 shows good water stability and thermal stability (320 °C). The proper pores and active sites endowed 1 with a selective adsorption of Congo red in aqueous solution. In addition, a high CO2 adsorption capacity and an excellent CO2 chemical conversion were observed.
Collapse
Affiliation(s)
- Xiao-Li Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Yang-Tian Yan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Wen-Juan Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Ze-Ze Hao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Wen-Yan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Wenhuan Huang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi, People's Republic of China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| |
Collapse
|
35
|
Yang L, Zhang H, Tao P, Lu X, Li X, Wang C, Wang B, Yue F, Zhou D, Xia Q. Microwave-Assisted Air Epoxidation of Mixed Biolefins over a Spherical Bimetal ZnCo-MOF Catalyst. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8474-8487. [PMID: 33570391 DOI: 10.1021/acsami.0c22317] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Here, we report the synthesis of spherical bimetal ZnCo-MOF materials by a hydrothermal rotacrystallization method and their catalytic activity on the air epoxidation of mixed biolefins enhanced by microwaves. The structural and chemical properties of the ZnCo-MOF materials were fully characterized by XRD, IR, SEM, TG, XPS, and NH3-TPD. The morphology of the material exhibited a three-dimensional spherical structure. From an NH3-TPD test of the ZnCo-MOF catalyst, it could be concluded that the Zn0.1Co1-MOF-H-150 rpm material had the highest acidic content and the strongest acidity among the catalysts synthesized by different methods, which gave the best performance in the epoxidation of mixed biolefins. The air epoxidation reaction was carried out under atmospheric pressure and microwave conditions, in the absence of any initiator or coreducing agent. Moreover, the Zn0.1Co1-MOF catalyst could be recycled six times without reducing the catalytic activity significantly, which showed the stability of spherical catalyst material under microwaves.
Collapse
Affiliation(s)
- Lu Yang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & Ministry-of-Education Key Laboratory for Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, P. R. China
| | - Haifu Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & Ministry-of-Education Key Laboratory for Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, P. R. China
| | - Peipei Tao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & Ministry-of-Education Key Laboratory for Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, P. R. China
| | - Xinhuan Lu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & Ministry-of-Education Key Laboratory for Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, P. R. China
| | - Xixi Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & Ministry-of-Education Key Laboratory for Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, P. R. China
| | - Chenlong Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & Ministry-of-Education Key Laboratory for Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, P. R. China
| | - Beibei Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & Ministry-of-Education Key Laboratory for Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, P. R. China
| | - Fanfan Yue
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & Ministry-of-Education Key Laboratory for Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, P. R. China
| | - Dan Zhou
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & Ministry-of-Education Key Laboratory for Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, P. R. China
| | - Qinghua Xia
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials & Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & Ministry-of-Education Key Laboratory for Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, P. R. China
| |
Collapse
|
36
|
Abazari R, Sanati S, Morsali A, Kirillov AM, Slawin AMZ, Carpenter-Warren CL. Simultaneous Presence of Open Metal Sites and Amine Groups on a 3D Dy(III)-Metal–Organic Framework Catalyst for Mild and Solvent-Free Conversion of CO2 to Cyclic Carbonates. Inorg Chem 2021; 60:2056-2067. [DOI: 10.1021/acs.inorgchem.0c03634] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Reza Abazari
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, 14115-175, Iran
| | - Soheila Sanati
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, 14115-175, Iran
| | - Ali Morsali
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, 14115-175, Iran
| | - Alexander M. Kirillov
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Avenido Rovisco Pais, 1049-001 Lisbon, Portugal
- Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya strasse, Moscow 117198, Russia
| | - Alexandra M. Z. Slawin
- School of Chemistry, University of St. Andrews, St. Andrews, Fife KY16 9ST, United Kingdom
| | | |
Collapse
|
37
|
Yan LIY, Zhu HC, Ma YQ, Tao L, Quan LL, Zhang Q. A porous Co-MOF for CO2 conversion and protective activity on infectious fever by reducing bacterial inflammatory response. J COORD CHEM 2021. [DOI: 10.1080/00958972.2020.1870683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- LI-Ying Yan
- Department of Emergency, Dongying People's Hospital, Dongying, Shandong, China
| | - Hong-Chao Zhu
- Department of Emergency, Dongying People's Hospital, Dongying, Shandong, China
| | - Yan-Qu Ma
- Department of Emergency, Dongying People's Hospital, Dongying, Shandong, China
| | - Ling Tao
- Department of Medicine, Xiangya Medical College, Zhuzhou, Hunan, China
| | - Ling-Li Quan
- Department of Medicine, Xiangya Medical College, Zhuzhou, Hunan, China
| | - Qing Zhang
- Emergency Intensive Care Unit, Dongying People's Hospital, Dongying, Shandong, China
| |
Collapse
|
38
|
Zhu Y, Gu J, Yu X, Zhang B, Li G, Li J, Liu Y. The multifunctional design of metal–organic framework by applying linker desymmetrization strategy: synergistic catalysis for high CO 2-epoxide conversion. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00960e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A novel copper-organic framework was synthesized by a linker desymmetrization strategy. Synergistic catalysis with Lewis and Brønsted acid sites promoted a high catalytic efficiency towards the CO2-propylene oxide cycloaddition reaction.
Collapse
Affiliation(s)
- Yueying Zhu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jiaming Gu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xueyue Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Borong Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Guanghua Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jiantang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yunling Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
39
|
Wu Q, Yang XL, Ding ZY, Meng XY, Zhang WY, Yan YT, Yang GP, Wang YY. A multi-functional two-dimensional Zn( ii)-organic framework for selective carbon dioxide adsorption, sensing of nitrobenzene and Cr 2O 72−. CrystEngComm 2021. [DOI: 10.1039/d1ce01095f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A novel two-dimensional coordination polymer {[(CH3)2NH2][Zn2(L)2]·DMF}n was synthesized. It exhibits good selective adsorption for CO2; moreover, it shows high selectivity and sensitivity for NB and Cr2O72− ions.
Collapse
Affiliation(s)
- Qi Wu
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Xiao-Li Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Ze-Yu Ding
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Xiao-Yun Meng
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Wen-Yan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Yang-Tian Yan
- School of Materials Science & Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R. China
| | - Guo-Ping Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
40
|
Cai J, Zou PF. A Porous CoII-MOF for CO2 Cycloaddition and the Protective Effect against Staphylococcus aureus Systemic Infection in the Department of Ultrasound. Aust J Chem 2021. [DOI: 10.1071/ch20060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A new metal-organic framework (MOF) based on CoII ions as nodes, [Co2(H2O)3(cada)](DMF)4, which has coordinated water molecules at the occupied CoII sites along with a suitable pore environment, was constructed by reaction of 5,5′-(9H-carbazole-2,7-diyl)diisophthalic acid (H4cada) and Co(NO3)2·6H2O in a water and DMF mixed solvent. The resulting activated MOF 1ais able to uptake considerable amounts of CO2 at room temperature, and be further used for the efficient conversion of epoxides along with CO2 into cyclic carbonates under mild conditions without a co-catalyst. To control intra-hospital cross-infection in the Department of Ultrasound, the anti-bacterial activity of the compound was assessed in a systemic Staphylococcus aureus infection mouse model. The survival rate of systemic Staphylococcus aureus infected mice after compound treatment was determined to evaluate protective effect of the compound invivo. The number of colony-forming units (CFUs) in the organs of infected mice was also counted for further verification.
Collapse
|
41
|
Redkov A, Kukushkin S. Theoretical aspects of the growth of a non-Kossel crystal from vapours: role of advacancies. Faraday Discuss 2021; 235:362-382. [DOI: 10.1039/d1fd00083g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The growth of an arbitrary multicomponent non-Kossel crystal via the Burton–Cabrera–Frank mechanism is studied, considering the effect of advacancies and their recombination with adatoms on the surface. An analysis is...
Collapse
|
42
|
Bao C, Jiang Y, Zhao L, Li D, Xu P, Sun J. Aminoethylimidazole ionic liquid-grafted MIL-101-NH 2 heterogeneous catalyst for the conversion of CO 2 and epoxide without solvent and cocatalyst. NEW J CHEM 2021. [DOI: 10.1039/d1nj02590b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An aminoethylimidazole IL-functionalized MIL-101-NHIM-NH2 catalyst efficiently catalyzes the cycloaddition reaction of CO2 and epoxide without solvent and cocatalyst, owing to the synergistic effects of Cr, –NH2 and Br− active sites.
Collapse
Affiliation(s)
- Chenglong Bao
- State Key Laboratory of Urban Water Resource and Environment
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150080
| | - Yichen Jiang
- State Key Laboratory of Urban Water Resource and Environment
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150080
| | - Liyan Zhao
- State Key Laboratory of Urban Water Resource and Environment
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150080
| | - Dazhi Li
- State Key Laboratory of Urban Water Resource and Environment
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150080
| | - Ping Xu
- State Key Laboratory of Urban Water Resource and Environment
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150080
| | - Jianmin Sun
- State Key Laboratory of Urban Water Resource and Environment
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150080
| |
Collapse
|
43
|
Liu N, Zhang Q, Guan J. A binuclear Co-based metal-organic framework towards efficient oxygen evolution reaction. Chem Commun (Camb) 2021; 57:5016-5019. [PMID: 33881431 DOI: 10.1039/d1cc01492g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The search for low-cost and high-performance electrocatalysts for oxygen evolution reaction (OER) has aroused enormous research interest in the last few years. Reported herein is the topotactic construction of a binuclear Co-based metal-organic framework (Co2-tzpa) using a solvothermal reaction. Prominently, as a porous catalyst, Co2-tzpa holds its activity for at least 25 hours and exhibits low OER overpotentials of 336 and 396 mV to achieve the current density of 10 mA cm-2 in 1 M KOH and 0.1 M KOH, respectively. The excellent OER performance should be attributed to each cobalt site coordinated with two tetrazolate N atoms.
Collapse
Affiliation(s)
- Ning Liu
- Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun 130021, P. R. China.
| | - QiaoQiao Zhang
- Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun 130021, P. R. China.
| | - Jingqi Guan
- Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun 130021, P. R. China.
| |
Collapse
|
44
|
Facile syntheses of ionic polymers for efficient catalytic conversion of CO2 to cyclic carbonates. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101301] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
45
|
Wang X, Yang L, Chen Y, Yang C, Lan J, Sun J. Metal-Free Triazine-Incorporated Organosilica Framework Catalyst for the Cycloaddition of CO2 to Epoxide under Solvent-Free Conditions. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04466] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Xin Wang
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Li Yang
- State Key Lab of Advanced Welding and Joining, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yanglin Chen
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Chaokun Yang
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Jianwen Lan
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Jianmin Sun
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
| |
Collapse
|
46
|
Tang PH, So PB, Lee KR, Lai YL, Lee CS, Lin CH. Metal Organic Framework-Polyethersulfone Composite Membrane for Iodine Capture. Polymers (Basel) 2020; 12:polym12102309. [PMID: 33050253 PMCID: PMC7600638 DOI: 10.3390/polym12102309] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 11/20/2022] Open
Abstract
A variety of metal organic frameworks (MOFs) were synthesized and evaluated for their iodine adsorption capacity. Out of the MOFs tested, ZIF-8 showed the most promising result with an iodine vapor uptake of 876.6 mg/g. ZIF-8 was then incorporated into a polymer, polyethersulfone (PES), at different proportions to prepare mixed matrix membranes (MMMs), which were then used to perform further iodine adsorption experiments. With a mixing ratio of 40 wt % of ZIF-8, the iodine adsorption capacity reached 1387.6 mg/g, wherein an astounding 60% improvement in adsorption was seen with the MMMs prepared compared to the original ZIF-8 powder.
Collapse
Affiliation(s)
- Po-Hsiang Tang
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan;
| | - Pamela Berilyn So
- Department of Chemistry, Chung Yuan Christian University, Taoyuan City 32023, Taiwan;
| | - Kueir-Rarn Lee
- R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan University, Chung-Li 32023, Taiwan;
| | - Yu-Lun Lai
- Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan; (Y.-L.L.); (C.-S.L.)
| | - Cheng-Shiuan Lee
- Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan; (Y.-L.L.); (C.-S.L.)
| | - Chia-Her Lin
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan;
- R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan City 32023, Taiwan
- Correspondence:
| |
Collapse
|
47
|
Das P, Mandal SK. Unprecedented High Temperature CO 2 Selectivity and Effective Chemical Fixation by a Copper-Based Undulated Metal-Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2020; 12:37137-37146. [PMID: 32686423 DOI: 10.1021/acsami.0c09024] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Post- and precombustion CO2 capture and separation are the vital challenges from industrial viewpoint, as the accessible technologies are not cost-effective and cumbersome. Thus, the development of functional metal-organic frameworks (MOFs) that are found to be promising materials for selective CO2 capture, separation, and conversion is gaining an importance in the scientific world. Based on the strategic design, a new functionalized triazine-based undulated paddle-wheel Cu-MOF (1), {[Cu(MTABA)(H2O)]·4H2O·2EtOH·DMF}n (where, H2MTABA = 4,4'-((6-methoxy-1,3,5-triazine-2,4-diyl)bis(azanediyl))dibenzoic acid), has been synthesized under solvothermal conditions and fully characterized. MOF 1 contains a one-dimensional channel along the a-axis with pore walls decorated with open metal sites, and multifunctional groups (amine, triazine, and methoxy). Unlike other porous materials, activated 1 (1') possesses exceptional increment in CO2/N2 and CO2/CH4 selectivity with increased temperature calculated by the ideal adsorbed solution theory. With an increase in temperature from 298 to 313 K, the selectivity of CO2 rises from 350.3 to 909.5 at zero coverage, which is unprecedented till date. Moreover, 1' behaves as a bifunctional heterogeneous catalyst through Lewis acid (open metal) and Brönsted acid sites to facilitate the chemical fixation of CO2 to cyclic carbonates under ambient conditions. The high selectivity for CO2 by 1' even at higher temperature was further corroborated with configurational bias Monte Carlo molecular simulation that ascertains the multiple CO2-philic sites and epoxide binding sites in 1' to further decipher the mechanistic pathway.
Collapse
Affiliation(s)
- Prasenjit Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manauli PO, S.A.S. Nagar, Mohali, Punjab 140306, India
| | - Sanjay K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Manauli PO, S.A.S. Nagar, Mohali, Punjab 140306, India
| |
Collapse
|
48
|
Thompson Z, Cowan JA. Artificial Metalloenzymes: Recent Developments and Innovations in Bioinorganic Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000392. [PMID: 32372559 DOI: 10.1002/smll.202000392] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 06/11/2023]
Abstract
Cellular life is orchestrated by the biochemical components of cells that include nucleic acids, lipids, carbohydrates, proteins, and cofactors such as metabolites and metals, all of which coalesce and function synchronously within the cell. Metalloenzymes allow for such complex chemical processes, as they catalyze a myriad of biochemical reactions both efficiently and selectively, where the metal cofactor provides additional functionality to promote reactivity not readily achieved in their absence. While the past 60 years have yielded considerable insight on how enzymes catalyze these reactions, a need to engineer and develop artificial metalloenzymes has been driven not only by industrial and therapeutic needs, but also by innate human curiosity. The design of miniature enzymes, both rationally and through serendipity, using both organic and inorganic building blocks has been explored by many scientists over the years and significant progress has been made. Herein, recent developments over the past 5 years in areas that have not been recently reviewed are summarized, and prospects for future research in these areas are addressed.
Collapse
Affiliation(s)
- Zechariah Thompson
- Evans Laboratory of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - James Allan Cowan
- Evans Laboratory of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| |
Collapse
|
49
|
Zhao B, Sheng Q, Qin Y, Wang Y, Zhao H, Zhao N. WITHDRAWN: Porous Co(abta)(Trz) MOF for efficient transformation of CO2 and protective activity on infectious fever by inhibiting bacterial growth and reducing inflammatory response. Biophys Chem 2020. [DOI: 10.1016/j.bpc.2020.106423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
50
|
Selective CO2 adsorption and Lewis acid catalytic activity towards naphthimidazole synthesis by a Zn-MOF. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|