1
|
Nazemi M, Darband GB, Davoodi A. Interfacial engineering of Ni-Co-Mn@Ni nanosheet-nanocone arrays as high performance non-noble metal electrocatalysts for hydrogen generation. NANOSCALE 2024; 16:10853-10863. [PMID: 38770787 DOI: 10.1039/d4nr01404a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The electrochemical hydrogen production from water splitting is a promising strategy for obtaining new energy sources and replacing fossil fuels. In this study, nickel nanocones were first deposited on a nickel foam substrate using a direct current method. Then, a nickel-cobalt-manganese ternary alloy with a nanosheet morphology was deposited on the nanocones using a cyclic voltammetry method with different cycles and sweep rates. The results show that the sample synthesized in 3 cycles with a sweep rate of 10 mV s-1 exhibits the best electrocatalytic activity and requires -81, -121, and -214 mV overpotentials to reach 10, 20 and 100 mA cm-2 current densities, respectively. Electrochemical impedance spectroscopy studies also improved the HER performance with the lowest charge transfer resistance among all of the synthesized electrodes. This study introduces an effective and facile method for the fabrication of highly active and stable electrocatalysts.
Collapse
Affiliation(s)
- Mostafa Nazemi
- Materials and Metallurgical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 91775-1111, Iran.
| | - Ghasem Barati Darband
- Materials and Metallurgical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 91775-1111, Iran.
| | - Ali Davoodi
- Amsterdam Science Park, PC 1098X, The Netherlands
| |
Collapse
|
2
|
Cui X, Wu M, Liu X, He B, Zhu Y, Jiang Y, Yang Y. Engineering organic polymers as emerging sustainable materials for powerful electrocatalysts. Chem Soc Rev 2024; 53:1447-1494. [PMID: 38164808 DOI: 10.1039/d3cs00727h] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Cost-effective and high-efficiency catalysts play a central role in various sustainable electrochemical energy conversion technologies that are being developed to generate clean energy while reducing carbon emissions, such as fuel cells, metal-air batteries, water electrolyzers, and carbon dioxide conversion. In this context, a recent climax in the exploitation of advanced earth-abundant catalysts has been witnessed for diverse electrochemical reactions involved in the above mentioned sustainable pathways. In particular, polymer catalysts have garnered considerable interest and achieved substantial progress very recently, mainly owing to their pyrolysis-free synthesis, highly tunable molecular composition and microarchitecture, readily adjustable electrical conductivity, and high stability. In this review, we present a timely and comprehensive overview of the latest advances in organic polymers as emerging materials for powerful electrocatalysts. First, we present the general principles for the design of polymer catalysts in terms of catalytic activity, electrical conductivity, mass transfer, and stability. Then, the state-of-the-art engineering strategies to tailor the polymer catalysts at both molecular (i.e., heteroatom and metal atom engineering) and macromolecular (i.e., chain, topology, and composition engineering) levels are introduced. Particular attention is paid to the insightful understanding of structure-performance correlations and electrocatalytic mechanisms. The fundamentals behind these critical electrochemical reactions, including the oxygen reduction reaction, hydrogen evolution reaction, CO2 reduction reaction, oxygen evolution reaction, and hydrogen oxidation reaction, as well as breakthroughs in polymer catalysts, are outlined as well. Finally, we further discuss the current challenges and suggest new opportunities for the rational design of advanced polymer catalysts. By presenting the progress, engineering strategies, insightful understandings, challenges, and perspectives, we hope this review can provide valuable guidelines for the future development of polymer catalysts.
Collapse
Affiliation(s)
- Xun Cui
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| | - Mingjie Wu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| | - Xueqin Liu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| | - Bing He
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| | - Yunhai Zhu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| | - Yalong Jiang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| | - Yingkui Yang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
3
|
Liu Z, Yu X, Li J, Wei D, Peng J, Jiang H, Liu H, Mahmud S. Electrocatalytic hydrogenation of indigo by NiMoS: energy saving and conversion improving. Dalton Trans 2023; 52:17438-17448. [PMID: 37947491 DOI: 10.1039/d3dt02272b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2023]
Abstract
An NiMo alloy bonded with sulfur (NiMoS) exhibits enhanced surface affinity toward water and organic molecules, thereby enhancing electrocatalytic hydrogenation (ECH) reactions through synergistic effects. In industrial processes, indigo, an ancient dye employed in the denim industry, is typically chemically reduced using sodium dithionite. However, this process generates an excess of toxic sulfide, which heavily contaminates the environment. ECH is a sustainable alternative for indigo reduction due to its reduced reliance on chemicals and energy consumption. In this study, carbon-felt (CF)-supported NiMoS was synthesized in a two-step process. First, the NiMo alloy was electrodeposited onto the CF surface, followed by sulfidation in an oven at 600 °C. NiMoS exhibits a larger electrochemically active surface area and a smaller charge transfer resistance compared to pure Ni and NiMo. Furthermore, NiMoS demonstrates excellent thermodynamic and kinetic properties for water splitting in strong alkaline solutions (1.0 M KOH). Additionally, optimal reaction conditions for the ECH of indigo were explored. Under the conditions of a 1.0 M KOH hydroxide medium with 10% methanol (v/v), an indigo concentration of 5 g L-1, a reaction temperature of 70 °C, and a current density of 10 mA cm-2, NiMoS/CF achieved remarkable improvements in both conversion (99.2%) and Faraday efficiency (38.1%). The results of this experimental work offer valuable insights into the design and application of novel catalytic materials for the ECH of vat dyes, opening up new possibilities for sustainable and environmentally friendly processes in the dye industry.
Collapse
Affiliation(s)
- Zihao Liu
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, Wuhan 430200, People's Republic of China.
| | - Xunkai Yu
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, Wuhan 430200, People's Republic of China.
| | - Jie Li
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, Wuhan 430200, People's Republic of China.
| | - Dong Wei
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, Wuhan 430200, People's Republic of China.
| | - Junjun Peng
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, Wuhan 430200, People's Republic of China.
| | - Huiyu Jiang
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, Wuhan 430200, People's Republic of China.
| | - Huihong Liu
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, Wuhan 430200, People's Republic of China.
| | - Sakil Mahmud
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, Wuhan 430200, People's Republic of China.
| |
Collapse
|
4
|
Guo W, Kim H, Hong S, Kim SY, Ahn SH. Constructing a NiMnS electrode with a Mn-rich surface for hydrogen production in anion exchange membrane water electrolyzers. Dalton Trans 2023; 52:14039-14046. [PMID: 37740335 DOI: 10.1039/d3dt02202a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Efficient alkaline hydrogen evolution electrodes must be used for hydrogen production in anion exchange membrane water electrolyzers (AEMWEs). Therefore, we fabricated a NiMnS catalyst with a Mn-rich surface, which was self-supported on Ti paper through one-step electrodeposition. Mn doping endowed the catalyst with a unique hollow morphology and lattice-distorted structure. Consequently, the NiMnS/Ti electrode exhibited a large number of exposed electrochemical surfaces and effective active sites and a high hydrogen evolution reaction (HER) activity. Specifically, in half-cell measurements, the NiMnS/Ti electrode exhibited an overpotential of 65 mV at 10 mA cm-2, which was lower than that of NiS/Ti (102 mV) and indicated its superior HER activity. When the proposed cathode was applied in an AEMWE single cell, the device achieved a high current density of up to 0.9 A cm-2 at a cell potential of 2.0 V.
Collapse
Affiliation(s)
- Wenwu Guo
- School of Chemical Engineering and Material Science, Chung-Ang University, Seoul 06974, Republic of Korea.
| | - Hyunki Kim
- School of Chemical Engineering and Material Science, Chung-Ang University, Seoul 06974, Republic of Korea.
| | - Seokjin Hong
- School of Chemical Engineering and Material Science, Chung-Ang University, Seoul 06974, Republic of Korea.
| | - Soo Young Kim
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Sang Hyun Ahn
- School of Chemical Engineering and Material Science, Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
5
|
Ge L, Yang H, Guan J, Ouyang B, Yu Q, Li H, Deng Y. Unveiling the Structural Self-Reconstruction and Identifying the Reactive Center of a V, Fe Co-Doped Cobalt Precatalyst toward Enhanced Overall Water Splitting by Operando Raman Spectroscopy. Inorg Chem 2023; 62:15664-15672. [PMID: 37682056 DOI: 10.1021/acs.inorgchem.3c02451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
The development of efficient and stable bifunctional electrocatalysts based on non-noble metals for water electrolysis is both urgent and challenging. However, unresolved issues remain regarding the challenge of identifying the active phase and gaining a comprehensive understanding of its surface reconstruction and functionality throughout the reaction process. In this study, we have combined doping and heterostructure construction by a one-step electrodeposition and a subsequent activation treatment to synthesize Fe, V co-doped Co3O4/Co(OH)2 and Co/Co(OH)2 heterointerfaces (referred to as A-Co60Fe1.1V). These heterointerfaces, composed of Co/Co(OH)2 and Co3O4/Co(OH)2, are proposed to facilitate charge transfer process during catalysis. X-ray photoelectron spectroscopy (XPS) analysis demonstrates that the introduction of V and Fe dopants increases the valence state of Co centers in Co3O4 and Co(OH)2. Further operando Raman spectroscopy reveals that Co(OH)2 and Co3O4 with the high-valence Co centers remain stable during the hydrogen evolution reaction (HER) process. These high-valence Co centers are believed to promote the crucial water dissociation step and therefore enhance the overall HER catalysis. On the other hand, during the oxygen evolution reaction (OER), Fe, V co-doping leads to an earlier formation of the active CoOOH species, while Fe doping can further help stabilize the more reactive β-CoOOH species instead of the less reactive γ-CoOOH. As a result, the A-Co60Fe1.1V catalyst exhibits significantly improved catalytic activity for both HER and OER that it requires low overpotentials of 51 and 250 mV, respectively, to attain a current density of 10 mA cm-2. Moreover, when utilized as both the cathode and anode in alkaline water electrolysis, the A-Co60Fe1.1V catalyst can operate at a mere 1.54 V voltage while maintaining 10 mA cm-2, surpassing the majority of non-noble metal catalysts. Remarkably, it also exhibits stability for at least 40 h at ∼100 mA cm-2.
Collapse
Affiliation(s)
- Lihong Ge
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Hua Yang
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Jiexin Guan
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Bo Ouyang
- Department of Applied Physics and Institution of Energy and Microstructure, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Qing Yu
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Huaming Li
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Yilin Deng
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
6
|
Miao F, Cui P, Yu S, Gu T. In situ fabrication of a 3D self-supported porous Ni-Mo-Cu catalyst for an efficient hydrogen evolution reaction. Dalton Trans 2023. [PMID: 37306025 DOI: 10.1039/d3dt00699a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
It is still a challenge to develop very effective and stable non-noble catalysts for the hydrogen evolution reaction (HER). Here, a self-supported porous Ni-Mo-Cu coating is prepared by the dynamic hydrogen bubble template (DHBT) method. This three-dimensional (3D) porous Ni-Mo-Cu coating can offer a large surface area, which helps expose more active sites and promote the transmission of electrons and materials. To achieve this, the 3D porous Ni-Mo-Cu coating catalyst requires a low overpotential value of 70 mV at 10 mA cm-2 in 1 M KOH and stable catalytic properties at a high current density of 500 mA cm-2 for more than 10 h with no obvious evidence of degradation. DFT calculations show the source of the excellent catalytic performance of the 3D porous Ni-Mo-Cu catalyst in alkaline media, including the kinetic energy and adsorption energy. This work provides significant insight into the design of efficient 3D porous materials.
Collapse
Affiliation(s)
- Fang Miao
- College of Materials Science and Engineering, North University of China, Taiyuan, 030051, China
| | - Peng Cui
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China.
| | - Shijie Yu
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China.
| | - Tao Gu
- College of Materials Science and Engineering, North University of China, Taiyuan, 030051, China
| |
Collapse
|
7
|
Zhang Y, Wang W, Chen X, Li Q, Yu C. Construct of an Electrodeposited Cobalt-Molybdenum Film and Evaluation of Its Efficiency in Hydrogen Evolution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37191156 DOI: 10.1021/acs.langmuir.3c00268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Hydrogen is a valuable clean energy source, and electrolysis to produce hydrogen from water is a crucial component. However, a major problem of hydrogen generation by electrolysis is its large overpotential and poor economics. To reduce the overpotential, we mainly use nickel foam and Co-Mo ions as feedstock and create an efficient catalytic material by electrodeposition. The Co-Mo interaction improves the current efficiency. In 1 mol/L NaOH solution, the overpotential of the Co-Mo-NF composites was low when the current density is -10 mA/cm2, with the best value reaching 45.3 mV, which is less than those of Co-NF (94.4 mV) and Mo-NF (88.2 mV). All deposits had similar Tafel slopes in the 77.9 mV/decade range. The catalyst does not just have a favorable effect on hydrogen formation but also has a surprisingly high double-layer capacitance (up to 180 mF/cm2) and good stability. This research provides an impactful approach for developing a non-precious metal HER catalyst for industrial hydrogen production.
Collapse
Affiliation(s)
- Yao Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, Shanxi, China
| | - Wenjing Wang
- School of Instrumentation and Electronics, North University of China, Taiyuan 030051, Shanxi, China
| | - Xinliang Chen
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, Shanxi, China
| | - Qiaoling Li
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, Shanxi, China
| | | |
Collapse
|
8
|
Jin D, Qiao F, Chu H, Xie Y. Progress in electrocatalytic hydrogen evolution of transition metal alloys: synthesis, structure, and mechanism analysis. NANOSCALE 2023; 15:7202-7226. [PMID: 37038769 DOI: 10.1039/d3nr00514c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
At present, the problems of high energy consumption and low efficiency in electrocatalytic hydrogen production have limited the large-scale industrial application of this technology. Constructing effective catalysts has become the way to solve these problems. Transition metal alloys have been proved to be very promising materials in hydrogen evaluation reaction (HER). In this study, the related theories and characterization methods of electrocatalysis are summarized, and the latest progress in the application of binary, ternary, and high entropy alloys to HER in recent years is analyzed and studied. The synthesis methods and optimization strategies of transition metal alloys, including composition regulation, hybrid engineering, phase engineering, and morphological engineering were emphatically discussed, and the principles and performance mechanism analysis of these strategies were discussed in detail. Although great progress has been made in alloy catalysts, there is still considerable room for applications. Finally, the challenges, prospects, and research directions of transition metal alloys in the future were predicted.
Collapse
Affiliation(s)
- Dunyuan Jin
- School of Energy & Power Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, P. R. China.
| | - Fen Qiao
- School of Energy & Power Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, P. R. China.
| | - Huaqiang Chu
- School of Energy and Environment, Anhui University of Technology, Ma'anshan 243002, Anhui, P.R. China
| | - Yi Xie
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
9
|
Hüner B, Demir N, Kaya MF. Hydrogen Evolution Reaction Performance of Ni-Co-Coated Graphene-Based 3D Printed Electrodes. ACS OMEGA 2023; 8:5958-5974. [PMID: 36816706 PMCID: PMC9933213 DOI: 10.1021/acsomega.2c07856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Additive manufacturing has been a very promising topic in recent years for research and development studies and industrial applications. Its electrochemical applications are very popular due to the cost-effective rapid production from the environmentally friendly method. In this study, three-dimensional (3D) printed electrodes are prepared by Ni and Co coatings in different molar ratios. Different Ni/Co molar ratios (x:y) of the Ni/Co/x:y alloys are prepared as 1:1, 1:4, and 4:1 and they are named Ni/Co/1:1, Ni/Co/4:1, and Ni/Co/1:4, respectively. According to the results, when the 3D electrode samples are coated with Ni and Co at different molar ratios, the kinetic performance of the NiCo-coated 3D electrode samples for hydrogen evolution reaction is enhanced compared to that of the uncoated 3D electrode sample. The results indicate that the Ni/Co/1:4-coated 3D electrode has the highest kinetic activity for hydrogen evolution reactions (HERs). The calculated Tafel's slope and overpotential value (η10) for HER are determined as 164.65 mV/dec and 101.92 mV, respectively. Moreover, the Ni/Co/1:4-coated 3D electrode has an 81.2% higher current density than the other electrode. It is observed that the 3D printing of the electrochemical electrodes is very promising when they are coated with Ni-Co metals in different ratios. This study provides a new perspective on the use of 3D printed electrodes for high-performance water electrolysis.
Collapse
Affiliation(s)
- Bulut Hüner
- Erciyes
University, Engineering Faculty, Energy Systems Engineering Department,
Heat Engineering Division, 38039Kayseri, Turkey
- Erciyes
University, Graduate School of Natural and Applied Sciences, Energy
Systems Engineering Department, 38039Kayseri, Turkey
- Erciyes
University H2FC Hydrogen Energy Research Group, 38039Kayseri, Turkey
| | - Nesrin Demir
- Erciyes
University, Engineering Faculty, Energy Systems Engineering Department,
Heat Engineering Division, 38039Kayseri, Turkey
- Erciyes
University H2FC Hydrogen Energy Research Group, 38039Kayseri, Turkey
| | - Mehmet Fatih Kaya
- Erciyes
University, Engineering Faculty, Energy Systems Engineering Department,
Heat Engineering Division, 38039Kayseri, Turkey
- Erciyes
University H2FC Hydrogen Energy Research Group, 38039Kayseri, Turkey
- BATARYASAN
Enerji ve San. Tic. Ltd. Şti.,
Yıldırım Beyazıt Mah., Aşık
Veysel Bul., ERÜ TGB Kuluçka Merkezi, No: 63/B, 38039Kayseri, Turkey
| |
Collapse
|
10
|
Enhanced water electrolysis activity by CoNi-LDH/Co -nitrogen-doped carbon heterostructure with dual catalytic active sites. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
11
|
Accelerating electrochemical hydrogen production on binder-free electrodeposited V- doped Ni-Mo-P nanospheres. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Cui X, Gao L, Lu CH, Ma R, Yang Y, Lin Z. Rational coordination regulation in carbon-based single-metal-atom catalysts for electrocatalytic oxygen reduction reaction. NANO CONVERGENCE 2022; 9:34. [PMID: 35867176 PMCID: PMC9307705 DOI: 10.1186/s40580-022-00324-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/07/2022] [Indexed: 05/27/2023]
Abstract
Single-metal-atom catalysts (SMACs) have garnered extensive attention for various electrocatalytic applications, owing to their maximum atom-utilization efficiency, tunable electronic structure, and remarkable catalytic performance. In particular, carbon-based SMACs exhibit optimal electrocatalytic activity for the oxygen reduction reaction (ORR) which is of paramount importance for several sustainable energy conversion and generation technologies, such as fuel cells and metal-air batteries. Despite continuous endeavors in developing various advanced carbon-based SMACs for electrocatalytic ORR, the rational regulation of coordination structure and thus the electronic structure of carbon-based SMACs remains challenging. In this review, we critically examine the role of coordination structure, including local coordination structure (i.e., metal atomic centers and the first coordination shell) and extended local coordination structure (i.e., the second and higher coordination shells), on the rational design of carbon-based SMACs for high-efficiency electrocatalytic ORR. Insights into the relevance between coordination structures and their intrinsic ORR activities are emphatically exemplified and discussed. Finally, we also propose the major challenges and future perspectives in the rational design of advanced carbon-based SMACs for electrocatalytic ORR. This review aims to emphasize the significance of coordination structure and deepen the insightful understanding of structure-performance relationships.
Collapse
Affiliation(s)
- Xun Cui
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Likun Gao
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China.
| | - Cheng-Hsin Lu
- Instrumentation Center, National Tsing Hua University, Hsinchu, 300044, Taiwan, China
| | - Rui Ma
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Yingkui Yang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Zhiqun Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore, Singapore.
| |
Collapse
|
13
|
Zhao X, Liu K, Guo F, He Z, Zhang L, Lei S, Li H, Cheng Y, Yang L. meta-Position synergistic effect induced by Ni-Mo co-doped WSe 2 to enhance the hydrogen evolution reaction. Dalton Trans 2022; 51:11758-11767. [PMID: 35857033 DOI: 10.1039/d2dt01350a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition metal dichalcogenides have been the most attractive two-dimensional layered materials for electrocatalytic hydrogen evolution due to their unique structure and multi-phase electronic states. However, the enhancement of the WSe2 electrocatalytic hydrogen evolution reaction (HER) performance by bimetal co-doping has been rarely reported. Herein, the NiMo-WSe2 catalyst has been synthesized by a one-step hydrothermal reaction, with lower overpotentials of 177 and 188 mV at a current density of 10 mA cm-2 in 0.5 M H2SO4 and 1 M KOH, respectively. The large specific surface area and thinner edge morphology provide more active sites for hydrogen production, thereby significantly improving the charge transfer kinetics. Density functional theory calculation results show that under acidic conditions the ΔGH* values of NiMo-WSe2 with different structures and hydrogen adsorption sites are also different, when the hydrogen adsorption site was located at the top of the Se-Ni bond, the meta NiMo-WSe2 has a ΔGH* value (-0.04 eV) that is closest to 0. Meanwhile, NiMo-WSe2 (meta) also has a minimum of ΔGH* under alkaline conditions. DOS confirmed that Ni doping has a large impact on the electronic states at the WSe2 Fermi level, while NiMo co-doping greatly reduces the potential energy barrier of the HER reaction, jointly increasing the current density, and thus improving the HER performance.
Collapse
Affiliation(s)
- Xinya Zhao
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, China. .,Shanxi Key Laboratory of High Performance Battery Materials and Devices, North University of China, Taiyuan, 030051, China
| | - Kankan Liu
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, China. .,Shanxi Key Laboratory of High Performance Battery Materials and Devices, North University of China, Taiyuan, 030051, China
| | - Fengbo Guo
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, China. .,Shanxi Key Laboratory of High Performance Battery Materials and Devices, North University of China, Taiyuan, 030051, China
| | - Zeyang He
- Department of Environment and Geography, University of York, Heslington, York, YO10 5DD, UK
| | - Lixin Zhang
- Shanxi Key Laboratory of High Performance Battery Materials and Devices, North University of China, Taiyuan, 030051, China.,School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, China.
| | - Shiwen Lei
- Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030000, China
| | - Huadong Li
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, China.
| | - Yongkang Cheng
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, China.
| | - Lei Yang
- Shenzhen HUASUAN Technology Co., Ltd, 4168 Liuxian Ave., Nanshan District, Shenzhen, 518055, China
| |
Collapse
|
14
|
Kwon HR, Park H, Jun SE, Choi S, Jang HW. High performance transition metal-based electrocatalysts for green hydrogen production. Chem Commun (Camb) 2022; 58:7874-7889. [PMID: 35766059 DOI: 10.1039/d2cc02423c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen energy is a promising energy source that is environmentally friendly due to its long-term, large-capacity storage and low greenhouse gas emissions. However, the mass production of hydrogen is still technically difficult due to limitations in efficiency, stability, and cost, even though it can satisfy all of the current energy demands. Water splitting using an electrocatalyst is an efficient method for environmentally friendly hydrogen production, and various catalyst-related studies are being conducted for this purpose. For the last decade, transition metal-based compositions have been at the center of water splitting catalyst research. Despite numerous studies and developments, studies on transition metal-based catalysts so far still have various problems to be solved. Although excellent review papers on transition metal-based catalysts have been reported, the overall scope of transition metal-based catalysts has rarely been covered in the reports. In this review, we present the research about overall transition metal-based electrocatalysts for hydrogen production from four different categories, namely, alloys, transition-metal dichalcogenides (TMDs), layered double hydroxides (LDHs), and single-atom catalysts (SACs). The fundamental roles of metal alloying and unique electrical properties of TMDs, LDHs, and SACs are mainly discussed. Furthermore, we present the recent advances in photovoltaic-electrochemical (PV-EC) systems for sustainable hydrogen production. Finally, perspectives on the issues to be addressed in the research on transition metal-based electrocatalysts are provided.
Collapse
Affiliation(s)
- Hee Ryeong Kwon
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Korea.
| | - Hoonkee Park
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Korea.
| | - Sang Eon Jun
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Korea.
| | - Sungkyun Choi
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Korea.
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Korea. .,Advanced Institute of Convergence Technology, Seoul National University, Suwon, 16229, Republic of Korea
| |
Collapse
|
15
|
Luo M, Wu T, Xu S, Wang R, Huang F. Pt modulation of NbSe 2 for enhanced activity and stability: a new Pt 3Nb 2Se 8 compound for highly-efficient alkaline hydrogen evolution. Chem Commun (Camb) 2022; 58:6204-6207. [PMID: 35506761 DOI: 10.1039/d2cc01765b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition metal dichalcogenides (TMDs) have attracted great attention as electrocatalysts for the hydrogen evolution reaction (HER) due to their tunable crystal structures and active sites. However, compared with group VI TMDs (such as MoS2 and WS2), the group V TMDs exhibit poor intrinsic catalytic activity towards the HER because the outermost d orbitals of group V metals have only one electron. Herein, we design a new compound Pt3Nb2Se8 by Pt modulation of NbSe2 with enhanced catalytic activity and structural stability for robust HER in an alkaline medium. The introduction of Pt atoms can not only be used as efficient active sites, but also to transfer electrons to Se to synthetically boost the catalytic activity. The Pt3Nb2Se8 exhibits an overpotential of 44 mV at 10 mA cm-2 and a Tafel slope of 38.4 mV dec-1, superior to those of intrinsic NbSe2 and PtSe2, and even exceeding those of commercial Pt/C. This work aims to provide an approach to design group V-based TMDs with enhanced catalytic activity and stability by electronic regulation, as highly efficient electrocatalysts for the HER.
Collapse
Affiliation(s)
- Mengjia Luo
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai, 200050, P. R. China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tong Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai, 200050, P. R. China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shumao Xu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai, 200050, P. R. China.
| | - Ruiqi Wang
- State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Fuqiang Huang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai, 200050, P. R. China. .,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China.,CAS Centre for Excellence in Superconducting Electronic (CENSE), Shanghai 200050, China
| |
Collapse
|
16
|
Grain Boundary—A Route to Enhance Electrocatalytic Activity for Hydrogen Evolution Reaction. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The electrocatalytic hydrogen evolution reaction (HER) of a given metal catalyst is intrinsically related to its electronic structure, which is difficult to alter for further improvement. Recently, it was discovered that the density of grain boundaries (GBs) is mechanistically of great importance for catalytic activity, implying that GBs are quantitatively correlated with the active sites in the HER. Here, by modeling the atomistic structure of GBs on a Au(110) surface, we find that HER performance is greatly enhanced by Au GBs, suggesting the feasibility of the HER mediated by GBs. The promoted HER performance is due to an increase in the capability of binding adsorbed hydrogen on the sites around GBs. A Au catalyst with a dominantly exposed (110) plane is synthesized, where considerable GBs exist for experimental verification. It is found that HER activity is inherently correlated with the density of the GBs in Au NPs. The improvement in HER activity can be elucidated from the geometrical and electronic points of view; the broken local spatial symmetry near a GB causes a decrease in the coordination numbers of the surface sites and the shift up of the d–band center, thereby reducing the limiting potential for each proton−electron transfer step. Our finding represents a promising means to further improve the HER activity of a catalyst.
Collapse
|
17
|
Lahkar S, Ahmed S, Mohan K, Saikia P, Das JP, Puzari P, Dolui SK. Iron doped titania/multiwalled carbon nanotube nanocomposite: A robust electrocatalyst for hydrogen evolution reaction in aqueous acidic medium. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
Interface Engineering Cerium-doped Copper Nanocrystal for Efficient Electrochemical Nitrate-to-Ammonia Production. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Wang C, Wu X, Qin Y, Kong Y. Reduced Mo-doped NiCo2O4 with rich oxygen vacancies as advanced electrode material in supercapacitors. Chem Commun (Camb) 2022; 58:5120-5123. [DOI: 10.1039/d2cc01215d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reduced Mo-doped NiCo2O4 (R-Mo-NiCo2O4) was facilely prepared through a dual-defect strategy. Mo-doped NiCo layered double hydroxide (Mo-NiCo-LDH) was used as the precursor and calcined in an air atmosphere, and the...
Collapse
|
20
|
Qiu Y, Xie X, Li W, Shao Y. Electrocatalysts development for hydrogen oxidation reaction in alkaline media: From mechanism understanding to materials design. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)64088-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Zhang B, Wang W, Liang L, Xu Z, Li X, Qiao S. Prevailing conjugated porous polymers for electrochemical energy storage and conversion: Lithium-ion batteries, supercapacitors and water-splitting. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213782] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Cao X, Sang Y, Wang L, Ding G, Yu R, Geng B. A multi-interfacial FeOOH@NiCo 2O 4 heterojunction as a highly efficient bifunctional electrocatalyst for overall water splitting. NANOSCALE 2020; 12:19404-19412. [PMID: 32955068 DOI: 10.1039/d0nr05216g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Electrocatalytic water decomposition is the key to sustainable energy, and the design and synthesis of cost-effective electrocatalysts is the main objective of electrocatalytic water splitting. In this paper, multi-interfacial FeOOH@NiCo2O4 hybrid nanoflowers are prepared through a two-step hydrothermal reaction. In such heterostructures, NiCo2O4 nanoflowers are coated with a layer of FeOOH nanoparticles. In addition, the obtained electrocatalyst could provide abundant electroactive sites and the formation of FeOOH@NiCo2O4 nanointerfaces can also improve the charge transfer rate. As a result, under the HER and OER conditions, the prepared catalysts show an outstanding electrocatalytic performance. Moreover, in a two-electrode water splitting system, the FeOOH@NiCo2O4 heterostructure, as a dual-function electrocatalyst, needs a cell voltage of only 1.58 V at a current density of 10 mA cm-2. This study provides a facile and feasible method to construct different kinds of heterostructures as bifunctional electrocatalysts with multiple interfaces by a simple hydrothermal method.
Collapse
Affiliation(s)
- Xi Cao
- College of Chemistry and Materials Science, the Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, 241002, P. R. China.
| | - Yan Sang
- College of Chemistry and Materials Science, the Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, 241002, P. R. China.
| | - Lvxuan Wang
- College of Chemistry and Materials Science, the Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, 241002, P. R. China.
| | - Gaofei Ding
- College of Chemistry and Materials Science, the Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, 241002, P. R. China.
| | - Runhan Yu
- College of Chemistry and Materials Science, the Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, 241002, P. R. China.
| | - Baoyou Geng
- College of Chemistry and Materials Science, the Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Normal University, Wuhu, 241002, P. R. China.
| |
Collapse
|
23
|
Electrodeposition of superhydrophilic and binder-free Mo-doped Ni–Fe nanosheets as cost-effective and efficient bifunctional electrocatalyst for overall water splitting. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Shi M, Zhang Y, Zhu Y, Wang W, Wang C, Yu A, Pu X, Zhai J. A flower-like CoS2/MoS2 heteronanosheet array as an active and stable electrocatalyst toward the hydrogen evolution reaction in alkaline media. RSC Adv 2020; 10:8973-8981. [PMID: 35496514 PMCID: PMC9050031 DOI: 10.1039/c9ra10963c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/24/2020] [Indexed: 11/21/2022] Open
Abstract
CoS2/MoS2 heteronanosheet arrays (HNSAs) with vertically aligned flower-like architectures are fabricated through in situ topotactic sulfurization of CoMoO4 nanosheet array (NSA) precursors on conductive Ni foam. CoMoO4 NSAs are prepared by a self-template hydrothermal method without using any hard template and surfactant. Benefiting from a 3D flower-like architecture constituted by ultrathin nanosheets with abundant exposed heterointerfaces as highly active sites and predesigned void spaces, the as-synthesized CoS2/MoS2 HNSAs exhibit an excellent hydrogen evolution reaction (HER) performance with a low overpotential of 50 mV at 10 mA cm−2, and a small Tafel slope of 76 mV dec−1 in 1.0 M KOH, which outperforms most previously reported CoS2 and MoS2 based electrocatalysts with compositional or morphological similarity. This work demonstrates the great potential in developing high-efficiency and earth-abundant electrocatalysts for alkaline HER through heterointerface engineering and morphological design by utilizing transition metal molybdate as a promising platform. CoS2/MoS2 heteronanosheet arrays with vertically aligned flower-like architecture are fabricated through in situ topotactic sulfurization of CoMoO4 nanosheet arrays.![]()
Collapse
Affiliation(s)
- Mengtong Shi
- Key Laboratory of Urban Stormwater System and Water Environment
- Ministry of Education
- Beijing University of Civil Engineering and Architecture
- Beijing 100044
- China
| | - Yang Zhang
- Beijing Institute of Nanoenergy and Nanosystems
- Chinese Academy of Sciences
- Beijing 100083
- China
- School of Nanoscience and Technology
| | - Yaxing Zhu
- Beijing Institute of Nanoenergy and Nanosystems
- Chinese Academy of Sciences
- Beijing 100083
- China
| | - Wei Wang
- Beijing Institute of Nanoenergy and Nanosystems
- Chinese Academy of Sciences
- Beijing 100083
- China
| | - Changzheng Wang
- Key Laboratory of Urban Stormwater System and Water Environment
- Ministry of Education
- Beijing University of Civil Engineering and Architecture
- Beijing 100044
- China
| | - Aifang Yu
- Beijing Institute of Nanoenergy and Nanosystems
- Chinese Academy of Sciences
- Beijing 100083
- China
- School of Nanoscience and Technology
| | - Xiong Pu
- Beijing Institute of Nanoenergy and Nanosystems
- Chinese Academy of Sciences
- Beijing 100083
- China
- School of Nanoscience and Technology
| | - Junyi Zhai
- Beijing Institute of Nanoenergy and Nanosystems
- Chinese Academy of Sciences
- Beijing 100083
- China
- School of Nanoscience and Technology
| |
Collapse
|
25
|
Lotfi N, Shahrabi T, Yaghoubinezhad Y, Barati Darband G. Electrodeposition of cedar leaf-like graphene Oxide@Ni–Cu@Ni foam electrode as a highly efficient and ultra-stable catalyst for hydrogen evolution reaction. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134949] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Barati Darband G, Aliofkhazraei M, Rouhaghdam AS. Facile electrodeposition of ternary Ni-Fe-Co alloy nanostructure as a binder free, cost-effective and durable electrocatalyst for high-performance overall water splitting. J Colloid Interface Sci 2019; 547:407-420. [DOI: 10.1016/j.jcis.2019.03.098] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/25/2019] [Accepted: 03/29/2019] [Indexed: 12/20/2022]
|
27
|
Sun B, Yang S, Guo Y, Xue Y, Tian J, Cui H, Song X. Fabrication of molybdenum and tungsten oxide, sulfide, phosphide (MoxW1-xO2/MoxW1-xS2/MoxW1-xP) porous hollow nano-octahedrons from metal-organic frameworks templates as efficient hydrogen evolution reaction electrocatalysts. J Colloid Interface Sci 2019; 547:339-349. [DOI: 10.1016/j.jcis.2019.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 10/27/2022]
|
28
|
Wang Z, Ge X, Li Z, Wu J, Liang Z, Wang S. Mo-Doped NiCu as an efficient and stable electrocatalyst for the hydrogen evolution reaction. NEW J CHEM 2019. [DOI: 10.1039/c9nj01263j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Mo-Doped NiCu electrocatalyst was fabricated via a one-step electrodeposition process on a Ti substrate as an efficient nonprecious catalyst for the HER.
Collapse
Affiliation(s)
- Zhengnan Wang
- School of Chemistry and Chemical Engineering
- Southwest Petroleum University
- Chengdu
- P. R. China
| | - Xingbo Ge
- School of Chemistry and Chemical Engineering
- Southwest Petroleum University
- Chengdu
- P. R. China
| | - Zhihao Li
- School of Chemistry and Chemical Engineering
- Southwest Petroleum University
- Chengdu
- P. R. China
| | - Jing Wu
- School of Chemistry and Chemical Engineering
- Southwest Petroleum University
- Chengdu
- P. R. China
| | - Zihao Liang
- School of Chemistry and Chemical Engineering
- Southwest Petroleum University
- Chengdu
- P. R. China
| | - Shuang Wang
- School of Chemistry and Chemical Engineering
- Southwest Petroleum University
- Chengdu
- P. R. China
| |
Collapse
|
29
|
Du Z, Jannatun N, Yu D, Ren J, Huang W, Lu X. C 60-Decorated nickel-cobalt phosphide as an efficient and robust electrocatalyst for hydrogen evolution reaction. NANOSCALE 2018; 10:23070-23079. [PMID: 30511713 DOI: 10.1039/c8nr07472k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
High-activity electrocatalysts play a crucial role in energy conversion through splitting water to produce hydrogen. Here we report the synthesis of a bimetallic phosphide of Ni-Co-P coupled with C60 molecules which acts as an electrocatalyst for the hydrogen evolution reaction (HER). Powder X-ray diffraction (XRD) and transmission electron microscopy (TEM) characterization reveals that the synthesized C60-decorated Ni-Co-P nanoparticles have an average diameter of ∼4 nm with rich structural defects. Electrochemical tests show that the as-synthesized C60-decorated Ni-Co-P catalyst with a C60-content of 3.93 wt% presents a low onset overpotential of 23.8 mV, a small Tafel slope value of 48 mV dec-1, and excellent hydrogen-evolution stability with a slight increase of its η10 from 97 mV to 102 mV after 500 cycles. Additionally, electrochemical impedance spectroscopy (EIS) confirms that the C60-decorated Ni-Co-P electrode possesses faster charge-transfer kinetics and hydrogen-adsorption kinetics than the C60-free Ni-Co-P electrode during the HER process. The synthesis of a C60-decorated composite is feasible and the composite can be used as an efficient and robust Pt-free catalyst.
Collapse
Affiliation(s)
- Zhiling Du
- State Key Laboratory of Materials Processing and Die & Mould Technology School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | | | | | | | | | | |
Collapse
|
30
|
Barati Darband G, Aliofkhazraei M, Sabour Rouhaghdam A. Three-dimensional porous Ni-CNT composite nanocones as high performance electrocatalysts for hydrogen evolution reaction. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.10.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Yin X, Sun G, Su L, Wang L, Shao G. Surface roughening of nanoparticle-stacked porous NiCoO2@C microflakes arrays grown on Ni foam for enhanced hydrogen evolution activity. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.07.166] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Ke F, Li Y, Zhang C, Zhu J, Chen P, Ju H, Xu Q, Zhu J. MOG-derived porous FeCo/C nanocomposites as a potential platform for enhanced catalytic activity and lithium-ion batteries performance. J Colloid Interface Sci 2018; 522:283-290. [DOI: 10.1016/j.jcis.2018.03.081] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/17/2018] [Accepted: 03/24/2018] [Indexed: 01/01/2023]
|
33
|
Liu ZZ, Shang X, Dong B, Chai YM. Triple Ni-Co-Mo metal sulfides with one-dimensional and hierarchical nanostructures towards highly efficient hydrogen evolution reaction. J Catal 2018. [DOI: 10.1016/j.jcat.2018.03.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|