1
|
Yang X, Li Y, Zhang P, Guo L, Li X, Shu Y, Jiang K, Hou Y, Jing L, Jiao M. Building in biologically appropriate multifunctionality in aqueous copper indium selenide-based quantum dots. NANOSCALE 2023; 15:13603-13616. [PMID: 37555299 DOI: 10.1039/d3nr02385k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Advanced nanoplatforms equipped with different functional moieties for theranostics hold appealing promise for reshaping precision medicine. The reliable construction of an individual nanomaterial with intrinsic near-infrared (NIR) photofunction and magnetic domains is much desired but largely unexplored in a direct aqueous synthesis system. Herein, we develop an aqueous phase synthetic strategy for Mn2+ doping of ZnS shell grown on Zn-Cu-In-Se core quantum dots (ZCISe@ZnS:Mn QDs), providing the optimal NIR fluorescence quantum efficiency of up to 18.9% and meanwhile efficiently introducing paramagnetic domains. The relaxometric properties of the water-soluble Mn-doped QDs make them desirable for both the longitudinal and transverse (T1 and T2) magnetic resonance (MR) contrast enhancement due to the shell lattice-doped Mn2+ ions with slow tumbling rates and favoured spin-proton dipolar interactions with surrounding water molecules. Surprisingly, the incorporation of Mn2+ ions into the shell is found to significantly enhance the production of reactive oxygen species (ROS) by combining both the chemodynamic and photodynamic processes upon NIR light irradiation, showing great potential for efficient photo-assisted ablation of cancer cells. Furthermore, a broad-spectrum excitation range beneficial for bright NIR fluorescence imaging of breast cancer has been proven and offers high flexibility in the choice of incident light sources. Multiparametric MR imaging of the brain has also been successfully demonstrated in vivo.
Collapse
Affiliation(s)
- Xiling Yang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao 266042, China.
| | - Yun Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao 266042, China.
| | - Peisen Zhang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China.
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10029, China
| | - Lingfei Guo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao 266042, China.
| | - Xiaoqi Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao 266042, China.
| | - Yiyang Shu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao 266042, China.
| | - Kuiyu Jiang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao 266042, China.
| | - Yi Hou
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10029, China
| | - Lihong Jing
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China.
| | - Mingxia Jiao
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao 266042, China.
| |
Collapse
|
2
|
Lv Y, Fan J, Zhao M, Wu R, Li LS. Recent advances in quantum dot-based fluorescence-linked immunosorbent assays. NANOSCALE 2023; 15:5560-5578. [PMID: 36866747 DOI: 10.1039/d2nr07247e] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Fluorescence immunoassays have been given considerable attention among the quantitative detection methods in the clinical medicine and food safety testing fields. In particular, semiconductor quantum dots (QDs) have become ideal fluorescent probes for highly sensitive and multiplexed detection due to their unique photophysical properties, and the QD fluorescence-linked immunosorbent assay (FLISA) with high sensitivity, high accuracy, and high throughput has been greatly developed recently. In this manuscript, the advantages of applying QDs to FLISA platforms and some strategies for their application to in vitro diagnostics and food safety are discussed. Given the rapid development of this field, we classify these strategies based on the combination of QD types and detection targets, including traditional QDs or QD micro/nano-spheres-FLISA, and multiple FLISA platforms. In addition, some new sensors based on the QD-FLISA are introduced; this is one of the hot spots in this field. The current focus and future direction of QD-FLISA are also discussed, which provides important guidance for the further development of FLISA.
Collapse
Affiliation(s)
- Yanbing Lv
- Key Lab for Special Functional Materials of the Ministry of Education, and School of Materials, Henan University, Kaifeng, 475004, China.
| | - Jinjin Fan
- Key Lab for Special Functional Materials of the Ministry of Education, and School of Materials, Henan University, Kaifeng, 475004, China.
| | - Man Zhao
- Key Lab for Special Functional Materials of the Ministry of Education, and School of Materials, Henan University, Kaifeng, 475004, China.
| | - Ruili Wu
- Key Lab for Special Functional Materials of the Ministry of Education, and School of Materials, Henan University, Kaifeng, 475004, China.
| | - Lin Song Li
- Key Lab for Special Functional Materials of the Ministry of Education, and School of Materials, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
3
|
Xu YQ, Zang LY, Gao HY, Peng J, Zheng DY, Liu C, Liu XJ, Cheng DB, Zhu CN. Cu-In-S/ZnS:Gd 3+ quantum dots with isolated fluorescent and paramagnetic modules for dual-modality imaging in vivo. Colloids Surf B Biointerfaces 2023; 223:113158. [PMID: 36731268 DOI: 10.1016/j.colsurfb.2023.113158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/07/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
Gd3+-doped quantum dots (QDs) have been widely used as small-sized bifunctional contrast agents for fluorescence/magnetic resonance (FL/MR) dual-modality imaging. However, Gd3+ doping will always compromise the FL of host QDs. Therefore, balancing the Gd3+ doping and the optical properties of QDs is crucial for constructing high-performance bifunctional nanoprobes. Additionally, most paramagnetic QDs are synthesized in the organic phase and need to be transferred to the aqueous phase for bioimaging. Herein, ingeniously designed shell-doped Cu-In-S/ZnS:Gd3+ QDs have been prepared in the aqueous phase. It has been demonstrated that isolating paramagnetic Gd3+ from fluorescent Cu-In-S core via doping Gd3+ into ZnS shell not only avoided the decrease of FL quantum yield (QY), but also ensured the water accessibility of paramagnetic Gd3+ ions, by which the FL QY and r1 relaxivity of Cu-In-S/ZnS:Gd3+ QDs achieved as much as 15.6% and 15.33 mM-1·s-1, respectively. These high-performance QDs with excellent stability, low biotoxicity, and good tumor permeability were successfully applied for in vivo tumor FL/MR dual-modality imaging, and have shown significant potential in the precision detection and diagnosis of diseases.
Collapse
Affiliation(s)
- Yong-Qiang Xu
- College of Biomedical Engineering, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, and Key Laboratory of Brain Cognitive Science (State Ethnic Affairs Commission), South-Central Minzu University, Wuhan 430074, China
| | - Liu-Yuan Zang
- College of Biomedical Engineering, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, and Key Laboratory of Brain Cognitive Science (State Ethnic Affairs Commission), South-Central Minzu University, Wuhan 430074, China
| | - Hai-Yu Gao
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan 430070, China
| | - Jin Peng
- Hubei Research Institute of Products Quality Supervision and Inspection, Wuchang District, Wuhan 430070, China
| | - Dong-Yun Zheng
- College of Biomedical Engineering, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, and Key Laboratory of Brain Cognitive Science (State Ethnic Affairs Commission), South-Central Minzu University, Wuhan 430074, China
| | - Chao Liu
- College of Biomedical Engineering, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, and Key Laboratory of Brain Cognitive Science (State Ethnic Affairs Commission), South-Central Minzu University, Wuhan 430074, China
| | - Xiao-Jun Liu
- College of Biomedical Engineering, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, and Key Laboratory of Brain Cognitive Science (State Ethnic Affairs Commission), South-Central Minzu University, Wuhan 430074, China
| | - Dong-Bing Cheng
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan 430070, China.
| | - Chun-Nan Zhu
- College of Biomedical Engineering, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, and Key Laboratory of Brain Cognitive Science (State Ethnic Affairs Commission), South-Central Minzu University, Wuhan 430074, China.
| |
Collapse
|
4
|
Zhou W, Hu Z, Wei J, Dai H, Chen Y, Liu S, Duan Z, Xie F, Zhang W, Guo R. Quantum dots-hydrogel composites for biomedical applications. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
5
|
Galiyeva P, Rinnert H, Bouguet-Bonnet S, Leclerc S, Balan L, Alem H, Blanchard S, Jasniewski J, Medjahdi G, Uralbekov B, Schneider R. Mn-Doped Quinary Ag-In-Ga-Zn-S Quantum Dots for Dual-Modal Imaging. ACS OMEGA 2021; 6:33100-33110. [PMID: 34901661 PMCID: PMC8655898 DOI: 10.1021/acsomega.1c05441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Doping of transition metals within a semiconductor quantum dot (QD) has a high impact on the optical and magnetic properties of the QD. In this study, we report the synthesis of Mn2+-doped Ag-In-Ga-Zn-S (Mn:AIGZS) QDs via thermolysis of a dithiocarbamate complex of Ag+, In3+, Ga3+, and Zn2+ and of Mn(stearate)2 in oleylamine. The influence of the Mn2+ loading on the photoluminescence (PL) and magnetic properties of the dots are investigated. Mn:AIGZS QDs exhibit a diameter of ca. 2 nm, a high PL quantum yield (up to 41.3% for a 2.5% doping in Mn2+), and robust photo- and colloidal stabilities. The optical properties of Mn:AIGZS QDs are preserved upon transfer into water using the glutathione tetramethylammonium ligand. At the same time, Mn:AIGZS QDs exhibit high relaxivity (r 1 = 0.15 mM-1 s-1 and r 2 = 0.57 mM-1 s-1 at 298 K and 2.34 T), which shows their potential applicability for bimodal PL/magnetic resonance imaging (MRI) probes.
Collapse
Affiliation(s)
| | - Hervé Rinnert
- Université
de Lorraine, CNRS, IJL, F-54000 Nancy, France
| | | | | | - Lavinia Balan
- CEMHTI-UPR
3079 CNRS, Site Haute Température, 1D Avenue de la Recherche Scientifique, 45071 Orléans, France
| | - Halima Alem
- Université
de Lorraine, CNRS, IJL, F-54000 Nancy, France
| | - Sébastien Blanchard
- Sorbonne
Université, CNRS, Institut Parisien de Chimie Moléculaire,
IPCM, F-75005 Paris, France
| | | | | | - Bolat Uralbekov
- Center
of Physical-Chemical Methods of Research and Analysis, Al-Farabi Kazakh National University, Al-Farabi Avenue, 71, 050040 Almaty, Kazakhstan
- LLP
≪EcoRadSM≫, Al-Farabi Avenue, 71, 050040 Almaty, Kazakhstan
| | - Raphaël Schneider
- Laboratoire
Réactions et Génie des Procédés, Université de Lorraine, 54000 Nancy, France
| |
Collapse
|
6
|
Morselli G, Villa M, Fermi A, Critchley K, Ceroni P. Luminescent copper indium sulfide (CIS) quantum dots for bioimaging applications. NANOSCALE HORIZONS 2021; 6:676-695. [PMID: 34264247 DOI: 10.1039/d1nh00260k] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Copper indium sulfide (CIS) quantum dots are ideal for bioimaging applications, by being characterized by high molar absorption coefficients throughout the entire visible spectrum, high photoluminescence quantum yield, high tolerance to the presence of lattice defects, emission tunability from the red to the near-infrared spectral region by changing their dimensions and composition, and long lifetimes (hundreds of nanoseconds) enabling time-gated detection to increase signal-to-noise ratio. The present review collects: (i) the most common procedures used to synthesize stable CIS QDs and the possible strategies to enhance their colloidal stability in aqueous environment, a property needed for bioimaging applications; (ii) their photophysical properties and parameters that affect the energy and brightness of their photoluminescence; (iii) toxicity and bioimaging applications of CIS QDs, including tumor targeting, time-gated detection and multimodal imaging, as well as theranostics. Future perspectives are analyzed in view of advantages and potential limitations of CIS QDs compared to most traditional QDs.
Collapse
Affiliation(s)
- Giacomo Morselli
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Bologna, 40126, Italy.
| | | | | | | | | |
Collapse
|
7
|
Sun B, Zhen X, Jiang X. Development of mesoporous silica-based nanoprobes for optical bioimaging applications. Biomater Sci 2021; 9:3603-3620. [PMID: 34008597 DOI: 10.1039/d1bm00204j] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A mesoporous silica nanoparticle (MSN)-based nanoplatform has attracted growing attention in the biomedical field due to the unique characteristics of MSNs including a high surface area, tunable pore sizes, colloidal stability, ease of functionalization, and desirable biocompatibility. Typically, MSNs are designed as nanocarriers for the incorporation of a variety of contrast agents for bioimaging, which can address the intrinsic drawbacks of contrast agents, including poor solubility in water, rapid photobleaching, and low stability. This review summarizes the recent advances in the field of MSN-based nanoprobes for fluorescence imaging and photoacoustic (PA) imaging applications. The approaches for the incorporation of contrast agents into MSN-based nanoplatforms including encapsulating contrast agents within MSNs, covalently conjugating contrast agents on the surface or pores of MSNs, physically absorbing contrast agents in the pores of MSNs, and doping contrast agents in the framework of MSNs are introduced. MSN-based nanoprobes for fluorescence imaging and PA imaging are discussed. The enhanced fluorescence imaging and PA imaging performances of MSN-based nanoprobes relative to the bare contrast agents are introduced and the underlying mechanisms are discussed in detail. Finally, current challenges and perspectives of MSN-based nanoprobes in the bioimaging field are discussed.
Collapse
Affiliation(s)
- Bo Sun
- College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China. and Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260
| | - Xu Zhen
- College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China.
| | - Xiqun Jiang
- College of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China.
| |
Collapse
|
8
|
Chen L, Xia B, Yan B, Liu J, Miao Z, Ma Y, Wang J, Peng H, He T, Zha Z. Ultrasound lighting up AIEgens for potential surgical navigation. J Mater Chem B 2021; 9:3317-3325. [PMID: 33666636 DOI: 10.1039/d0tb02832k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Multifunctional contrast-enhanced agents suitable for application in surgical navigation by taking advantage of the merits of their diverse imaging modalities at different surgical stages are highly sought-after. Herein, an amphipathic polymer composed of aggregation-induced emission fluorogens (AIEgens) and Gd3+ chelates was successfully synthesized and assembled into ultrasound responsive microbubbles (AIE-Gd MBs) to realize potential tri-modal contrast-enhanced ultrasound (US) imaging, magnetic resonance imaging (MRI), and AIEgen-based fluorescence imaging (FI) during the perioperative period. Through ultrasound targeted microbubble destruction (UTMD) and cavitation effect, the as-prepared AIE-Gd MBs went through a MBs-to-nanoparticles (NPs) conversion, which not only resulted in targeted accumulation in tumor tissues but also led to stronger fluorescence being exhibited due to the more aggregated AIE-Gd molecules in the NPs. As a proof-of-concept, our work proposes a strategy of US-lit-up AIEgens in tumors which could offer a simple and powerful tool for surgical navigation in the future.
Collapse
Affiliation(s)
- Lixiu Chen
- School of Food and Biological Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Albuquerque GM, Souza-Sobrinha I, Coiado SD, Santos BS, Fontes A, Pereira GAL, Pereira G. Quantum Dots and Gd 3+ Chelates: Advances and Challenges Towards Bimodal Nanoprobes for Magnetic Resonance and Optical Imaging. Top Curr Chem (Cham) 2021; 379:12. [PMID: 33550491 DOI: 10.1007/s41061-021-00325-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/15/2021] [Indexed: 10/22/2022]
Abstract
The development of multimodal nanoprobes has been growing in recent years. Among these novel nanostructures are bimodal systems based on quantum dots (QDs) and low molecular weight Gd3+ chelates, prepared for magnetic resonance imaging (MRI) and optical analyses. MRI is a technique used worldwide that provides anatomic resolution and allows distinguishing of physiological differences at tissue and organ level. On the other hand, optical techniques are very sensitive and allow events to be followed at the cellular or molecular level. Thus, the association of these two techniques has the potential to achieve a more complete comprehension of biological processes. In this review, we present state-of-the-art research concerning the development of potential multimodal optical/paramagnetic nanoprobes based on Gd3+ chelates and QDs, highlighting their preparation strategies and overall properties.
Collapse
Affiliation(s)
- Gabriela M Albuquerque
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, Av. Jornalista Anibal Fernandes, S/N, 50740-560, Recife, Brazil
| | - Izabel Souza-Sobrinha
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, Av. Jornalista Anibal Fernandes, S/N, 50740-560, Recife, Brazil
| | - Samantha D Coiado
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, Av. Jornalista Anibal Fernandes, S/N, 50740-560, Recife, Brazil
| | - Beate S Santos
- Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, Brazil
| | - Adriana Fontes
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - Giovannia A L Pereira
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, Av. Jornalista Anibal Fernandes, S/N, 50740-560, Recife, Brazil.
| | - Goreti Pereira
- Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, Av. Jornalista Anibal Fernandes, S/N, 50740-560, Recife, Brazil.
| |
Collapse
|
10
|
Yang CT, Hattiholi A, Selvan ST, Yan SX, Fang WW, Chandrasekharan P, Koteswaraiah P, Herold CJ, Gulyás B, Aw SE, He T, Ng DCE, Padmanabhan P. Gadolinium-based bimodal probes to enhance T1-Weighted magnetic resonance/optical imaging. Acta Biomater 2020; 110:15-36. [PMID: 32335310 DOI: 10.1016/j.actbio.2020.03.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/29/2022]
Abstract
Gd3+-based contrast agents have been extensively used for signal enhancement of T1-weighted magnetic resonance imaging (MRI) due to the large magnetic moment and long electron spin relaxation time of the paramagnetic Gd3+ ion. The key requisites for the development of Gd3+-based contrast agents are their relaxivities and stabilities which can be achieved by chemical modifications. These modifications include coordinating Gd3+ with a chelator such as diethylenetriamine pentaacetic acid (DTPA) or 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), encapsulating Gd3+ in nanoparticles, conjugation to biomacromolecules such as polymer micelles and liposomes, or non-covalent binding to plasma proteins. In order to have a coherent diagnostic and therapeutic approach and to understand diseases better, the combination of MRI and optical imaging (OI) techniques into one technique entity has been developed to overcome the conventional boundaries of either imaging modality used alone through bringing the excellent spatial resolution of MRI and high sensitivity of OI into full play. Novel MRI and OI bimodal probes have been extensively studied in this regard. This review is an attempt to shed some light on the bimodal imaging probes by summarizing all recent noteworthy publications involving Gd3+ containing MR-optical imaging probes. The several key elements such as novel synthetic strategy, high sensitivity, biocompatibility, and targeting of the probes are highlighted in the review. STATEMENT OF SIGNIFICANCE: The present article aims at giving an overview of the existing bimodal MRI and OI imaging probes. The review structured as a series of examples of paramagnetic Gd3+ ions, either as ions in the crystalline structure of inorganic materials or chelates for contrast enhancement in MRI, while they are used as optical imaging probes in different modes. The comprehensive review focusing on the synthetic strategies, characterizations and properties of these bimodal imaging probes will be helpful in a way to prepare related work.
Collapse
Affiliation(s)
- Chang-Tong Yang
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, 169608, Singapore; Duke-NUS Medical School, 8 College Road, 169857, Singapore.
| | - Aishwarya Hattiholi
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, 636921, Singapore; School of Biological Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Subramanian Tamil Selvan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, 636921, Singapore
| | - Sean Xuexian Yan
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, 169608, Singapore; Duke-NUS Medical School, 8 College Road, 169857, Singapore
| | - Wei-Wei Fang
- School of Chemistry and Chemical Engineering, HeFei University of Technology, HeFei, AnHui 230009, PR China
| | | | - Podili Koteswaraiah
- School of Biological Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Christian J Herold
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna General Hospital, Austria
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, 636921, Singapore; Karolinska Institutet, Department of Clinical Neuroscience, S-171 76, Stockholm, Sweden
| | - Swee Eng Aw
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, 169608, Singapore
| | - Tao He
- School of Chemistry and Chemical Engineering, HeFei University of Technology, HeFei, AnHui 230009, PR China
| | - David Chee Eng Ng
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, 169608, Singapore; Duke-NUS Medical School, 8 College Road, 169857, Singapore
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, 636921, Singapore
| |
Collapse
|
11
|
Quantum Dot Bioconjugates for Diagnostic Applications. Top Curr Chem (Cham) 2020; 378:35. [PMID: 32219574 DOI: 10.1007/s41061-020-0296-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/29/2020] [Indexed: 01/22/2023]
Abstract
Quantum dots (QDs) are a special type of engineered nanomaterials with outstanding optoelectronic properties that make them as a very promising alternative to conventional luminescent dyes in biomedical applications, including biomolecule (BM) targeting, luminescence imaging and drug delivery. A key parameter to ensure successful biomedical applications of QDs is the appropriate surface modification, i.e. the surface of the nanomaterials should be modified with the appropriate functional groups to ensure stability in aqueous solutions and it should be conjugated with recognition elements capable of ensuring an efficient tagging of the BMs of interest. In this review we summarize the most relevant strategies used for surface modification of QDs and for their conjugation to BMs in preparation of their application in nanoplatforms for luminescent BM sensing and imaging-guided targeting. The applications of conjugations of photoluminescent QDs with different BMs in both in vitro and in vivo chemical sensing, immunoassays or luminescence imaging are reviewed. Recent progress in the application of functionalized QDs in ultrasensitive detection in bioanalysis, diagnostics and imaging strategies are reported. Finally, some key future research goals in the progress of bioconjugation of QDs for diagnosis are identified, including novel synthetic approaches, the need for exhaustive characterization of bioconjugates and the design of signal amplification schemes.
Collapse
|
12
|
Huangfu X, Shen Y, Yang A, Liu L, Luo W, Zhao W. Synthesis of water soluble CuGaS 2/ZnS quantum dots for ultrasensitive fluorescent detection of alkaline phosphatase based on inner filter effect. Colloids Surf B Biointerfaces 2020; 191:110984. [PMID: 32278281 DOI: 10.1016/j.colsurfb.2020.110984] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 12/30/2022]
Abstract
Developing monitoring technique for alkaline phosphatase (ALP) is crucial due to the important role it plays in living cells. Here, a kind of biocompatible glutathione-modified CuGaS2/ZnS quantum dots (GSH-CGS/ZnS QDs) was used as a fluorescent substance and then fabricated "turn-off" fluorescent biosensor for detection of ALP by help of inner filter effect (IFE). Firstly, we prepared CuGaS2/ZnS (CGS/ZnS) QDs using solvothermal method and explored the efficient ligand (GSH) exchanges strategy for transferring oil-soluble CGS/ZnS QDs to aqueous phase. More importantly, we also explored the potential biological applications of the nanohybrid QDs. The obtained GSH-CGS/ZnS QDs emitted strong yellow fluorescence with the maximum excitation (400 nm) and emission (601 nm). Then, GSH-CGS/ZnS QDs were mixed with p-nitrophenylphosphate (PNPP) and ALP. PNPP could be hydrolyzed to p-nitrophenol (PNP) by help of catalysis of ALP, and the excitation spectrum of the GSH-CGS/ZnS QDs overlapped well with the absorption spectrum of PNP, so the fluorescence of GSH-CGS/ZnS QDs was initially quenched via the so-called "IFE". Finally, a novel "turn-off" biosensor for sensitive detection of ALP in the range of 0.05-10 U L -1(R2 = 0.98) with a detection limit of 0.01 U L-1 was successfully obtained. Results indicated that I-III-VI2 nanocrystals have great potential for their promising biomedical application.
Collapse
Affiliation(s)
- Xiaoxia Huangfu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yang Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Anzi Yang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Lixiao Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Wen Luo
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Wenbo Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
13
|
Xia B, Yan X, Fang WW, Chen S, Jiang Z, Wang J, Sun TC, Li Q, Li Z, Lu Y, He T, Cao B, Yang CT. Activatable Cell-Penetrating Peptide Conjugated Polymeric Nanoparticles with Gd-Chelation and Aggregation-Induced Emission for Bimodal MR and Fluorescence Imaging of Tumors. ACS APPLIED BIO MATERIALS 2020; 3:1394-1405. [DOI: 10.1021/acsabm.9b01049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Bin Xia
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, People’s Republic of China
| | - Xu Yan
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, People’s Republic of China
| | - Wei-Wei Fang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, People’s Republic of China
| | - Sheng Chen
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, People’s Republic of China
| | - ZhiLin Jiang
- Centre for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, People’s Republic of China
| | - JinChen Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, People’s Republic of China
| | - Tian-Ci Sun
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, People’s Republic of China
| | - Qing Li
- The Central Laboratory of Medical Research Centre, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230009, People’s Republic of China
| | - Zhen Li
- Centre for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, People’s Republic of China
| | - Yang Lu
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, People’s Republic of China
| | - Tao He
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, People’s Republic of China
| | - BaoQiang Cao
- Department of General Surgery, Anhui No. 2 Provincial People’s Hospital, Hefei, Anhui 230041, People’s Republic of China
| | - Chang-Tong Yang
- Department of Nuclear Medicine and Molecular Imaging, Radiological Sciences Division, Singapore General Hospital, Outram Road, Singapore 169608
- Duke-NUS Medical School, 8 College Road, Singapore 169857
| |
Collapse
|
14
|
Huang WT, Yoon SY, Wu BH, Lu KM, Lin CM, Yang H, Liu RS. Ultra-broadband near-infrared emission CuInS2/ZnS quantum dots with high power efficiency and stability for the theranostic applications of mini light-emitting diodes. Chem Commun (Camb) 2020; 56:8285-8288. [DOI: 10.1039/d0cc03030a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Broadband near-infrared CuInS2/ZnS quantum with up to 94.8% quantum yield was synthesized with fast precursor decomposition. The better power efficiency and stability of CuInS2/ZnS mini-LED were performed with penetration tests and vein imaging.
Collapse
Affiliation(s)
- Wen-Tse Huang
- Department of Chemistry and Advanced Research Center of Green Materials Science and Technology
- National Taiwan University
- Taipei 106
- Taiwan
| | - Suk-Young Yoon
- Department of Materials Science and Engineering
- Hongik University
- Seoul
- Republic of Korea
| | - Bo-Han Wu
- Everlight Electronics Co., Ltd
- New Taipei City 238
- Taiwan
| | - Kuang-Mao Lu
- Everlight Electronics Co., Ltd
- New Taipei City 238
- Taiwan
| | - Chih-Min Lin
- Everlight Electronics Co., Ltd
- New Taipei City 238
- Taiwan
| | - Heesun Yang
- Department of Materials Science and Engineering
- Hongik University
- Seoul
- Republic of Korea
| | - Ru-Shi Liu
- Department of Chemistry and Advanced Research Center of Green Materials Science and Technology
- National Taiwan University
- Taipei 106
- Taiwan
| |
Collapse
|
15
|
Pellico J, Ellis CM, Davis JJ. Nanoparticle-Based Paramagnetic Contrast Agents for Magnetic Resonance Imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:1845637. [PMID: 31191182 PMCID: PMC6525923 DOI: 10.1155/2019/1845637] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/04/2019] [Indexed: 12/31/2022]
Abstract
Magnetic resonance imaging (MRI) is a noninvasive medical imaging modality that is routinely used in clinics, providing anatomical information with micron resolution, soft tissue contrast, and deep penetration. Exogenous contrast agents increase image contrast by shortening longitudinal (T 1) and transversal (T 2) relaxation times. Most of the T 1 agents used in clinical MRI are based on paramagnetic lanthanide complexes (largely Gd-based). In moving to translatable formats of reduced toxicity, greater chemical stability, longer circulation times, higher contrast, more controlled functionalisation and additional imaging modalities, considerable effort has been applied to the development of nanoparticles bearing paramagnetic ions. This review summarises the most relevant examples in the synthesis and biomedical applications of paramagnetic nanoparticles as contrast agents for MRI and multimodal imaging. It includes the most recent developments in the field of production of agents with high relaxivities, which are key for effective contrast enhancement, exemplified through clinically relevant examples.
Collapse
Affiliation(s)
- Juan Pellico
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Connor M. Ellis
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Jason J. Davis
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| |
Collapse
|
16
|
Pereira MIA, Pereira G, Monteiro CAP, Geraldes CFGC, Cabral Filho PE, Cesar CL, de Thomaz AA, Santos BS, Pereira GAL, Fontes A. Hydrophilic Quantum Dots Functionalized with Gd(III)-DO3A Monoamide Chelates as Bright and Effective T 1-weighted Bimodal Nanoprobes. Sci Rep 2019; 9:2341. [PMID: 30787475 PMCID: PMC6382838 DOI: 10.1038/s41598-019-38772-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/09/2019] [Indexed: 12/29/2022] Open
Abstract
Magnetic resonance imaging (MRI) is a powerful non-invasive diagnostic tool that enables distinguishing healthy from pathological tissues, with high anatomical detail. Nevertheless, MRI is quite limited in the investigation of molecular/cellular biochemical events, which can be reached by fluorescence-based techniques. Thus, we developed bimodal nanosystems consisting in hydrophilic quantum dots (QDs) directly conjugated to Gd(III)-DO3A monoamide chelates, a Gd(III)-DOTA derivative, allowing for the combination of the advantages of both MRI and fluorescence-based tools. These nanoparticulate systems can also improve MRI contrast, by increasing the local concentration of paramagnetic chelates. Transmetallation assays, optical characterization, and relaxometric analyses, showed that the developed bimodal nanoprobes have great chemical stability, bright fluorescence, and high relaxivities. Moreover, fluorescence correlation spectroscopy (FCS) analysis allowed us to distinguish nanosystems containing different amounts of chelates/QD. Also, inductively coupled plasma optical emission spectrometry (ICP - OES) indicated a conjugation yield higher than 75%. Our nanosystems showed effective longitudinal relaxivities per QD and per paramagnetic ion, at least 5 times [per Gd(III)] and 100 times (per QD) higher than the r1 for Gd(III)-DOTA chelates, suitable for T1-weighted imaging. Additionally, the bimodal nanoparticles presented negligible cytotoxicity, and efficiently labeled HeLa cells as shown by fluorescence. Thus, the developed nanosystems show potential as strategic probes for fluorescence analyses and MRI, being useful for investigating a variety of biological processes.
Collapse
Affiliation(s)
- Maria I A Pereira
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Goreti Pereira
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Camila A P Monteiro
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Carlos F G C Geraldes
- Departamento de Ciências da Vida, Faculdade de Ciência e Tecnologia, Universidade de Coimbra, Coimbra, Portugal
- Centro de Química de Coimbra, Universidade de Coimbra, Coimbra, Portugal
| | - Paulo E Cabral Filho
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Carlos L Cesar
- Departamento de Física, Universidade Federal do Ceará, Fortaleza, CE, Brazil
- Departamento de Eletrônica Quântica, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - André A de Thomaz
- Departamento de Eletrônica Quântica, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Beate S Santos
- Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Giovannia A L Pereira
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| | - Adriana Fontes
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
17
|
Bai X, Purcell-Milton F, Gun'ko YK. Optical Properties, Synthesis, and Potential Applications of Cu-Based Ternary or Quaternary Anisotropic Quantum Dots, Polytypic Nanocrystals, and Core/Shell Heterostructures. NANOMATERIALS 2019; 9:nano9010085. [PMID: 30634642 PMCID: PMC6359286 DOI: 10.3390/nano9010085] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/28/2018] [Accepted: 12/31/2018] [Indexed: 12/29/2022]
Abstract
This review summaries the optical properties, recent progress in synthesis, and a range of applications of luminescent Cu-based ternary or quaternary quantum dots (QDs). We first present the unique optical properties of the Cu-based multicomponent QDs, regarding their emission mechanism, high photoluminescent quantum yields (PLQYs), size-dependent bandgap, composition-dependent bandgap, broad emission range, large Stokes’ shift, and long photoluminescent (PL) lifetimes. Huge progress has taken place in this area over the past years, via detailed experimenting and modelling, giving a much more complete understanding of these nanomaterials and enabling the means to control and therefore take full advantage of their important properties. We then fully explore the techniques to prepare the various types of Cu-based ternary or quaternary QDs (including anisotropic nanocrystals (NCs), polytypic NCs, and spherical, nanorod and tetrapod core/shell heterostructures) are introduced in subsequent sections. To date, various strategies have been employed to understand and control the QDs distinct and new morphologies, with the recent development of Cu-based nanorod and tetrapod structure synthesis highlighted. Next, we summarize a series of applications of these luminescent Cu-based anisotropic and core/shell heterostructures, covering luminescent solar concentrators (LSCs), bioimaging and light emitting diodes (LEDs). Finally, we provide perspectives on the overall current status, challenges, and future directions in this field. The confluence of advances in the synthesis, properties, and applications of these Cu-based QDs presents an important opportunity to a wide-range of fields and this piece gives the reader the knowledge to grasp these exciting developments.
Collapse
Affiliation(s)
- Xue Bai
- School of Chemistry and CRANN Institute, Trinity College Dublin, Dublin 2, Dublin, Ireland.
| | - Finn Purcell-Milton
- School of Chemistry and CRANN Institute, Trinity College Dublin, Dublin 2, Dublin, Ireland.
| | - Yuri K Gun'ko
- School of Chemistry and CRANN Institute, Trinity College Dublin, Dublin 2, Dublin, Ireland.
| |
Collapse
|
18
|
Hameed S, Chen H, Irfan M, Bajwa SZ, Khan WS, Baig SM, Dai Z. Fluorescence Guided Sentinel Lymph Node Mapping: From Current Molecular Probes to Future Multimodal Nanoprobes. Bioconjug Chem 2018; 30:13-28. [DOI: 10.1021/acs.bioconjchem.8b00812] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sadaf Hameed
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Hong Chen
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Muhammad Irfan
- Department of Medicines, Gujranwala Medical College, Gujranwala 52250, Pakistan
| | - Sadia Zafar Bajwa
- National Institute of Biotechnology and Genetic Engineering, Faisalabad 38000, Pakistan
| | - Waheed S Khan
- National Institute of Biotechnology and Genetic Engineering, Faisalabad 38000, Pakistan
| | - Shahid Mahmood Baig
- National Institute of Biotechnology and Genetic Engineering, Faisalabad 38000, Pakistan
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
19
|
Lv R, Feng M, Xiao L, Damasco JA, Tian J, Prasad PN. Multilevel Nanoarchitecture Exhibiting Biosensing for Cancer Diagnostics by Dual-Modal Switching of Optical and Magnetic Resonance Signals. ACS APPLIED BIO MATERIALS 2018; 1:1505-1511. [DOI: 10.1021/acsabm.8b00429] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Ruichan Lv
- Institute for Lasers, Photonics, and Biophotonics and Department of Chemistry, University at Buffalo, the State University of New York, Buffalo, New York 14260, United States
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shanxi 710071, China
| | - Miao Feng
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shanxi 710071, China
| | - Liyang Xiao
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shanxi 710071, China
| | - Jossana A. Damasco
- Institute for Lasers, Photonics, and Biophotonics and Department of Chemistry, University at Buffalo, the State University of New York, Buffalo, New York 14260, United States
| | - Jie Tian
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shanxi 710071, China
| | - Paras N. Prasad
- Institute for Lasers, Photonics, and Biophotonics and Department of Chemistry, University at Buffalo, the State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
20
|
Guan X, Lu B, Jin Q, Li Z, Wang L, Wang K, Lai S, Lei Z. AIE-Active Fluorescent Nonconjugated Polymer Dots for Dual-Alternating-Color Live Cell Imaging. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b03776] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Xiaolin Guan
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P.R. China
| | - Baocui Lu
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P.R. China
| | - Qijun Jin
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P.R. China
| | - Zhifei Li
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P.R. China
| | - Lin Wang
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P.R. China
| | - Kailong Wang
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P.R. China
| | - Shoujun Lai
- School of Chemical Engineering, Lanzhou University of Arts and Science, Lanzhou, Gansu 730070, P.R. China
| | - Ziqiang Lei
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P.R. China
| |
Collapse
|
21
|
Xia C, Wu W, Yu T, Xie X, van Oversteeg C, Gerritsen HC, de Mello Donega C. Size-Dependent Band-Gap and Molar Absorption Coefficients of Colloidal CuInS 2 Quantum Dots. ACS NANO 2018; 12:8350-8361. [PMID: 30085648 PMCID: PMC6117745 DOI: 10.1021/acsnano.8b03641] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The knowledge of the quantum dot (QD) concentration in a colloidal suspension and the quantitative understanding of the size-dependence of the band gap of QDs are of crucial importance from both applied and fundamental viewpoints. In this work, we investigate the size-dependence of the optical properties of nearly spherical wurtzite (wz) CuInS2 (CIS) QDs in the 2.7 to 6.1 nm diameter range (polydispersity ≤10%). The QDs are synthesized by partial Cu+ for In3+ cation exchange in template Cu2- xS nanocrystals, which yields CIS QDs with very small composition variations (In/Cu = 0.91 ± 0.11), regardless of their sizes. These well-defined QDs are used to investigate the size-dependence of the band gap of wz CIS QDs. A sizing curve is also constructed for chalcopyrite CIS QDs by collecting and reanalyzing literature data. We observe that both sizing curves follow primarily a 1/ d dependence. Moreover, the molar absorption coefficients and the absorption cross-section per CIS formula unit, both at 3.1 eV and at the band gap, are analyzed. The results demonstrate that the molar absorption coefficients of CIS QDs follow a power law at the first exciton transition energy (ε E1 = 5208 d2.45) and scale with the QD volume at 3.1 eV. This latter observation implies that the absorption cross-section per unit cell at 3.1 eV is size-independent and therefore can be estimated from bulk optical constants. These results also demonstrate that the molar absorption coefficients at 3.1 eV are more reliable for analytical purposes, since they are less sensitive to size and shape dispersion.
Collapse
Affiliation(s)
- Chenghui Xia
- Condensed
Matter and Interfaces, Debye Institute for
Nanomaterials Science, Utrecht University, 3508 TA Utrecht, The Netherlands
- Molecular
Biophysics, Debye Institute for Nanomaterials
Science, Utrecht University, 3508 TA Utrecht, The Netherlands
| | - Weiwei Wu
- Condensed
Matter and Interfaces, Debye Institute for
Nanomaterials Science, Utrecht University, 3508 TA Utrecht, The Netherlands
| | - Ting Yu
- Condensed
Matter and Interfaces, Debye Institute for
Nanomaterials Science, Utrecht University, 3508 TA Utrecht, The Netherlands
| | - Xiaobin Xie
- Soft
Condensed Matter, Debye Institute for Nanomaterials
Science, Utrecht University, 3508 TA Utrecht, The Netherlands
| | - Christina van Oversteeg
- Condensed
Matter and Interfaces, Debye Institute for
Nanomaterials Science, Utrecht University, 3508 TA Utrecht, The Netherlands
| | - Hans C. Gerritsen
- Molecular
Biophysics, Debye Institute for Nanomaterials
Science, Utrecht University, 3508 TA Utrecht, The Netherlands
| | - Celso de Mello Donega
- Condensed
Matter and Interfaces, Debye Institute for
Nanomaterials Science, Utrecht University, 3508 TA Utrecht, The Netherlands
- E-mail:
| |
Collapse
|
22
|
Berends AC, van der Stam W, Hofmann JP, Bladt E, Meeldijk JD, Bals S, de Mello Donega C. Interplay between Surface Chemistry, Precursor Reactivity, and Temperature Determines Outcome of ZnS Shelling Reactions on CuInS 2 Nanocrystals. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2018; 30:2400-2413. [PMID: 29657360 PMCID: PMC5895981 DOI: 10.1021/acs.chemmater.8b00477] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/23/2018] [Indexed: 05/05/2023]
Abstract
ZnS shelling of I-III-VI2 nanocrystals (NCs) invariably leads to blue-shifts in both the absorption and photoluminescence spectra. These observations imply that the outcome of ZnS shelling reactions on I-III-VI2 colloidal NCs results from a complex interplay between several processes taking place in solution, at the surface of, and within the seed NC. However, a fundamental understanding of the factors determining the balance between these different processes is still lacking. In this work, we address this need by investigating the impact of precursor reactivity, reaction temperature, and surface chemistry (due to the washing procedure) on the outcome of ZnS shelling reactions on CuInS2 NCs using a seeded growth approach. We demonstrate that low reaction temperatures (150 °C) favor etching, cation exchange, and alloying regardless of the precursors used. Heteroepitaxial shell overgrowth becomes the dominant process only if reactive S- and Zn-precursors (S-ODE/OLAM and ZnI2) and high reaction temperatures (210 °C) are used, although a certain degree of heterointerfacial alloying still occurs. Remarkably, the presence of residual acetate at the surface of CIS seed NCs washed with ethanol is shown to facilitate heteroepitaxial shell overgrowth, yielding for the first time CIS/ZnS core/shell NCs displaying red-shifted absorption spectra, in agreement with the spectral shifts expected for a type-I band alignment. The insights provided by this work pave the way toward the design of improved synthesis strategies to CIS/ZnS core/shell and alloy NCs with tailored elemental distribution profiles, allowing precise tuning of the optoelectronic properties of the resulting materials.
Collapse
Affiliation(s)
- Anne C. Berends
- Condensed
Matter and Interfaces, Debye Institute for
Nanomaterials Science, Utrecht University, Post Office Box 80000, 3508 TA Utrecht, The Netherlands
| | - Ward van der Stam
- Condensed
Matter and Interfaces, Debye Institute for
Nanomaterials Science, Utrecht University, Post Office Box 80000, 3508 TA Utrecht, The Netherlands
| | - Jan P. Hofmann
- Laboratory
of Inorganic Materials Chemistry, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, Postbox 513, 5600 MB Eindhoven, The Netherlands
| | - Eva Bladt
- EMAT,
Department of Physics, University of Antwerpen, Groenenborgerlaan 171, 2010 Antwerpen, Belgium
| | - Johannes D. Meeldijk
- Electron
Microscopy Utrecht, Debye Institute for
Nanomaterials Science, Utrecht University, 3584 CH Utrecht, Netherlands
| | - Sara Bals
- EMAT,
Department of Physics, University of Antwerpen, Groenenborgerlaan 171, 2010 Antwerpen, Belgium
| | - Celso de Mello Donega
- Condensed
Matter and Interfaces, Debye Institute for
Nanomaterials Science, Utrecht University, Post Office Box 80000, 3508 TA Utrecht, The Netherlands
- E-mail:
| |
Collapse
|
23
|
Liang G, Xiao L. Gd3+-Functionalized gold nanoclusters for fluorescence–magnetic resonance bimodal imaging. Biomater Sci 2017; 5:2122-2130. [DOI: 10.1039/c7bm00608j] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gd3+-Functionalized gold nanoclusters with high relaxivity and excellent biocompatibility are synthesized for optical and MR imaging.
Collapse
Affiliation(s)
- Guohai Liang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science
- College of Biophotonics
- South China Normal University
- Guangzhou 510631
- China
| | - Lifu Xiao
- Department of Chemistry &Biochemistry
- University of Notre Dame
- Notre Dame
- USA
| |
Collapse
|