1
|
Kumar K, Maity T, Panchakarla LS, Jain S. Two-Dimensional Ultrathin CeVO 4 Nanozyme: Fabricated through Non-Oxidic Material. ACS OMEGA 2023; 8:6931-6939. [PMID: 36844543 PMCID: PMC9948189 DOI: 10.1021/acsomega.2c07732] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
In recent years, the synthesis of materials in lower dimensions, like two-dimensional (2D) or ultrathin crystals, with distinctive characteristics has attracted substantial scientific attention. The mixed transition metal oxides (MTMOs) nanomaterials are the promising group of materials, which have been extensively utilized for various potential applications. Most of the MTMOs were explored as three-dimensional (3D) nanospheres, nanoparticles, one-dimensional (1D) nanorods, and nanotubes. However, these materials are not well explored in 2D morphology because of the difficulties in removing tightly woven thin oxide layers or exfoliations of 2D oxide layers, which hinder the exfoliation of beneficial features of MTMO. Here, through the exfoliation via Li+ ion intercalation and subsequent oxidation of CeVS3 under hydrothermal condition, we have demonstrated a novel synthetic route for the fabrication of 2D ultrathin CeVO4 NS. The as-synthesized CeVO4 NS exhibit adequate stability and activity in a harsh reaction environment, which gives excellent peroxidase-mimicking activity with a K M value of 0.04 mM, noticeably better than natural peroxidase and previously reported CeVO4 nanoparticles. We have also used this enzyme mimic activity for the efficient detection of biomolecules like glutathione with a LOD of 53 nM.
Collapse
Affiliation(s)
- Kuldeep Kumar
- Department
of Chemistry, Indian Institute of Technology
Bombay, Mumbai 400076, India
| | - Tanmoy Maity
- Indian
Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Leela S. Panchakarla
- Department
of Chemistry, Indian Institute of Technology
Bombay, Mumbai 400076, India
| | - Siddarth Jain
- Department
of Chemistry, Indian Institute of Technology
Bombay, Mumbai 400076, India
| |
Collapse
|
2
|
2D RhTe Monolayer: A highly efficient electrocatalyst for oxygen reduction reaction. J Colloid Interface Sci 2023; 629:971-980. [DOI: 10.1016/j.jcis.2022.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/24/2022] [Accepted: 09/04/2022] [Indexed: 11/21/2022]
|
3
|
Saikia S, Devi R, Gogoi P, Saikia L, Choudary BM, Raja T, Deka P, Deka RC. Regioselective Friedel-Crafts Acylation Reaction Using Single Crystalline and Ultrathin Nanosheet Assembly of Scrutinyite-SnO 2. ACS OMEGA 2022; 7:32225-32237. [PMID: 36120068 PMCID: PMC9476169 DOI: 10.1021/acsomega.2c03555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Peculiar physicochemical properties of two-dimensional (2D) nanomaterials have attracted research interest in developing new synthetic technology and exploring their potential applications in the field of catalysis. Moreover, ultrathin metal oxide nanosheets with atomic thickness exhibit abnormal surficial properties because of the unique 2D confinement effect. In this work, we present a facile and general approach for the synthesis of single crystalline and ultrathin 2D nanosheets assembly of scrutinyite-SnO2 through a simple solvothermal method. The structural and compositional characterization using X-ray diffraction (Rietveld refinement analysis), high-resolution transmission electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and so on reveal that the as-synthesized 2D nanosheets are ultrathin and single crystallized in the scrutinyite-SnO2 phase with high purity. The ultrathin SnO2 nanosheets show predominant growth in the [011] direction on the main surface having a thickness of ca. 1.3 nm. The SnO2 nanosheets are further employed for the regioselective Friedel-Crafts acylation to synthesize aromatic ketones that have potential significance in chemical industry as synthetic intermediates of pharmaceuticals and fine chemicals. A series of aromatic substrates acylated over the SnO2 nanosheets have afforded the corresponding aromatic ketones with up to 92% yield under solvent-free conditions. Comprehensive catalytic investigations display the SnO2 nanosheet assembly as a better catalytic material compared to the heterogeneous metal oxide catalysts used so far in the view of its activity and reusability in solvent-free reaction conditions.
Collapse
Affiliation(s)
- Sudakhina Saikia
- Department
of Chemical Sciences, Tezpur University, Napaam, Tezpur 784028, India
| | - Rasna Devi
- Department
of Chemical Sciences, Tezpur University, Napaam, Tezpur 784028, India
| | - Pranjal Gogoi
- Catalysis
and Inorganic Chemistry Division, CSIR-National
Chemical Laboratory, Pune 411008, India
| | - Lakshi Saikia
- Materials
Sciences and Technology Division, CSIR-North
East Institute of Science and Technology, Jorhat 785006, India
| | | | - Thirumalaiswamy Raja
- Catalysis
and Inorganic Chemistry Division, CSIR-National
Chemical Laboratory, Pune 411008, India
| | - Pangkita Deka
- Department
of Chemical Sciences, Tezpur University, Napaam, Tezpur 784028, India
- Department
of Chemistry, Jorhat Engineering College, Garmur, Jorhat 785007, India
| | - Ramesh C. Deka
- Department
of Chemical Sciences, Tezpur University, Napaam, Tezpur 784028, India
| |
Collapse
|
4
|
Liu Y, Huang L, Fang Y, Zhu X, Nan J, Dong S. Interfacial Electron Regulation of Rh Atomic Layer-Decorated SnO 2 Heterostructures for Enhancing Electrocatalytic Nitrogen Reduction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12304-12313. [PMID: 35238539 DOI: 10.1021/acsami.1c25240] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ammonia (NH3), which serves as a fertilizer supply, is struggling to satisfy the ever-growing population requirements over the world. The electrocatalytic nitrogen reduction to NH3 production is highly desired but shows the extremely poor activity and selectivity of reported electrocatalysts. In this work, we rationally design a novel Rh atomic layer-decorated SnO2 heterostructure catalyst through the interfacial engineering strategy, simultaneously achieving the highest NH3 yield rate (149 μg h-1 mgcat-1) and Faradaic efficiency (11.69%) at -0.35 V vs the reversible hydrogen electrode. This result is superior to the optimum response of previously reported SnO2- or Rh-based catalysts for electrochemical nitrogen reduction. Both X-ray absorption spectra characterization and density functional theory calculations reveal the strong electron interaction between the Rh atomic layer and the SnO2 heterostructure, which effectively regulated the interfacial electron transfer and d-band center. The downshift of the d-band center results in the greatly reduced H adsorption energy and the highly accelerated reaction kinetics for nitrogen reduction. This work endows a new insight into the interfacial electron regulation for weakening H adsorption and further enhancing the electrocatalytic N2 reduction.
Collapse
Affiliation(s)
- Yongqin Liu
- College of Chemistry, Jilin University, Changchun, Jilin 130012, P. R. China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, P. R. China
| | - Liang Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, P. R. China
| | - Youxing Fang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, P. R. China
| | - Xinyang Zhu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, P. R. China
| | - Jianli Nan
- College of Chemistry, Jilin University, Changchun, Jilin 130012, P. R. China
| | - Shaojun Dong
- College of Chemistry, Jilin University, Changchun, Jilin 130012, P. R. China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, P. R. China
| |
Collapse
|
5
|
Diaz C, Valenzuela ML, Laguna-Bercero MÁ. Solid-State Preparation of Metal and Metal Oxides Nanostructures and Their Application in Environmental Remediation. Int J Mol Sci 2022; 23:ijms23031093. [PMID: 35163017 PMCID: PMC8835339 DOI: 10.3390/ijms23031093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 02/01/2023] Open
Abstract
Nanomaterials have attracted much attention over the last decades due to their very different properties compared to those of bulk equivalents, such as a large surface-to-volume ratio, the size-dependent optical, physical, and magnetic properties. A number of solution fabrication methods have been developed for the synthesis of metal and metal oxides nanoparticles, but few solid-state methods have been reported. The application of nanostructured materials to electronic solid-state devices or to high-temperature technology requires, however, adequate solid-state methods for obtaining nanostructured materials. In this review, we discuss some of the main current methods of obtaining nanomaterials in solid state, and also we summarize the obtaining of nanomaterials using a new general method in solid state. This new solid-state method to prepare metals and metallic oxides nanostructures start with the preparation of the macromolecular complexes chitosan·Xn and PS-co-4-PVP·MXn as precursors (X = anion accompanying the cationic metal, n = is the subscript, which indicates the number of anions in the formula of the metal salt and PS-co-4-PVP = poly(styrene-co-4-vinylpyridine)). Then, the solid-state pyrolysis under air and at 800 °C affords nanoparticles of M°, MxOy depending on the nature of the metal. Metallic nanoparticles are obtained for noble metals such as Au, while the respective metal oxide is obtained for transition, representative, and lanthanide metals. Size and morphology depend on the nature of the polymer as well as on the spacing of the metals within the polymeric chain. Noticeably in the case of TiO2, anatase or rutile phases can be tuned by the nature of the Ti salts coordinated in the macromolecular polymer. A mechanism for the formation of nanoparticles is outlined on the basis of TG/DSC data. Some applications such as photocatalytic degradation of methylene by different metal oxides obtained by the presented solid-state method are also described. A brief review of the main solid-state methods to prepare nanoparticles is also outlined in the introduction. Some challenges to further development of these materials and methods are finally discussed.
Collapse
Affiliation(s)
- Carlos Diaz
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Casilla 653, Santiago 7800003, Chile
- Correspondence:
| | - Maria Luisa Valenzuela
- Instituto de Ciencias Químicas Aplicadas, Grupo de Investigación en Energía y Procesos Sustentables, Facultad de Ingeniería, Universidad Autónoma de Chile, Av. El Llano Subercaseaux 2801, Santiago 8900000, Chile;
| | - Miguel Á. Laguna-Bercero
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza C/Pedro Cerbuna 12, 50009 Zaragoza, Spain;
| |
Collapse
|
6
|
Tang T, Zhang Q, Bai X, Wang Z, Guan J. Enhanced oxygen evolution activity on mesoporous cobalt-iron oxides. Chem Commun (Camb) 2021; 57:11843-11846. [PMID: 34698742 DOI: 10.1039/d1cc04178a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To solve the energy crisis and environmental pollution problems, the use of clean and renewable energy to replace fossil energy has become a top priority. The oxygen evolution reaction (OER) is the core of many renewable energy technologies. Developing low-cost and high-performance OER electrocatalysts is the key to implementing efficient energy conversion processes. Here, we synthesize ordered mesoporous iron-cobalt oxides using a hard template strategy. As a mesoporous oxide catalyst, meso-CoFe0.05Ox exhibits low OER overpotentials of 280 and 373 mV at current densities of 10 and 100 mA cm-2, respectively, and does not show deactivation for at least 18 hours at 100 mA cm-2. The introduction of iron can change the electronic structure of Co, and the orbital electrons are easily transferred from cobalt to iron. The enhanced OER performance can be attributed to concerted catalysis between the iron and cobalt sites that lowers the OER energy barrier, and the large specific surface area of the porous oxide providing efficient active sites for the reaction.
Collapse
Affiliation(s)
- Tianmi Tang
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130021, P. R. China.
| | - Qiaoqiao Zhang
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130021, P. R. China.
| | - Xue Bai
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130021, P. R. China.
| | - Zhenlu Wang
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130021, P. R. China.
| | - Jingqi Guan
- Institute of Physical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130021, P. R. China.
| |
Collapse
|
7
|
Taylor G, Paladines R, Marti A, Jacobs D, Tint S, Fones A, Hamilton H, Yu L, Amini S, Hettinger J. Electrochemical enhancement of reactively sputtered rhodium, ruthenium, and iridium oxide thin films for neural modulation, sensing, and recording applications. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
8
|
Mutinda SI, Batugedara TN, Brown B, Brock SL. Co
2‐x
Rh
x
P Nanoparticles for Overall Water Splitting in Basic Media: Activation by Phase‐Segregation‐Assisted Nanostructuring at the Anode. ChemCatChem 2021. [DOI: 10.1002/cctc.202100483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | | | - Benjamin Brown
- Department of Chemistry Wayne State University Detroit MI 48202 USA
| | | |
Collapse
|
9
|
Ding G, Zuo Y, Gai F, Wang X, Gou Z, Lin W. A POSS-assisted fluorescent probe for the rapid detection of HClO in mitochondria with a large emission wavelength in dual channels. J Mater Chem B 2021; 9:6836-6843. [PMID: 34382057 DOI: 10.1039/d1tb01235e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hypochlorous acid (HClO) is closely related to many diseases and is an inevitable part of the physiological processes. It is significant to detect HClO in mitochondria for getting meaningful physiological and pathological information. However, adequate tools to detect HClO with emissions in two channels are rarely reported. To achieve this target, in this work, a "turn-off" visual and near infrared (NIR) fluorescent dual emission probe D6 based on polyhedral oligomeric silsesquioxanes (POSS) was successfully designed and synthesized. D6 showed high selectivity and sensitivity to HClO. Notably, the emission wavelength of D6 reached 820 nm due to the assistance of the POSS cage. In addition, bioimaging experiments clearly showed that probe D6 promoted the visualization of exogenous and endogenous HClO in living HepG2 cells and zebrafish models.
Collapse
Affiliation(s)
- Guowei Ding
- Institute of Fluorescent Probes for Biological Imaging, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Shandong 250022, P. R. China.
| | | | | | | | | | | |
Collapse
|
10
|
Tian L, Li Z, Song M, Li J. Recent progress in water-splitting electrocatalysis mediated by 2D noble metal materials. NANOSCALE 2021; 13:12088-12101. [PMID: 34236371 DOI: 10.1039/d1nr02232f] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional (2D) nanostructures have enabled noble-metal-based nanomaterials to be promising electrocatalysts toward overall water splitting due to their inherent structural advantages, including a high specific surface active area, numerous low-coordinated atoms, and a high density of defects and edges. Moreover, it is also disclosed that the electronic effect and strain effect within 2D nanostructures also benefit the further promotion of the electrocatalytic performance. In this review, we have focused on the recent progress in the fabrication of advanced electrocatalysts based on 2D noble-metal-based nanomaterials toward water splitting electrocatalysis. First, fundamental descriptions about water-splitting mechanisms, some promising engineering strategies, and major challenges in electrochemical water splitting are given. Then, the structural merits of 2D nanostructures for water splitting electrocatalysis are also highlighted, including abundant surface active sites, lattice distortion, abundant surface defects, electronic effects, and strain effects. Additionally, some representative water-splitting electrocatalysts have been discussed in detail to highlight the superiorities of 2D noble-metal-based nanomaterials for electrochemical water splitting. Finally, the underlying challenges and future opportunities for the fabrication of more advanced electrocatalysts for water splitting are also highlighted. We hope that this review article provides guidance for the fabrication of more efficient electrocatalysts for boosting industrial hydrogen production via water splitting.
Collapse
Affiliation(s)
- Lin Tian
- C School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China.
| | | | | | | |
Collapse
|
11
|
Grote L, Zito CA, Frank K, Dippel AC, Reisbeck P, Pitala K, Kvashnina KO, Bauters S, Detlefs B, Ivashko O, Pandit P, Rebber M, Harouna-Mayer SY, Nickel B, Koziej D. X-ray studies bridge the molecular and macro length scales during the emergence of CoO assemblies. Nat Commun 2021; 12:4429. [PMID: 34285227 PMCID: PMC8292528 DOI: 10.1038/s41467-021-24557-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/24/2021] [Indexed: 11/09/2022] Open
Abstract
The key to fabricating complex, hierarchical materials is the control of chemical reactions at various length scales. To this end, the classical model of nucleation and growth fails to provide sufficient information. Here, we illustrate how modern X-ray spectroscopic and scattering in situ studies bridge the molecular- and macro- length scales for assemblies of polyhedrally shaped CoO nanocrystals. Utilizing high energy-resolution fluorescence-detected X-ray absorption spectroscopy, we directly access the molecular level of the nanomaterial synthesis. We reveal that initially Co(acac)3 rapidly reduces to square-planar Co(acac)2 and coordinates to two solvent molecules. Combining atomic pair distribution functions and small-angle X-ray scattering we observe that, unlike a classical nucleation and growth mechanism, nuclei as small as 2 nm assemble into superstructures of 20 nm. The individual nanoparticles and assemblies continue growing at a similar pace. The final spherical assemblies are smaller than 100 nm, while the nanoparticles reach a size of 6 nm and adopt various polyhedral, edgy shapes. Our work thus provides a comprehensive perspective on the emergence of nano-assemblies in solution.
Collapse
Affiliation(s)
- Lukas Grote
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Hamburg, Germany
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Cecilia A Zito
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Hamburg, Germany
- São Paulo State University UNESP, São José do Rio Preto, Brazil
| | - Kilian Frank
- Ludwig-Maximilians-Universität München, Faculty of Physics and Center for NanoScience (CeNS), Munich, Germany
| | | | - Patrick Reisbeck
- Ludwig-Maximilians-Universität München, Faculty of Physics and Center for NanoScience (CeNS), Munich, Germany
| | - Krzysztof Pitala
- AGH, University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
- Academic Center for Materials and Nanotechnology, AGH University of Science and Technology, Krakow, Poland
| | - Kristina O Kvashnina
- The Rossendorf Beamline at the European Synchrotron Radiation Facility ESRF, Grenoble, France
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Resource Ecology, Dresden, Germany
| | - Stephen Bauters
- The Rossendorf Beamline at the European Synchrotron Radiation Facility ESRF, Grenoble, France
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Resource Ecology, Dresden, Germany
| | - Blanka Detlefs
- European Synchrotron Radiation Facility ESRF, Grenoble, France
| | - Oleh Ivashko
- Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | | | - Matthias Rebber
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
| | - Sani Y Harouna-Mayer
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
| | - Bert Nickel
- Ludwig-Maximilians-Universität München, Faculty of Physics and Center for NanoScience (CeNS), Munich, Germany
| | - Dorota Koziej
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Hamburg, Germany.
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany.
| |
Collapse
|
12
|
Wang H, Chen J, Lin Y, Wang X, Li J, Li Y, Gao L, Zhang L, Chao D, Xiao X, Lee JM. Electronic Modulation of Non-van der Waals 2D Electrocatalysts for Efficient Energy Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008422. [PMID: 34032317 DOI: 10.1002/adma.202008422] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/02/2021] [Indexed: 06/12/2023]
Abstract
The exploration of efficient electrocatalysts for energy conversion is important for green energy development. Owing to their high surface areas and unusual electronic structure, 2D electrocatalysts have attracted increasing interest. Among them, non-van der Waals (non-vdW) 2D materials with numerous chemical bonds in all three dimensions and novel chemical and electronic properties beyond those of vdW 2D materials have been studied increasingly over the past decades. Herein, the progress of non-vdW 2D electrocatalysts is critically reviewed, with a special emphasis on electronic structure modulation. Strategies for heteroatom doping, vacancy engineering, pore creation, alloying, and heterostructure engineering are analyzed for tuning electronic structures and achieving intrinsically enhanced electrocatalytic performances. Lastly, a roadmap for the future development of non-vdW 2D electrocatalysts is provided from material, mechanism, and performance viewpoints.
Collapse
Affiliation(s)
- Hao Wang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing, 210023, China
| | - Jianmei Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Yanping Lin
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006, China
| | - Xiaohan Wang
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing, 210023, China
| | - Jianmin Li
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Yao Li
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Lijun Gao
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006, China
| | - Labao Zhang
- Research Institute of Superconductor Electronics, Nanjing University, Nanjing, 210023, China
| | - Dongliang Chao
- Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, China
| | - Xu Xiao
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| |
Collapse
|
13
|
Defective PdRh bimetallic nanocrystals enable enhanced methanol electrooxidation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Electrochemical Toluene Hydrogenation Using Binary Platinum-Based Alloy Nanoparticle-Loaded Carbon Catalysts. Catalysts 2021. [DOI: 10.3390/catal11030318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A couple of toluene (TL) and its hydrogenation product, methylcyclohexane (MCH), are promising high-density hydrogen carriers to store and transport large amounts of hydrogen. Electrochemical hydrogenation of TL to MCH can achieve energy savings compared with hydrogenation using molecular hydrogen generated separately, and development of highly active catalysts for electrochemical TL hydrogenation is indispensable. In this study, binary Pt3M (M = Rh, Au, Pd, Ir, Cu and Ni) alloy nanoparticle-loaded carbon catalysts were prepared by a colloidal method, and their activity for electrochemical TL hydrogenation was evaluated by linear sweep voltammetry. Each Pt3M electrode was initially activated by 100 cycles of potential sweep over a potential range of 0–1.2 or 0.8 V vs. reversible hydrogen electrode (RHE). For all activated Pt3M electrodes, the cathodic current density for electrochemical TL hydrogenation was observed above 0 V, that is the standard potential of hydrogen evolution reaction. Both specific activity, cathodic current density per electrochemical surface area, and mass activity, cathodic current density per mass of Pt3M, at 0 V for the Pt3Rh/C electrode were the highest, and about 8- and 1.2-times as high as those of the commercial Pt/C electrode, respectively, which could mainly be attributed to electronic modification of Pt by alloying with Rh. The Tafel slope for each activated Pt3M/C electrode exhibited the alloying of Pt with the second metals did not change the electrochemical TL hydrogenation mechanism.
Collapse
|
15
|
Liu M, Hof F, Moro M, Valenti G, Paolucci F, Pénicaud A. Carbon supported noble metal nanoparticles as efficient catalysts for electrochemical water splitting. NANOSCALE 2020; 12:20165-20170. [PMID: 33001129 DOI: 10.1039/d0nr05659f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Due to an increasing requirement of clean and sustainable hydrogen energy economy, it is significant to develop new highly effective catalysts for electrochemical water splitting. In alkaline electrolyte, Platinum (Pt) shows a much slower hydrogen evolution reaction (HER) kinetics relative to acidic condition. Here, we show a versatile synthetic approach for combining different noble metals, such as Rhodium (Rh), RhPt and Pt nanoparticles, with carbon forming noble metal nanoparticles/nanocarbon composites, denoted as Rh(nP)/nC, RhPt(nP)/nC and Pt(nP)/nC, respectively. It was found that in alkaline media these composites exhibited higher performance for the HER than the commercial Pt/C. In particular, Rh(nP)/nC displayed a small overpotential of 44 mV at a current density of 5 mA cm-2 and a low Tafel slope of 50 mV dec-1. Meanwhile, it also showed a comparable activity for the oxygen evolution reaction (OER) to the benchmarking catalyst RuO2. The superior HER and OER performance benefits from the very small size of nanoparticles and synergy between carbon support and nanoparticles.
Collapse
Affiliation(s)
- Meng Liu
- Department of Chemistry "G. Ciamician", University of Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Ferdinand Hof
- CNRS, Centre de Recherche Paul Pascal (CRPP), UMR 5031, F-33600 Pessac, France. and Université Bordeaux, CRPP, UMR 5031, F-33600 Pessac, France
| | - Miriam Moro
- Department of Chemistry "G. Ciamician", University of Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Giovanni Valenti
- Department of Chemistry "G. Ciamician", University of Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Francesco Paolucci
- Department of Chemistry "G. Ciamician", University of Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Alain Pénicaud
- CNRS, Centre de Recherche Paul Pascal (CRPP), UMR 5031, F-33600 Pessac, France. and Université Bordeaux, CRPP, UMR 5031, F-33600 Pessac, France
| |
Collapse
|
16
|
Guo Z, Zhang H, Ma X, Zhou X, Liang D, Mao J, Yu J, Wang G, Huang T. Photoelectrochemical Catalysis of Fluorine‐Doped Amorphous TiO
2
Nanotube Array for Water Splitting. ChemistrySelect 2020. [DOI: 10.1002/slct.202002516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhongqin Guo
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical MaterialsSchool of Chemistry and Chemical EngineeringUniversity of Jinan Jinan Shandong 250022 China
| | - Haizhou Zhang
- Department of Cardiac SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical University No.324 Jingwu Road Jinan Shandong 250021 China
| | - Xiaochun Ma
- Department of Cardiac SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical University No.324 Jingwu Road Jinan Shandong 250021 China
| | - Xiaoming Zhou
- Department of Cardiac SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical University No.324 Jingwu Road Jinan Shandong 250021 China
| | - Dong Liang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical MaterialsSchool of Chemistry and Chemical EngineeringUniversity of Jinan Jinan Shandong 250022 China
| | - Jianfeng Mao
- Institute for Superconducting & Electronic MaterialsUniversity of Wollongong NSW 2500 Australia
| | - Jiemei Yu
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical MaterialsSchool of Chemistry and Chemical EngineeringUniversity of Jinan Jinan Shandong 250022 China
| | - Gang Wang
- Research and Development Center for Graphene/Polymer CompositesShandongLutai Holding Group Co.Ltd. Jining Shandong 272000 China
| | - Taizhong Huang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical MaterialsSchool of Chemistry and Chemical EngineeringUniversity of Jinan Jinan Shandong 250022 China
| |
Collapse
|
17
|
Diaz C, Valenzuela ML, Cifuentes-Vaca O, Segovia M. Polymer Precursors Effect in the Macromolecular Metal-Polymer on the Rh/RhO2/Rh2O3 Phase Using Solvent-Less Synthesis and Its Photocatalytic Activity. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01634-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Unique advantages of 2D inorganic nanosheets in exploring high-performance electrocatalysts: Synthesis, application, and perspective. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213280] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Jin Y, Chen F, Guo L, Wang J, Kou B, Jin T, Liu H. Engineering Two-Dimensional PdAgRh Nanoalloys by Surface Reconstruction for Highly Active and Stable Formate Oxidation Electrocatalysis. ACS APPLIED MATERIALS & INTERFACES 2020; 12:26694-26703. [PMID: 32418422 DOI: 10.1021/acsami.0c05929] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Promoting the formate oxidation reaction (FOR) is central to develop promising direct formate fuel cells, but current electrocatalysts are suffering from low activity and ultrapoor stability. Herein, the ternary PdAgRh nanoalloys with ultrathin two-dimensional architecture are for the first time synthesized and employed as a novel class of electrocatalysts for the FOR. Benefitting from unique nanostructure as well as oxophilic Rh surface oxides, the Pd55Ag30Rh15/C electrocatalyst demonstrates an exceptional FOR activity of 1.85 A mgPd-1, showing a 4.74-fold improvement compared to the commercial Pd/C, and retains the current density of 150 mA mgPd-1 after a long-term test, representing the greatest durability among all available FOR electrocatalysts. More strikingly, extending the upper limit potential (ULP) of cyclic voltammetry is revealed to facilitate the surface reconstruction of the Pd55Ag30Rh15/C electrocatalyst to in situ form Ag surface oxides (Ag-O), resulting in a highly active and stable Pd/Ag-O interface at the atomic scale, which considerably boost the FOR performance. In particular, the reconstructed Pd55Ag30Rh15/C electrocatalyst exhibits a mass activity of 3.26 A mgPd-1 with 74.2% of initial activity retained after 1000 cycles. This work showcases an effective strategy to tune surface reconstruction on multimetallic nanoalloys for robust FOR electrocatalysts and beyond.
Collapse
Affiliation(s)
- Yachao Jin
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Fuyi Chen
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Longfei Guo
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jiali Wang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Bo Kou
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Tao Jin
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Huazhen Liu
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
20
|
Wang Y, Ge Z, Li X, Zhao J, Ma B, Chen Y. Cu2S nanorod arrays with coarse surfaces to enhance the electrochemically active surface area for water oxidation. J Colloid Interface Sci 2020; 567:308-315. [DOI: 10.1016/j.jcis.2020.02.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/13/2020] [Accepted: 02/09/2020] [Indexed: 11/25/2022]
|
21
|
|
22
|
Huang H, Xue Q, Zhang Y, Chen Y. Two-dimensional cobalt prussian blue nanosheets: Template-directed synthesis and electrocatalytic oxygen evolution property. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Zhang Q, Xu C, Yin H, Zhou S. Enhanced Catalytic Hydrogenation Performance of Rh-Co 2O 3 Heteroaggregate Nanostructures by in Situ Transformation of Rh@Co Core-Shell Nanoparticles. ACS OMEGA 2019; 4:20829-20837. [PMID: 31858069 PMCID: PMC6906936 DOI: 10.1021/acsomega.9b03340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
In this work, poly(vinylpyrrolidone)-stabilized 3-5 nm Rh@Co core-shell nanoparticles were synthesized by a sequential reduction method, which was further in situ transformed into Rh-Co2O3 heteroaggregate nanostructures on alumina supports. The studies of XRD, HAADF-STEM images with phase mappings, XPS, TPR, and DRIFT-IR with CO probes confirm that the as-synthesized Rh@Co nanoparticles were core-shell-like structures with Rh cores and Co-rich shells, and Rh-Co2O3 heteroaggregate nanostructures are obtained by calcination of Rh@Co nanoparticles and subsequent selective H2 reduction. The Rh-Co2O3/Al2O3 nanostructures demonstrated enhanced catalytic performance for hydrogenations of various substituted nitroaromatics relative to individual Rh/Al2O3 and illustrated a high catalytic stability during recycling experiments for o-nitrophenol hydrogenation reactions. The catalytic performance enhancement of Rh-Co2O3/Al2O3 nanocatalysts is ascribed to the Rh-Co2O3 interfaces where the Rh-Co2O3 interaction not only prevents the active Rh particles from agglomeration but also promotes the catalytic hydrogenation performance.
Collapse
Affiliation(s)
- Qiuyang Zhang
- Shanghai
Key Laboratory of Multiphase Materials Chemical Engineering, School
of Chemical Engineering, East China University
of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Caiyun Xu
- Shanghai
Key Laboratory of Multiphase Materials Chemical Engineering, School
of Chemical Engineering, East China University
of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Hongfeng Yin
- Ningbo
Institute of Materials Technology and Engineering, Chinese Academy
of Sciences, 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, P. R. China
| | - Shenghu Zhou
- Shanghai
Key Laboratory of Multiphase Materials Chemical Engineering, School
of Chemical Engineering, East China University
of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
24
|
Liu X, Deng S, Xiao D, Gong M, Liang J, Zhao T, Shen T, Wang D. Hierarchical Bimetallic Ni-Co-P Microflowers with Ultrathin Nanosheet Arrays for Efficient Hydrogen Evolution Reaction over All pH Values. ACS APPLIED MATERIALS & INTERFACES 2019; 11:42233-42242. [PMID: 31657897 DOI: 10.1021/acsami.9b15194] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Designing efficient nonprecious catalysts with pH-universal hydrogen evolution reaction (HER) performance is of importance for boosting water splitting. Herein, a self-template strategy based on Ni-Co-glycerates is developed to prepare bimetallic Ni-Co-P microflowers with ultrathin nanosheet arrays. The highly porous core-shell structure gives rise to affluent mass transfer channels and availably prevents the aggregation of nanosheets, while the ultrathin nanosheets are favorable for producing abundant active sites. Besides, the produced CoP/NiCoP heterostructure in the bimetallic Ni-Co-P catalyst has excellent HER performance in a wide pH range. The as-prepared catalyst shows low potentials of 90, 157, and 121 mV to deliver a current density of 10 mA cm-2 in 0.5 M H2SO4, 0.5 M PBS, and 1 M KOH solution, respectively. Meanwhile, negligible overpotential decay is achieved in the polarization curves after a long-term stability determination. This work supplies a promising strategy for developing pH-universal HER electrocatalysts based on solid-state metal alkoxides.
Collapse
Affiliation(s)
- Xupo Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , People's Republic of China
| | - Shaofeng Deng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , People's Republic of China
| | - Dongdong Xiao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
| | - Mingxing Gong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , People's Republic of China
| | - Jianing Liang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , People's Republic of China
| | - Tonghui Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , People's Republic of China
| | - Tao Shen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , People's Republic of China
| | - Deli Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , People's Republic of China
| |
Collapse
|
25
|
Kim SY, Yu A, Lee Y, Kim HY, Kim YJ, Lee NS, Lee C, Lee Y, Kim MH. Single phase of spinel Co 2RhO 4 nanotubes with remarkably enhanced catalytic performance for the oxygen evolution reaction. NANOSCALE 2019; 11:9287-9295. [PMID: 31049518 DOI: 10.1039/c9nr02197c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We report the effective crystal growth for a unique single phase of spinel cobalt rhodium oxide (Co2RhO4) nanotubes via the electrospinning process combined with the thermal annealing process. In the spinel structure of the electrospun Co2RhO4 nanotubes, Co3+ cations and Rh3+ cations randomly occupy the octahedral sites, while the remaining half of the Co2+ cations occupy the centres of the tetrahedral sites as proved by microscopic and spectroscopic observations. Furthermore, electrospun spinel Co2RhO4 nanotubes exhibit excellent catalytic performances with the least positive onset potential, greatest current density, and low Tafel slope which are even better than those of the commercial Ir/C electrocatalyst for the oxygen evolution reaction (OER) in alkaline solution. Our demonstration of significantly enhanced OER activity with a single phase of electrospun spinel Co2RhO4 nanotubes thus opens up the broad applicability of our synthetic methodology for accessing new OER catalysis.
Collapse
Affiliation(s)
- So Yeon Kim
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul, 13760, Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Zhao Y, Xing S, Meng X, Zeng J, Yin S, Li X, Chen Y. Ultrathin Rh nanosheets as a highly efficient bifunctional electrocatalyst for isopropanol-assisted overall water splitting. NANOSCALE 2019; 11:9319-9326. [PMID: 31066410 DOI: 10.1039/c9nr02153a] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, we synthesized ultrathin Rh nanosheets (Rh-NSs) with atomic thickness, which revealed excellent activity for the hydrogen evolution reaction (HER) and super activity and extraordinary selectivity for the isopropanol oxidation reaction (IOR) in alkaline medium. When using Rh-NSs as a bifunctional electrocatalyst for water electrolysis in the presence of isopropanol, a voltage of only 0.4 V was required for H2 production, accompanied by the production of valuable acetone at the anode.
Collapse
Affiliation(s)
- Yue Zhao
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, PR China.
| | | | | | | | | | | | | |
Collapse
|
27
|
Ding Y, Li Y, Xue Y, Miao B, Li S, Jiang Y, Liu X, Chen Y. Atomically thick Ni(OH) 2 nanomeshes for urea electrooxidation. NANOSCALE 2019; 11:1058-1064. [PMID: 30569934 DOI: 10.1039/c8nr08104b] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Atomically thick ultrathin nanomeshes (NMs) possessing the inherent advantages of both two-dimensional nanomaterials and porous nanomaterials are attracting increasing interest in catalysis and electrocatalysis. Herein, we report a direct chemical synthesis of atomically thick Ni(OH)2-NMs by a NaBH4 assisted cyanogel hydrolysis method, which overcomes the shortcoming of the post-etching method for NM synthesis. Various physical characterization methods show that the as-synthesized Ni(OH)2-NMs have 1.7 nm thickness, a big surface area, abundant nanoholes, and numerous surface/edge atoms with low-coordination numbers. The as-synthesized Ni(OH)2-NMs show a better electrocatalytic performance for the urea oxidation reaction than conventional Ni(OH)2 nanoparticles without holes in the alkaline electrolyte, including a lower onset oxidation potential, faster reaction kinetics, and higher mass activity.
Collapse
Affiliation(s)
- Yu Ding
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Li L, Zheng H, Guo L, Qu L, Yu L. Construction of novel electrochemical sensors based on bimetallic nanoparticle functionalized graphene for determination of sunset yellow in soft drink. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.11.059] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
29
|
Yu ZN, Zhang Z, Lv ZS, Liu MT, Zhang L, Wang AJ, Jiang LY, Feng JJ. Platinum69-cobalt31 alloyed nanosheet nanoassemblies as advanced bifunctional electrocatalysts for boosting ethylene glycol oxidation and oxygen reduction. J Colloid Interface Sci 2018; 525:216-224. [DOI: 10.1016/j.jcis.2018.04.050] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/25/2018] [Accepted: 04/11/2018] [Indexed: 11/26/2022]
|
30
|
Bai J, Xiao X, Xue YY, Jiang JX, Zeng JH, Li XF, Chen Y. Bimetallic Platinum-Rhodium Alloy Nanodendrites as Highly Active Electrocatalyst for the Ethanol Oxidation Reaction. ACS APPLIED MATERIALS & INTERFACES 2018; 10:19755-19763. [PMID: 29799726 DOI: 10.1021/acsami.8b05422] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Rationally designing and manipulating composition and morphology of precious metal-based bimetallic nanostructures can markedly enhance their electrocatalytic performance, including selectivity, activity, and durability. We herein report the synthesis of bimetallic PtRh alloy nanodendrites (ANDs) with tunable composition by a facile complex-reduction synthetic method under hydrothermal conditions. The structural/morphologic features, formation mechanism, and electrocatalytic performance of PtRh ANDs are investigated thoroughly by various physical characterization and electrochemical methods. The preformed Rh crystal nuclei effectively catalyze the reduction of Pt2+ precursor, resulting in PtRh alloy generation due to the catalytic growth and atoms interdiffusion process. The Pt atoms deposition distinctly interferes in Rh atoms deposition on Rh crystal nuclei, resulting in dendritic morphology of PtRh ANDs. For the ethanol oxidation reaction (EOR), PtRh ANDs display the chemical composition and solution pH co-dependent electrocatalytic activity. Because of the alloy effect and particular morphologic feature, Pt1Rh1 ANDs with optimized composition exhibit better reactivity and stability for the EOR than commercial Pt nanocrystals electrocatalyst.
Collapse
Affiliation(s)
- Juan Bai
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering , Shaanxi Normal University , Xi'an 710062 , P. R. China
| | - Xue Xiao
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering , Shaanxi Normal University , Xi'an 710062 , P. R. China
| | - Yuan-Yuan Xue
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering , Shaanxi Normal University , Xi'an 710062 , P. R. China
| | - Jia-Xing Jiang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering , Shaanxi Normal University , Xi'an 710062 , P. R. China
| | - Jing-Hui Zeng
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering , Shaanxi Normal University , Xi'an 710062 , P. R. China
| | - Xi-Fei Li
- Institute of Advanced Electrochemical Energy , Xi'an University of Technology , Xi'an 710048 , P. R. China
| | - Yu Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering , Shaanxi Normal University , Xi'an 710062 , P. R. China
| |
Collapse
|
31
|
Kang YQ, Xue Q, Zhao Y, Li XF, Jin PJ, Chen Y. Selective Etching Induced Synthesis of Hollow Rh Nanospheres Electrocatalyst for Alcohol Oxidation Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801239. [PMID: 29882268 DOI: 10.1002/smll.201801239] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/30/2018] [Indexed: 06/08/2023]
Abstract
The hollow noble metal nanostructures have attracted wide attention in catalysis/electrocatalysis. Here a two-step procedure for constructing hollow Rh nanospheres (Rh H-NSs) with clean surface is described. By selectively removing the surfactant and Au core of Au-core@Rh-shell nanostructures (Au@Rh NSs), the surface-cleaned Rh H-NSs are obtained, which contain abundant porous channels and large specific surface area. The as-prepared Rh H-NSs exhibit enhanced inherent activity for the methanol oxidation reaction (MOR) compared to state-of-the-art Pt nanoparticles in alkaline media. Further electrochemical experiments show that Rh H-NSs also have high activity for the electrooxidation of formaldehyde and formate (intermediate species in the course of the MOR) in alkaline media. Unfortunately, Rh H-NSs have low electrocatalytic activity for the ethanol and 1-propanol oxidation reactions in alkaline media. All electrochemical results indicate that the order of electrocatalytic activity of Rh H-NSs for alcohol oxidation reaction is methanol (C1 ) > ethanol (C2 ) > 1-propanol (C3 ). This work highlights the synthesis route of Rh hollow nanostructures, and indicates the promising application of Rh nanostructures in alkaline direct methanol fuel cells.
Collapse
Affiliation(s)
- Yong-Qiang Kang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, West Chang'an Avenue, Chang'an District, Xi'an, 710119, P. R. China
| | - Qi Xue
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, West Chang'an Avenue, Chang'an District, Xi'an, 710119, P. R. China
| | - Yue Zhao
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, West Chang'an Avenue, Chang'an District, Xi'an, 710119, P. R. China
| | - Xi-Fei Li
- Institute of Advanced Electrochemical Energy, Xi'an University of Technology, Xi'an, 710048, China
| | - Pu-Jun Jin
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, West Chang'an Avenue, Chang'an District, Xi'an, 710119, P. R. China
| | - Yu Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, West Chang'an Avenue, Chang'an District, Xi'an, 710119, P. R. China
| |
Collapse
|
32
|
Abstract
Abstract
Two-dimensional (2D) materials have been widely investigated for the last few years, introducing nanosheets and ultrathin films. The often superior electrical, optical and mechanical properties in contrast to their three-dimensional (3D) bulk counterparts offer a promising field of opportunities. Especially new research fields for already existing and novel applications are opened by downsizing and improving the materials at the same time. Some of the most promising application fields are namely supercapacitors, electrochromic devices, (bio-) chemical sensors, photovoltaic devices, thermoelectrics, (photo-) catalysts and membranes. The role of oxides in this field of materials deserves a closer look due to their availability, durability and further advantages. Here, recent progress in oxidic nanosheets is highlighted and the benefit of 2D oxides for applications discussed in-depth. Therefore, different synthesis techniques and microstructures are compared more closely.
Collapse
Affiliation(s)
- Richard Hinterding
- Leibniz University Hannover , Institute of Physical Chemistry and Electrochemistry , Callinstraße 3A , D-30176 Hannover , Germany
| | - Armin Feldhoff
- Leibniz University Hannover , Institute of Physical Chemistry and Electrochemistry , Callinstraße 3A , D-30176 Hannover , Germany
| |
Collapse
|
33
|
Tanyildizi S, Morkan İ, Özkar S. Nanotitania-Supported Rhodium(0) Nanoparticles: Superb Catalyst in Dehydrogenation of Dimethylamine Borane. ChemistrySelect 2017. [DOI: 10.1002/slct.201700872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Seda Tanyildizi
- Department of Chemistry; Abant İzzet Baysal University; 14280 Bolu Turkey
| | - İzzet Morkan
- Department of Chemistry; Abant İzzet Baysal University; 14280 Bolu Turkey
| | - Saim Özkar
- Department of Chemistry; Middle East Technical University; 06800 Ankara Turkey
| |
Collapse
|