1
|
Yang L, Gu X, Liu J, Wu L, Qin Y. Functionalized nanomaterials-based electrochemiluminescent biosensors and their application in cancer biomarkers detection. Talanta 2024; 267:125237. [PMID: 37757698 DOI: 10.1016/j.talanta.2023.125237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
To detect a range of trace biomarkers associated with human diseases, researchers have been focusing on developing biosensors that possess high sensitivity and specificity. Electrochemiluminescence (ECL) biosensors have emerged as a prominent research tool in recent years, owing to their potential superiority in low background signal, high sensitivity, straightforward instrumentation, and ease of operation. Functional nanomaterials (FNMs) exhibit distinct advantages in optimizing electrical conductivity, increasing reaction rate, and expanding specific surface area due to their small size effect, quantum size effect, and surface and interface effects, which can significantly improve the stability, reproducibility, and sensitivity of the biosensors. Thereby, various nanomaterials (NMs) with excellent properties have been developed to construct efficient ECL biosensors. This review provides a detailed summary and discussion of FNMs-based ECL biosensors and their applications in cancer biomarkers detection.
Collapse
Affiliation(s)
- Luxia Yang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China
| | - Xijuan Gu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China
| | - Jinxia Liu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China.
| | - Li Wu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China.
| | - Yuling Qin
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China.
| |
Collapse
|
2
|
Zhao Y, Zhao A, Wang Z, Xu Y, Feng Y, Lan Y, Han Z, Lu X. Enhancing the Electrochemiluminescence of Porphyrin via Crystalline Networks of Metal-Organic Frameworks for Sensitive Detection of Cardiac Troponin I. Anal Chem 2023; 95:11687-11694. [PMID: 37506038 DOI: 10.1021/acs.analchem.3c01647] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Porphyrins easily aggregate due to unfavorable π-π accumulation, causing luminescent quenching in the aqueous phase and subsequently reducing luminescent efficiency. It is a feasible way to immobilize porphyrin molecules through metal-organic framework materials (MOFs). In this study, 5,10,15,20-tetrakis (4-carboxyphenyl) porphyrin (TCPP) was introduced into the metal-organic skeleton (PCN-224) as a ligand. The result showed that the electrochemiluminescence (ECL) and photoluminescence (PL) efficiency of the MOF skeleton was 8.2 and 6.5 times higher than TCPP, respectively. Impressively, the periodic distribution of porphyrin molecules in the MOF framework can overcome the bottleneck of porphyrin aggregation, resulting in the organic ligand TCPP participating in the electron transfer reaction. Herein, based on the PCN-224, a sandwich-type ECL immunosensor was constructed for the determination of cardiac troponin I (cTnI). It provided sensitive detection of cTnI in the range of 1 fg/mL to 10 ng/mL with a detection limit of 0.34 fg/mL. This work not only innovatively exploited a disaggregation ECL (DIECL) strategy via the crystalline framework of MOF to enhance the PL and ECL efficiency of porphyrin but also provided a promising ECL platform for the ultrasensitive monitoring of cTnI.
Collapse
Affiliation(s)
- Yaqi Zhao
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Aijuan Zhao
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Zhizhou Wang
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Yanhong Xu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Yanjun Feng
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - YuBao Lan
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Zhengang Han
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| |
Collapse
|
3
|
Li YX, Li J, Zeng HB, Zhang XJ, Cosnier S, Shan D. Artificial Light-Harvesting System Based on Zinc Porphyrin and Benzimidazole: Construction, Resonance Energy Transfer, and Amplification Strategy for Electrochemiluminescence. Anal Chem 2023; 95:3493-3498. [PMID: 36734630 DOI: 10.1021/acs.analchem.2c05559] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Constructing robust and efficient luminophores is of significant importance in the development of electrochemiluminescence (ECL) amplification strategies. Inspired by the resonance energy transfer in natural light-harvesting systems, we propose a novel ECL amplification system based on ECL resonance energy transfer (ECL-RET), which integrates two luminophores, benzimidazole (BIM) and zinc(II) tetrakis(4-carboxyphenyl)porphine (ZnTCPP), into one framework. Through disassembling and reconstruction processes, numerous BIM surround ZnTCPP in the constructed ZIF-9-ZnTCPP. Combined with the overlapped spectra between the emission of BIM and the absorption of ZnTCPP, the energy of multiple BIM (donor) can be concentrated to a single ZnTCPP (acceptor) to amplify the ECL emission of the acceptor. This work provides a convenient way to design an efficient ECL-RET system, which initiates a brand-new chapter in the development of ECL amplification strategies.
Collapse
Affiliation(s)
- Yi-Xuan Li
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing210094, P R China
| | - Junji Li
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing210094, P R China
| | - Hai-Bo Zeng
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing210094, P R China
| | - Xue-Ji Zhang
- School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen518060, P R China
| | - Serge Cosnier
- University of Grenoble Alpes-CNRS, DCM UMR 5250, F-38000Grenoble, France
| | - Dan Shan
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing210094, P R China
| |
Collapse
|
4
|
Porphyrin Functionalized Carbon Quantum Dots for Enhanced Electrochemiluminescence and Sensitive Detection of Cu 2. Molecules 2023; 28:molecules28031459. [PMID: 36771121 PMCID: PMC9919192 DOI: 10.3390/molecules28031459] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Porphyrin (TMPyP) functionalized carbon quantum dots (CQDs-TMPyP), a novel and efficient carbon nanocomposite material, were developed as a novel luminescent material, which could be very useful for the sensitive detection of copper ions in the Cu2+ quenching luminescence of functionalized carbon quantum dots. Therefore, we constructed a sensitive "signal off" ECL biosensor for the detection of Cu2+. This sensor can sensitively respond to copper ions in the range of 10 nM to 10 μM, and the detection limit is 2.78 nM. At the same time, it has good selectivity and stability and a benign response in complex systems. With excellent properties, this proposed ECL biosensor provides an efficient and ultrasensitive method for Cu2+ detection.
Collapse
|
5
|
Shen Y, Gao X, Lu HJ, Nie C, Wang J. Electrochemiluminescence-based innovative sensors for monitoring the residual levels of heavy metal ions in environment-related matrices. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Kong C, Chen X. Combined Photodynamic and Photothermal Therapy and Immunotherapy for Cancer Treatment: A Review. Int J Nanomedicine 2022; 17:6427-6446. [PMID: 36540374 PMCID: PMC9760263 DOI: 10.2147/ijn.s388996] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022] Open
Abstract
Photoactivation therapy based on photodynamic therapy (PDT) and photothermal therapy (PTT) has been identified as a tumour ablation modality for numerous cancer indications, with photosensitisers and photothermal conversion agents playing important roles in the phototherapy process, especially in recent decades. In addition, the iteration of nanotechnology has strongly promoted the development of phototherapy in tumour treatment. PDT can increase the sensitivity of tumour cells to PTT by interfering with the tumour microenvironment, whereas the heat generated by PTT can increase blood flow, improve oxygen supply and enhance the PDT therapeutic effect. In addition, tumour cell debris generated by phototherapy can serve as tumour-associated antigens, evoking antitumor immune responses. In this review, the research progress of phototherapy, and its research effects in combination with immunotherapy on the treatment of tumours are mainly outlined, and issues that may need continued attention in the future are raised.
Collapse
Affiliation(s)
- Cunqing Kong
- Department of medical imaging center, central hospital affiliated to Shandong first medical university, Jinan, People’s Republic of China
| | - Xingcai Chen
- Department of Human Anatomy and Center for Genomics and Personalized Medicine, Nanning, People’s Republic of China,Correspondence: Xingcai Chen, Email
| |
Collapse
|
7
|
Zhu W, Cai W, Yin Z, Cheng M, Kong Y. Self‐assembly of covalent porphyrin compound and its enhanced electrochemiluminescence performance. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wen‐Kai Zhu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology School of Petrochemical Engineering, Changzhou University Changzhou P. R. China
| | - Wen‐Rong Cai
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology School of Petrochemical Engineering, Changzhou University Changzhou P. R. China
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao China
| | - Zhen‐Zhi Yin
- College of Chemical Sciences and Engineering Jiaxing University Jiaxing P. R. China
| | - Ming‐Jie Cheng
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology School of Petrochemical Engineering, Changzhou University Changzhou P. R. China
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology School of Petrochemical Engineering, Changzhou University Changzhou P. R. China
| |
Collapse
|
8
|
Zhao J, Chen CX, Zhu JW, Zong HL, Hu YH, Wang YZ. Ultrasensitive and Visual Electrochemiluminescence Ratiometry Based on a Constant Resistor-Integrated Bipolar Electrode for MicroRNA Detection. Anal Chem 2022; 94:4303-4310. [PMID: 35230810 DOI: 10.1021/acs.analchem.1c04971] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this work, a new electrochemiluminescence (ECL) platform was constructed for detecting the prostate cancer marker microRNA-141 (miRNA-141) on a constant resistor-integrated closed bipolar electrode (BPE). It consisted of two reservoirs and a constant resistor, and both ends were connected to the anode of the driving electrode and the cathode of BPE. The cathode of BPE was modified with boron nitride quantum dots (BNQDs), and the anode reservoir was the [Ru(bpy)3](PF6)2/TPrA system. After introducing a certain amount of hairpin DNA 3 (H3) and ferrocene-labeled single-stranded DNA (Fc-ssDNA) on the surface of the BNQDs, the ECL emission signal of the BNQDs was difficult to be observed by the naked eye, while [Ru(bpy)3](PF6)2 emitted a strong and visible ECL signal. In the presence of the target, bipedal DNA assembled by catalytic hairpin assembly (CHA) took away the Fc-ssDNA and the ECL intensity of the BNQDs was enlarged, and as the concentration of miRNA-141 increased to the cutoff value, yellow-green light was visible by the naked eye. Meanwhile, the red emission signal of [Ru(bpy)3](PF6)2/TPrA became weakened. Thus, an ultrasensitive "color switch" ECL biosensor for detection of miRNA-141 was constructed and endowed with a wide linear range from 10-17 to 10-7 M and a detection limit of 10-17 M (S/N = 3). This study provides the potential for investigating portable devices in the detection of low-concentration nucleic acids.
Collapse
Affiliation(s)
- Jie Zhao
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, P. R. China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, P. R. China
| | - Chuan-Xiang Chen
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, P. R. China
| | - Jia-Wan Zhu
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, P. R. China
| | - Hui-Long Zong
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, P. R. China
| | - Yong-Hong Hu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, P. R. China
| | - Yin-Zhu Wang
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, P. R. China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, P. R. China
| |
Collapse
|
9
|
Yin T, Luo Q, Luo C, Li Z, Wu B, Pei C. Preparation of self-assembled FOX-7 nanosheets and its performance. CrystEngComm 2022. [DOI: 10.1039/d1ce01552d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using an energetic additive (EA) with layered network structure as crystallization inducer, 1,1-diamino-2,2-dinitroethylene (FOX-7) nanosheets was prepared by solvent-non-solvent method. Its morphology, phase, structure and thermal performance were characterized by...
Collapse
|
10
|
Han T, Cao Y, Chen HY, Zhu JJ. Versatile porous nanomaterials for electrochemiluminescence biosensing: Recent advances and future perspective. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
11
|
Pashaei B, Shahroosvand H, Moharramnezhad M, Kamyabi MA, Bakhshi H, Pilkington M, Nazeeruddin MK. Two in One: A Dinuclear Ru(II) Complex for Deep-Red Light-Emitting Electrochemical Cells and as an Electrochemiluminescence Probe for Organophosphorus Pesticides. Inorg Chem 2021; 60:17040-17050. [PMID: 34730947 DOI: 10.1021/acs.inorgchem.1c02154] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The emissive properties of two Ru(II) complexes, [Ru(dmbipy)2L1][PF6]2 (1) and [Ru2(dmbipy)4L2][PF6]4 (2), (where L1 and L2 are π-extended phenanthroline-based ligands and dmbipy = 4,4'-dimethyl-2,2'-bipyridine) have been explored for dual applications, namely, deep-red light-emitting electrochemical cells (LECs) and electrochemiluminescence (ECL) sensors for the detection of organophosphorus pesticides (OPs) that include chlorpyrifos (CPS). A simple single-layer deep-red LEC device comprising 2 is reported that outperforms both its mononuclear derivative 1 and all previously reported dinuclear LECs, with a maximum brightness of 524 cd/m2, an external quantum efficiency of 0.62%, and a turn-on voltage of 3.2 V. Optoelectronic studies reveal that the ECL response of 2 is improved when compared to its mononuclear counterpart 1 and benchmark [Ru(bipy)3]2+ (3). Modified glassy carbon electrodes coated with 2 are highly sensitive deep-red ECL sensors that facilitate the detection of CPS directly from river water and fruit samples without any complex pretreatment steps, operating over a broad logarithmic concentration range, with a low detection limit.
Collapse
Affiliation(s)
- Babak Pashaei
- Group for Molecular Engineering of Advanced Functional Materials (GMA), Department of Chemistry, University of Zanjan, 45371-38791 Zanjan, Iran
| | - Hashem Shahroosvand
- Group for Molecular Engineering of Advanced Functional Materials (GMA), Department of Chemistry, University of Zanjan, 45371-38791 Zanjan, Iran
| | - Mohsen Moharramnezhad
- Laboratory for Analytical Chemistry, Department of Chemistry, University of Zanjan, 45371-38791 Zanjan, Iran
| | - Mohammad Ali Kamyabi
- Laboratory for Analytical Chemistry, Department of Chemistry, University of Zanjan, 45371-38791 Zanjan, Iran
| | - Hamed Bakhshi
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S3A1, Canada
| | - Melanie Pilkington
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S3A1, Canada
| | - Mohammad Khaja Nazeeruddin
- Group for Molecular Engineering of Functional Materials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1951 Sion, Switzerland
| |
Collapse
|
12
|
Wang Q, Liu Y, Yan J, Liu Y, Gao C, Ge S, Yu J. 3D DNA Walker-Assisted CRISPR/Cas12a Trans-Cleavage for Ultrasensitive Electrochemiluminescence Detection of miRNA-141. Anal Chem 2021; 93:13373-13381. [PMID: 34553925 DOI: 10.1021/acs.analchem.1c03183] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this study, a CRISPR/Cas12a (LbCpf1)-mediated electrochemiluminescence (ECL) paper-based platform on the basis of a three-dimensional (3D) DNA walker was proposed for the ultrasensitive detection of miRNA-141. Initially, 3D-rGO with a tremendous loading space was modified on the paper working electrode (PWE) to construct an excellent conductive substrate and facilitate the growth of AuPd nanoparticles (NPs). Afterward, the AuPd NPs were introduced as the coreaction emitter medium of the 3D-rGO/PWE to provide convenience for the transformation between S2O82- and SO42-, amplifying the ECL emission of g-C3N4 nanosheets (NSs). Meanwhile, with the help of Nt.BsmAI nicking endonuclease, a 3D DNA walker signal amplifier was designed to convert and magnify the target miRNA-141 into a particular trigger sequence, which could act as activator DNA to motivate the trans-acting deoxyribonuclease activity of CRISPR/Cas12a to further achieve efficient annihilation of the ECL signal. Furthermore, the proposed multimechanism-driven biosensor exhibited excellent sensitivity and specificity, with a relatively low detection limit at 0.331 fM (S/N = 3) in the concentration range between 1 fM and 10 nM. Consequently, the designed strategy not only extended the application scope of CRISPR/Cas12a but also devoted a new approach for the clinical diagnosis of modern medicine.
Collapse
Affiliation(s)
- Qian Wang
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P.R. China.,School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China
| | - Yaqi Liu
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P.R. China
| | - Jixian Yan
- Shandong Provincial Center for Prevention and Control of Solid Waste and Hazardous Chemical Pollution, Jinan 250000, P.R. China
| | - Yunqing Liu
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P.R. China
| | - Chaomin Gao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P.R. China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China
| |
Collapse
|
13
|
Yang XY, Wang YZ, Wang LL, Zhu JW, Zhao J, Zong HL, Chen CX. Bipolar electrode ratiometric electrochemiluminescence biosensing analysis based on boron nitride quantum dots and biological release system. Biosens Bioelectron 2021; 191:113393. [PMID: 34144471 DOI: 10.1016/j.bios.2021.113393] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 11/30/2022]
Abstract
In this article, we developed a novel ECL ratiometry on a closed bipolar electrode (BPE) for the sensitively and accurately detection of miRNA-21. High quantum yield and low toxicity BNQDs was synthesized and coated at BPE cathode as an ECL emitter, while the anode of BPE was calibrated via another ECL material, Ir(df-ppy)2(pic) (Firpic). The electron neutrality at both ends of the BPE electrically coupled the reactions on each pole of the BPE. Therefore, one electrochemical sensing reaction could be quantified at one end of the BPE. By the hybridization of target miRNA-21 and hairpin, the glucose blocked in MSNs by the hairpin was released and reacted with glucose oxidase (GOD) to generate H2O2, thereby reducing the ECL signal of the cathode BNQDs/K2S2O8 system and promoting ECL signal of anode Firpic/TPrA. Further, the G-quadruplex formed by unreacted hairpin bases consumed H2O2, which not only recovered the ECL of BNQDs, but also further improved the ECL emission of Firpic. Therefore, the concentration of miRNA-21 could be measured by the ECL ratio of BNQDs and Firpic. The data showed that the detection limit was 10-15 M (S/N = 3) with the linear range of 10-15 M to 10-9 M. The strategy of the BPE-ECL ratio method based on BNQDs showed a good prospect in clinical application.
Collapse
Affiliation(s)
- Xue-Yun Yang
- Department of Chemistry, College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, PR China
| | - Yin-Zhu Wang
- Department of Chemistry, College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, PR China.
| | - Ling-Ling Wang
- Department of Chemistry, College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, PR China
| | - Jia Wan Zhu
- Department of Chemistry, College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, PR China
| | - Jie Zhao
- Department of Chemistry, College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, PR China
| | - Hui-Long Zong
- Department of Chemistry, College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, PR China
| | - Chuan-Xiang Chen
- Department of Chemistry, College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, PR China.
| |
Collapse
|
14
|
Zhang G, Chai H, Tian M, Zhu S, Qu L, Zhang X. Zirconium–Metalloporphyrin Frameworks–Luminol Competitive Electrochemiluminescence for Ratiometric Detection of Polynucleotide Kinase Activity. Anal Chem 2020; 92:7354-7362. [DOI: 10.1021/acs.analchem.0c01262] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Guangyao Zhang
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Huining Chai
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Mingwei Tian
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Shifeng Zhu
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Lijun Qu
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Xueji Zhang
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
15
|
Fang Y, Wang HM, Gu YX, Yu L, Wang AJ, Yuan PX, Feng JJ. Highly Enhanced Electrochemiluminescence Luminophore Generated by Zeolitic Imidazole Framework-8-Linked Porphyrin and Its Application for Thrombin Detection. Anal Chem 2020; 92:3206-3212. [PMID: 31939299 DOI: 10.1021/acs.analchem.9b04938] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Novel and distinct enhancement in electrochemiluminescence (ECL) signals of advanced organic luminophores are of importance for expanding their applications in early diagnosis. This work reported the construction of an ultrasensitive label-free ECL aptasensor for thrombin (TB) detection by grafting zinc proto-porphyrin IX (ZnP) onto an aminated zeolitic imidazole framework-8 (defined as ZnP-NH-ZIF-8 for clarity) as the luminophore. The structure and optical properties of the resulting ZnP-NH-ZIF-8 were carefully characterized. For that, there appeared to be weak ECL radiation for ZnP in dichloromethane (DCM) containing tetra-n-butylammonium perchlorate (TBAP) because of the as-formed singlet-state oxygen via the "reduction-oxidation" route. More notably, the ECL signals display 153-times enhancement for ZnP-NH-ZIF-8, thanks to the excellent catalytic kinetics for the oxygen reduction reaction (ORR). By virtue of the specific interactions of the TB aptamer (TBA) with the TB protein and the highly efficient catalysis of the ZnP-NH-ZIF-8 for ORR, the as-prepared aptasensor showed a wider linear range (0.1 fM∼1 pM) and a lower detection limit (ca. 58.6 aM). This work provides some useful guidelines for synthesis of an advanced organic luminophore with largely boosted ECL signals in ultrasensitive analysis and clinical diagnosis.
Collapse
Affiliation(s)
- Yan Fang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences , Zhejiang Normal University , Jinhua 321004 , China
| | - Hui-Min Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences , Zhejiang Normal University , Jinhua 321004 , China
| | - Yi-Xin Gu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences , Zhejiang Normal University , Jinhua 321004 , China
| | - Lu Yu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences , Zhejiang Normal University , Jinhua 321004 , China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences , Zhejiang Normal University , Jinhua 321004 , China
| | - Pei-Xin Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences , Zhejiang Normal University , Jinhua 321004 , China
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences , Zhejiang Normal University , Jinhua 321004 , China
| |
Collapse
|
16
|
Han Q, Wang C, Li Z, Wu J, Liu PK, Mo F, Fu Y. Multifunctional Zinc Oxide Promotes Electrochemiluminescence of Porphyrin Aggregates for Ultrasensitive Detection of Copper Ion. Anal Chem 2020; 92:3324-3331. [DOI: 10.1021/acs.analchem.9b05262] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Qian Han
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
- Laboratory of Environment Change and Ecological Construction of Hebei Province, College of Resources and Environment Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Cun Wang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China
| | - Zhuozhe Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Jingling Wu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ping kun Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Fangjing Mo
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yingzi Fu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
17
|
Zhong X, Jiang MH, Lei YM, Chai YQ, Yuan R, Zhuo Y. Tetrakis(4-aminophenyl) ethene-doped perylene microcrystals with strong electrochemiluminescence for biosensing applications. Analyst 2020; 145:5260-5265. [DOI: 10.1039/d0an00997k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile and economic method for the inhibition of ACQ effect was developed by doping of non-planar moleculars ETTA into Pe MCs, which exhibited almost 10 times stronger ECL signal in aqueous phase compared to that of pure Pe MCs.
Collapse
Affiliation(s)
- Xia Zhong
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- PR China
| | - Ming-Hui Jiang
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- PR China
| | - Yan-Mei Lei
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- PR China
| | - Ya-Qin Chai
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- PR China
| | - Ruo Yuan
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- PR China
| | - Ying Zhuo
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- PR China
| |
Collapse
|
18
|
Tashiro K, Murafuji T, Sumimoto M, Fujitsuka M, Yamazaki S. The formation mechanism of ZnTPyP fibers fabricated by a surfactant-assisted method. NEW J CHEM 2020. [DOI: 10.1039/d0nj02829k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Zn–N coordination and the sphere-to-rod transition of CTAB micelles contribute concertedly to the formation of ZnTPyP fibers.
Collapse
Affiliation(s)
- Keigo Tashiro
- Division of Natural Science, Graduate School of Sciences and Technology for Innovation
- Yamaguchi University
- Yamaguchi 753-8512
- Japan
| | - Toshihiro Murafuji
- Division of Natural Science, Graduate School of Sciences and Technology for Innovation
- Yamaguchi University
- Yamaguchi 753-8512
- Japan
| | - Michinori Sumimoto
- Division of Applied Chemistry, Graduate School of Sciences and Technology for Innovation
- Yamaguchi University
- Ube, 755-8611
- Japan
| | - Mamoru Fujitsuka
- The Institute of Scientific and Industrial Research (SANKEN)
- Osaka University
- Osaka 567-0047
- Japan
| | - Suzuko Yamazaki
- Division of Natural Science, Graduate School of Sciences and Technology for Innovation
- Yamaguchi University
- Yamaguchi 753-8512
- Japan
| |
Collapse
|
19
|
Cai WR, Zeng HB, Xue HG, Marks RS, Cosnier S, Zhang XJ, Shan D. Enhanced Electrochemiluminescence of Porphyrin-Based Metal–Organic Frameworks Controlled via Coordination Modulation. Anal Chem 2019; 92:1916-1924. [DOI: 10.1021/acs.analchem.9b04104] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Wen-Rong Cai
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Hai-Bo Zeng
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Huai-Guo Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Robert S. Marks
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Serge Cosnier
- University of Grenoble Alpes-CNRS, DCM UMR 5250, F-38000 Grenoble, France
| | - Xue-Ji Zhang
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Dan Shan
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
20
|
Tashiro K, Yamazaki S. Photocatalysis of ZnTPyP fibers fabricated by surfactant-assisted method: Effect of surfactant and kinetic studies. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123741] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Xu LH, Li JJ, Zeng HB, Zhang XJ, Cosnier S, Marks RS, Shan D. ATMP-induced three-dimensional conductive polymer hydrogel scaffold for a novel enhanced solid-state electrochemiluminescence biosensor. Biosens Bioelectron 2019; 143:111601. [PMID: 31442752 DOI: 10.1016/j.bios.2019.111601] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/01/2019] [Accepted: 08/13/2019] [Indexed: 10/26/2022]
Abstract
Reliable and sensitive detection of xanthine has important medical and biological significance. In this work, a novel three-dimensional (3D) conductive polymer hydrogel of polyaniline (PAni) was feasibly prepared using aniline (Ani), amino trimethylene phosphonic acid (ATMP) and ammonium persulfate ((NH4)2S2O8) as monomer, gelatinizing agent and oxidizing agent, respectively. Protonation of aniline can be achieved by ATMP, inducing good conductivity of the obtained hydrogel. ATMP remained the chelating abilities in the conductive hydrogel, enabling further immobilization with silver nanoparticles (AgNPs) functionalized by a luminol derivative, N-(aminobutyl)-N-(ethylisoluminol) (ABEI). ABEI-Ag@PAni-ATMP exhibited an enhanced performance of solid-state electrochemiluminescence (ECL). Integrated with xanthine oxidase (XOD), the proposed biosensor can be applied in the detection of xanthine via in-situ generated hydrogen peroxide (H2O2), and present a low detection limit of 9.6 nM, a wide linear range (from 0.01 to 200 μM) and excellent stability.
Collapse
Affiliation(s)
- Lian-Hua Xu
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jun-Ji Li
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Hai-Bo Zeng
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xue-Ji Zhang
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Serge Cosnier
- University of Grenoble Alpes-CNRS, DCM UMR 5250, F-38000, Grenoble, France
| | - Robert S Marks
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Dan Shan
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
22
|
Xu X, Qin X, Wang L, Wang X, Lu J, Qiu X, Zhu Y. Lanthanide terbium complex: synthesis, electrochemiluminescence (ECL) performance, and sensing application. Analyst 2019; 144:2359-2366. [PMID: 30793728 DOI: 10.1039/c9an00137a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study, a new lanthanide terbium complex, Tb(pzda)3(NO3)3·nH2O, was synthesized by a hydrothermal method and characterized by Fourier transform infrared spectroscopy (FT-IR) and energy-dispersive X-ray spectroscopy (EDS). It was found that the as-synthesized Tb-complex exhibited good electrochemiluminescence (ECL) behavior in the presence of triethanolamine (TEOA) in a HAc-NaAc buffer solution on a glassy carbon electrode. The possible reaction mechanism has been discussed based on the fluorescence spectra and ECL spectra. For sensing applications, it was found that protocatechuic acid (PCA) had an obvious quenching effect on the ECL signal of the Tb-complex, and this resulted in a decreased ECL signal associated with the concentration of PCA. Therefore, a highly sensitive method for the detection of PCA was established with a linear range of 1.283 × 10-10 M to 3.845 × 10-4 M and a detection limit of 0.085 nM at an S/N ratio of 3. This novel ECL assay strategy with an outstanding ECL efficiency offers great potential for pharmaceutical analyses.
Collapse
Affiliation(s)
- Xia Xu
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | | | | | | | | | | | | |
Collapse
|
23
|
Cai WR, Cosnier S, Zhang XJ, Marks R, Shan D. Self-assembled meso-tetra(4-carboxyphenyl)porphine: Structural modulation using surfactants for enhanced photoelectrochemical properties. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.01.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Zhang R, Zhong X, Chen AY, Liu JL, Li SK, Chai YQ, Zhuo Y, Yuan R. Novel Ru(bpy) 2(cpaphen) 2+/TPrA/TiO 2 Ternary ECL System: An Efficient Platform for the Detection of Glutathione with Mn 2+ as Substitute Target. Anal Chem 2019; 91:3681-3686. [PMID: 30698003 DOI: 10.1021/acs.analchem.8b05795] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A sensitive electrochemiluminescence (ECL) biosensor was developed for glutathione (GSH) detection based on a novel Ru(bpy)2(cpaphen)2+/TPrA/TiO2 ternary ECL system with Mn2+ as substitute target for signal amplification. Specifically, the TiO2 nanoneedles (TiO2 NNs) were used as the coreaction accelerator for the first time to promote the oxidation process of coreactant tripropylamine (TPrA) in the anode and significantly increase the ECL signal of Ru(bpy)2(cpaphen)2+ for an amplified initial signal. Meanwhile, a novel target conversion strategy for GSH was developed by reducing MnO2 nanosheets to Mn2+ as a substitute target, which played the role of a coenzyme factor for cleaving DNA double strands intercalated with Ru(bpy)2(cpaphen)2+ to markedly weaken initial signal. As a result, the novel "on-off" biosensor achieved a sensitive detection of GSH range from 5 μM to 215 μM with a detection limit of 0.33 μM. Importantly, the proposed strategy enriched the application of Ru complex and TPrA ECL system in bioanalytical applications, and provided a new signal amplification strategy for bioactive small molecules.
Collapse
Affiliation(s)
- Rui Zhang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , P. R. China
| | - Xia Zhong
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , P. R. China
| | - An-Yi Chen
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , P. R. China
| | - Jia-Li Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , P. R. China
| | - Sheng-Kai Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , P. R. China
| | - Ya-Qin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , P. R. China
| | - Ying Zhuo
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , P. R. China
| |
Collapse
|
25
|
Jiang MH, Li SK, Zhong X, Liang WB, Chai YQ, Zhuo Y, Yuan R. Electrochemiluminescence Enhanced by Restriction of Intramolecular Motions (RIM): Tetraphenylethylene Microcrystals as a Novel Emitter for Mucin 1 Detection. Anal Chem 2019; 91:3710-3716. [DOI: 10.1021/acs.analchem.8b05949] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Ming-Hui Jiang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Sheng-Kai Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Xia Zhong
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Wen-Bin Liang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Ya-Qin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Ying Zhuo
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People’s Republic of China
| |
Collapse
|
26
|
Pu G, Yang Z, Wu Y, Wang Z, Deng Y, Gao Y, Zhang Z, Lu X. Investigation into the Oxygen-Involved Electrochemiluminescence of Porphyrins and Its Regulation by Peripheral Substituents/Central Metals. Anal Chem 2019; 91:2319-2328. [DOI: 10.1021/acs.analchem.8b05027] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Guiqiang Pu
- Tianjin Key Laboratory of Molecular Optoelectronic, Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Zhaofan Yang
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Yali Wu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Ze Wang
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Yang Deng
- Tianjin Key Laboratory of Molecular Optoelectronic, Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China
| | - YunJing Gao
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Zhen Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic, Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China
| | - Xiaoquan Lu
- Tianjin Key Laboratory of Molecular Optoelectronic, Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| |
Collapse
|
27
|
Yang Z, Pu G, Ning X, Wu Y, Zhang Z, Shan D, Lu X. J-Aggregates of zinc tetraphenylporphyrin: a new pathway to excellent electrochemiluminescence emitters. Phys Chem Chem Phys 2019; 21:10614-10620. [DOI: 10.1039/c9cp01278h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This work provides a novel strategy for developing ECL emitters via exploring the electrochemiluminescence of H- and J-aggregates for the first time.
Collapse
Affiliation(s)
- Zhaofan Yang
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
- P. R. China
| | - Guiqiang Pu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
- P. R. China
| | - Xingming Ning
- Tianjin Key Laboratory of Molecular Optoelectronic
- Department of Chemistry
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Yali Wu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
- P. R. China
| | - Zhen Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic
- Department of Chemistry
- Tianjin University
- Tianjin 300072
- P. R. China
| | - Duoliang Shan
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
- P. R. China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou 730070
- P. R. China
| |
Collapse
|
28
|
Li Z, Askim JR, Suslick KS. The Optoelectronic Nose: Colorimetric and Fluorometric Sensor Arrays. Chem Rev 2018; 119:231-292. [DOI: 10.1021/acs.chemrev.8b00226] [Citation(s) in RCA: 476] [Impact Index Per Article: 79.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zheng Li
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jon R. Askim
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Kenneth S. Suslick
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
29
|
Zhao G, Wang Y, Li X, Dong X, Wang H, Du B, Cao W, Wei Q. Quenching Electrochemiluminescence Immunosensor Based on Resonance Energy Transfer between Ruthenium (II) Complex Incorporated in the UiO-67 Metal-Organic Framework and Gold Nanoparticles for Insulin Detection. ACS APPLIED MATERIALS & INTERFACES 2018; 10:22932-22938. [PMID: 29916688 DOI: 10.1021/acsami.8b04786] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This work describes a sandwich-type electrochemiluminescence (ECL) strategy for insulin detection by using Ru(bpy)32+ as the luminophore which was encapsulated in the UiO-67 metal-organic framework (UiO-67/Ru(bpy)32+). Because UiO-67 possesses the characteristics of large specific surface area and porosity, more Ru(bpy)32+ could be loaded onto its surface and holes, thus greatly improving the ECL efficiency. Furthermore, the ECL resonance energy transfer (ECL-RET) could occur between UiO-67/Ru(bpy)32+ (ECL donor) and Au@SiO2 nanoparticles (ECL acceptor), resulting in a conspicuously decreased ECL response. The ECL spectrum of UiO-67/Ru(bpy)32+ which exhibited strong ECL intensity has suitable spectral overlap with the absorption spectrum of Au@SiO2, which further proved the occurrence of the ECL-RET action. The ECL intensity decreased with the increase of the concentration of insulin. In addition, the sandwich-type ECL immunosensor was applied to insulin detection, and the ECL decrease efficiency was found to be logarithmically related to the concentration of the insulin antigen in the range of 0.0025 to 50 ng mL-1 with the limit of detection of 0.001 ng mL-1. Meanwhile, this work provides an important reference for the application of metal-organic frameworks in the ECL and ECL-RET study and also exhibits potential capability in the detection of other hormones.
Collapse
Affiliation(s)
- Guanhui Zhao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , PR China
| | - Yaoguang Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , PR China
| | - Xiaojian Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , PR China
| | - Xue Dong
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , PR China
| | - Huan Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , PR China
| | - Bin Du
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , PR China
| | - Wei Cao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , PR China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan 250022 , PR China
| |
Collapse
|
30
|
Valenti G, Rampazzo E, Kesarkar S, Genovese D, Fiorani A, Zanut A, Palomba F, Marcaccio M, Paolucci F, Prodi L. Electrogenerated chemiluminescence from metal complexes-based nanoparticles for highly sensitive sensors applications. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.04.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
31
|
Pu G, Zhang D, Mao X, Zhang Z, Wang H, Ning X, Lu X. Biomimetic Interfacial Electron-Induced Electrochemiluminesence. Anal Chem 2018; 90:5272-5279. [DOI: 10.1021/acs.analchem.8b00165] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Guiqiang Pu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People’s Republic of China
| | - Dongxu Zhang
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People’s Republic of China
| | - Xiang Mao
- Tianjin Key Laboratory of Molecular Optoelectronic, Department of Chemistry, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Zhen Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic, Department of Chemistry, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Huan Wang
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People’s Republic of China
| | - Xingming Ning
- Tianjin Key Laboratory of Molecular Optoelectronic, Department of Chemistry, Tianjin University, Tianjin 300072, People’s Republic of China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People’s Republic of China
- Tianjin Key Laboratory of Molecular Optoelectronic, Department of Chemistry, Tianjin University, Tianjin 300072, People’s Republic of China
| |
Collapse
|
32
|
Pan A, Jurow M, Zhao Y, Qiu F, Liu Y, Yang J, Urban JJ, He L, Liu Y. Templated self-assembly of one-dimensional CsPbX 3 perovskite nanocrystal superlattices. NANOSCALE 2017; 9:17688-17693. [PMID: 29119991 DOI: 10.1039/c7nr06579e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Ordered self-assembled arrays or superstructures of nanocrystals (NCs) have attracted intense research interest due to their ability to translate valuable nanoscale properties to larger length scales. Numerous techniques have been explored to induce self-assembly into various superstructures. Here we investigated a simple kinetic approach to form self-assembled one-dimensional perovskite CsPbX3 (X: halides) nanocrystal arrays templated inside a pod shaped inert lead sulfate (PbSO4) scaffold. Both the solvent effects, and the self-assembly process and mechanism, are systematically studied based on a uniform procedure developed to generate CsPbX3 nanocrystal superlattices with different sizes and compositions. The formation of one-dimensional (1D) chains of NCs within a half-cylindrical pod of PbSO4 reflects a balance between solvophobicity and solvophilicity of the components. By reducing the size of NCs, we successfully realized 2D superlattices with two or three rows of close-packed CsPbBr3 NCs, in addition to single string-of-pearl type 1D assemblies. The superlattices can be assembled both inside and outside of the half-cylindrical shells by regulating the reaction conditions. The self-assembly behavior is reminiscent of the host-guest systems of organic molecular species where supramolecular recognition rules apply to give well-defined complexes. The current study opens a door for controlling self-assembled nanostructures of CsPbX3 NCs, and provides an attainable platform for future optoelectronic devices.
Collapse
Affiliation(s)
- Aizhao Pan
- Department of Chemistry, School of Science, Xi'an Jiaotong University, Xianning West Road, 28, Xi'an, 710049, China.
| | | | | | | | | | | | | | | | | |
Collapse
|