1
|
Babar V, Sharma S, Shaikh AR, Oliva R, Chawla M, Cavallo L. Sensing Hachimoji DNA Bases with Janus MoSH Monolayer Nanodevice: Insights from Density Functional Theory (DFT) and Non-Equilibrium Green's Function Analysis. ACS OMEGA 2024; 9:48173-48184. [PMID: 39676917 PMCID: PMC11635677 DOI: 10.1021/acsomega.4c05356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024]
Abstract
Detection of nucleobases is of great significance in DNA sequencing, which is one of the main goals of the Human Genome Project. The synthesis of Hachimoji DNA, an artificial genetic system with eight nucleotide bases, has induced a transformative shift in genetic research and biosensing. Here, we present a systematic investigation of the adsorption behavior and electronic transport properties of natural and modified DNA bases on a Janus molybdenum sulfur hydride (MoSH) monolayer using density functional theory (DFT) and nonequilibrium Green's function (NEGF) methods. Our results demonstrate that the S side of the MoSH monolayer is more effective as a sensing platform compared to the H side, which undergoes significant structural distortions due to chemisorption. The S side selectively distinguishes natural bases A and T from G and C, and modified bases S and Z from others. However, the negligible changes in current after base adsorption highlight the limitations of relying solely on current sensitivity for detection. Our findings provide valuable insights into the design of MoSH monolayer-based sensing platforms for selective DNA base detection, with potential applications in next-generation DNA sequencing technologies.
Collapse
Affiliation(s)
- Vasudeo Babar
- Physical
Sciences and Engineering Division, Kaust Catalysis Center, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Sitansh Sharma
- Department
of Research and Innovation, STEMskills Research
and Education Lab Private Limited, Faridabad, Haryana 121002, India
| | - Abdul Rajjak Shaikh
- Department
of Sciences and Technologies, University
Parthenope of Naples, Centro Direzionale Isola C4, Naples 80143, Italy
| | - Romina Oliva
- Department
of Sciences and Technologies, University
Parthenope of Naples, Centro Direzionale Isola C4, Naples 80143, Italy
| | - Mohit Chawla
- Physical
Sciences and Engineering Division, Kaust Catalysis Center, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Luigi Cavallo
- Physical
Sciences and Engineering Division, Kaust Catalysis Center, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
2
|
Kumawat RL, Jena MK, Mittal S, Pathak B. Advancement of Next-Generation DNA Sequencing through Ionic Blockade and Transverse Tunneling Current Methods. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401112. [PMID: 38716623 DOI: 10.1002/smll.202401112] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/05/2024] [Indexed: 10/04/2024]
Abstract
DNA sequencing is transforming the field of medical diagnostics and personalized medicine development by providing a pool of genetic information. Recent advancements have propelled solid-state material-based sequencing into the forefront as a promising next-generation sequencing (NGS) technology, offering amplification-free, cost-effective, and high-throughput DNA analysis. Consequently, a comprehensive framework for diverse sequencing methodologies and a cross-sectional understanding with meticulous documentation of the latest advancements is of timely need. This review explores a broad spectrum of progress and accomplishments in the field of DNA sequencing, focusing mainly on electrical detection methods. The review delves deep into both the theoretical and experimental demonstrations of the ionic blockade and transverse tunneling current methods across a broad range of device architectures, nanopore, nanogap, nanochannel, and hybrid/heterostructures. Additionally, various aspects of each architecture are explored along with their strengths and weaknesses, scrutinizing their potential applications for ultrafast DNA sequencing. Finally, an overview of existing challenges and future directions is provided to expedite the emergence of high-precision and ultrafast DNA sequencing with ionic and transverse current approaches.
Collapse
Affiliation(s)
- Rameshwar L Kumawat
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh, 453552, India
| | - Milan Kumar Jena
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh, 453552, India
| | - Sneha Mittal
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh, 453552, India
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh, 453552, India
| |
Collapse
|
3
|
Gao Y, Wang Y. Interplay of graphene-DNA interactions: Unveiling sensing potential of graphene materials. APPLIED PHYSICS REVIEWS 2024; 11:011306. [PMID: 38784221 PMCID: PMC11115426 DOI: 10.1063/5.0171364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Graphene-based materials and DNA probes/nanostructures have emerged as building blocks for constructing powerful biosensors. Graphene-based materials possess exceptional properties, including two-dimensional atomically flat basal planes for biomolecule binding. DNA probes serve as excellent selective probes, exhibiting specific recognition capabilities toward diverse target analytes. Meanwhile, DNA nanostructures function as placement scaffolds, enabling the precise organization of molecular species at nanoscale and the positioning of complex biomolecular assays. The interplay of DNA probes/nanostructures and graphene-based materials has fostered the creation of intricate hybrid materials with user-defined architectures. This advancement has resulted in significant progress in developing novel biosensors for detecting DNA, RNA, small molecules, and proteins, as well as for DNA sequencing. Consequently, a profound understanding of the interactions between DNA and graphene-based materials is key to developing these biological devices. In this review, we systematically discussed the current comprehension of the interaction between DNA probes and graphene-based materials, and elucidated the latest advancements in DNA probe-graphene-based biosensors. Additionally, we concisely summarized recent research endeavors involving the deposition of DNA nanostructures on graphene-based materials and explored imminent biosensing applications by seamlessly integrating DNA nanostructures with graphene-based materials. Finally, we delineated the primary challenges and provided prospective insights into this rapidly developing field. We envision that this review will aid researchers in understanding the interactions between DNA and graphene-based materials, gaining deeper insight into the biosensing mechanisms of DNA-graphene-based biosensors, and designing novel biosensors for desired applications.
Collapse
Affiliation(s)
- Yanjing Gao
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Yichun Wang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
4
|
Wang Q, Chen Y, Mao J, Yang F, Wang N. Metasurface-Assisted Terahertz Sensing. SENSORS (BASEL, SWITZERLAND) 2023; 23:5902. [PMID: 37447747 DOI: 10.3390/s23135902] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023]
Abstract
Terahertz (THz) waves, which fall between microwaves and infrared bands, possess intriguing electromagnetic properties of non-ionizing radiation, low photon energy, being highly sensitive to weak resonances, and non-polar material penetrability. Therefore, THz waves are extremely suitable for sensing and detecting chemical, pharmaceutical, and biological molecules. However, the relatively long wavelength of THz waves (30~3000 μm) compared to the size of analytes (1~100 nm for biomolecules, <10 μm for microorganisms) constrains the development of THz-based sensors. To circumvent this problem, metasurface technology, by engineering subwavelength periodic resonators, has gained a great deal of attention to enhance the resonance response of THz waves. Those metasurface-based THz sensors exhibit high sensitivity for label-free sensing, making them appealing for a variety of applications in security, medical applications, and detection. The performance of metasurface-based THz sensors is controlled by geometric structure and material parameters. The operating mechanism is divided into two main categories, passive and active. To have a profound understanding of these metasurface-assisted THz sensing technologies, we review and categorize those THz sensors, based on their operating mechanisms, including resonators for frequency shift sensing, nanogaps for enhanced field confinement, chirality for handedness detection, and active elements (such as graphene and MEMS) for advanced tunable sensing. This comprehensive review can serve as a guideline for future metasurfaces design to assist THz sensing and detection.
Collapse
Affiliation(s)
- Qian Wang
- School of Microelectronics, Shanghai University, Shanghai 200000, China
| | - Yuzi Chen
- School of Microelectronics, Shanghai University, Shanghai 200000, China
| | - Jinxian Mao
- School of Microelectronics, Shanghai University, Shanghai 200000, China
| | - Fengyuan Yang
- School of Microelectronics, Shanghai University, Shanghai 200000, China
- Shanghai Key Laboratory of Chips and Systems for Intelligent Connected Vehicle, Shanghai University, Shanghai 200000, China
| | - Nan Wang
- School of Microelectronics, Shanghai University, Shanghai 200000, China
- Shanghai Key Laboratory of Chips and Systems for Intelligent Connected Vehicle, Shanghai University, Shanghai 200000, China
| |
Collapse
|
5
|
Mittal S, Pathak B. A Step toward Amino Acid-Labeled DNA Sequencing: Boosting Transmission Sensitivity of Graphene Nanogap. ACS APPLIED BIO MATERIALS 2023; 6:218-227. [PMID: 36524773 DOI: 10.1021/acsabm.2c00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Existing obstacles in next-generation DNA sequencing techniques, for instance, high noise, high translocation speed, and configurational fluctuations, call for approaches capable of reaching the goal and accelerating the process of personalized medicine development. The labeling nucleotide approach has the potential to overcome these barriers and boost the recognition sensitivity of a solid-state nanodevice. In this theoretical report, the first-principles density functional theory calculations have been employed to study the role of three different labels, tyrosine (Tyr), aspartic acid (Asp), and arginine (Arg), for labeling DNA nucleotides and study their effect in rapid and controlled DNA sequencing at atomic resolution. Remarkable differences in interaction energy values are noticed in all three cases of differently labeled nucleotides. The zero-bias transmission spectra confirm that proposed labels have the ability to detect the individual nucleotide, amplifying the tunneling current sensitivity by several orders of magnitude. The current-voltage characteristics of Arg-labeled nucleotides are found to be promising for single nucleotide recognition even at a very low bias voltage of 0.1 V.
Collapse
Affiliation(s)
- Sneha Mittal
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh453552, India
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh453552, India
| |
Collapse
|
6
|
Mittal S, Pathak B. Towards a graphene semi/hybrid-nanogap: a new architecture for ultrafast DNA sequencing. NANOSCALE 2023; 15:757-767. [PMID: 36525055 DOI: 10.1039/d2nr05200h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The tremendous upsurge in the research of next-generation sequencing (NGS) methods has broadly been driven by the rise of the wonder material graphene and continues to dominate the futuristic approaches for fast and accurate DNA sequencing. The success of graphene has also triggered the search for many new potential NGS methods capable of ultrafast, reliable, and controlled DNA sequencing. The present study delves into the potential of a new NGS architecture utilizing graphene, namely, a 'semi/hybrid-nanogap' for the identification of DNA nucleobases with single-base resolution. In the framework of first-principles density functional theory methods, we have calculated the transmission function and current-voltage (I-V) characteristics which are of particular significance for DNA sequencing applications. It is noted that the interaction energy values are significantly reduced compared to the previously reported graphene nanodevices, which can lead to a controlled translocation during experimental measurements. Based on the transmission function, each nucleobase can be identified with pertinent sensitivity. It is noticed that the use of highly conductive nucleobase analogs can facilitate improved single nucleobase sensing by increasing the transmission sensitivity. Therefore, we believe that the present study opens up promising frontiers for sequencing applications.
Collapse
Affiliation(s)
- Sneha Mittal
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh, 453552, India.
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh, 453552, India.
| |
Collapse
|
7
|
Francis BM, Sundaram A, Manavalan RK, Peng WK, Zhang H, Ponraj JS, Chander Dhanabalan S. Two-dimensional nanostructures based '-onics' and '-omics' in personalized medicine. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:5019-5039. [PMID: 39634291 PMCID: PMC11501768 DOI: 10.1515/nanoph-2022-0439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 12/07/2024]
Abstract
With the maturing techniques for advanced synthesis and engineering of two-dimensional (2D) materials, its nanocomposites, hybrid nanostructures, alloys, and heterostructures, researchers have been able to create materials with improved as well as novel functionalities. One of the major applications that have been taking advantage of these materials with unique properties is biomedical devices, which currently prefer to be decentralized and highly personalized with good precision. The unique properties of these materials, such as high surface to volume ratio, a large number of active sites, tunable bandgap, nonlinear optical properties, and high carrier mobility is a boon to 'onics' (photonics/electronics) and 'omics' (genomics/exposomics) technologies for developing personalized, low-cost, feasible, decentralized, and highly accurate medical devices. This review aims to unfold the developments in point-of-care technology, the application of 'onics' and 'omics' in point-of-care medicine, and the part of two-dimensional materials. We have discussed the prospects of photonic devices based on 2D materials in personalized medicine and briefly discussed electronic devices for the same.
Collapse
Affiliation(s)
- Bibi Mary Francis
- Center for Advanced Materials, Aaivalayam-DIRAC Institute, Coimbatore, Tamil Nadu, India
| | - Aravindkumar Sundaram
- Institute of Natural Science and Mathematics, Ural Federal University, 620002Yekaterinburg, Russia
| | - Rajesh Kumar Manavalan
- Institute of Natural Science and Mathematics, Ural Federal University, 620002Yekaterinburg, Russia
| | - Weng Kung Peng
- Songshan Lake Materials Laboratory, Innovation Park, 523808Dongguan, China
| | - Han Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Shenzhen University, Shenzhen518060, China
| | - Joice Sophia Ponraj
- Center for Advanced Materials, Aaivalayam-DIRAC Institute, Coimbatore, Tamil Nadu, India
| | | |
Collapse
|
8
|
Dhahi TS, Adam T, Gopinath SCB, Hashim U. Gold nanogap impedimetric biosensor for precise and selective Ganoderma boninense detection. 3 Biotech 2022; 12:299. [PMID: 36276457 PMCID: PMC9522946 DOI: 10.1007/s13205-022-03368-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/17/2022] [Indexed: 11/01/2022] Open
Abstract
Ganoderma species are common wood-rotting fungi that cause root and stem rot in most monocots, dicots, and gymnosperms. It influences plantation crops such as oil palm and rubber in Malaysia, but the effects vary greatly within the genus. Because of the complex chemistry of Ganoderma, extracting and identifying the physiologically active chemicals is often time-consuming and necessitates extensive bioassays. This study investigated the specific identification of the most infectious Ganoderma species using a sub-20-nm gold electrode. Three electrodes were created using chemically controlled etching (2, 10, and 20 nm). An AutoCAD mask containing nanogap pad electrodes was used to create a chrome glass surface, which was then translated and built. Following the successful construction of the device, the sensor was evaluated using a combination of conventional photolithography and a size reduction technique to imprint the nanogap design onto the gold surface. Ganoderma boninense target DNA was synthesised and surface-modified to enable interaction at extremely low molecular concentrations. The proposed device has a detection limit of 0.001 mol/L, which is seven times lower than the detection limits of currently available devices. The capacitance, conductivity, and permittivity of complementary, non-complementary, single mismatched, and targeted biomolecules changed during hybridization. This sensor correctly differentiated between all samples. The sensor's performance is further validated by comparing experimental data from the sensor to theoretical data from the sensor's corresponding circuit model. The two data sets are very similar.
Collapse
Affiliation(s)
- Thikra S. Dhahi
- Electronics Technical Department, Southern Technical University, Basra, Iraq
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, 02600 Arau, Perlis Malaysia
| | - Tijjani Adam
- Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, 02600 Arau, Perlis Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis Malaysia
| | - Subash C. B. Gopinath
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, 02600 Arau, Perlis Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis Malaysia
- Centre of Excellence for Nanobiotechnology and Nanomedicine (CoExNano), Faculty of Applied Sciences, AIMST University, Semeling, 08100 Kedah, Malaysia
| | - U. Hashim
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis Malaysia
| |
Collapse
|
9
|
Jena MK, Pathak B. Identification of DNA nucleotides by conductance and tunnelling current variation through borophene nanogaps. Phys Chem Chem Phys 2022; 24:21427-21439. [PMID: 36047510 DOI: 10.1039/d2cp02093a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rapid and inexpensive DNA sequencing is critical to biomedical research and healthcare for the accomplishment of personalized medicine. Solid-state nanopores and nanogaps have marshalled themselves in the fascinating paradigm of nano-research since the advent of its application in DNA sequencing by analyzing the quantum conductance and electric current signals. In this study, the feasibility of the considered borophene nanogaps for DNA sequencing purposes via the electronic tunnelling current approach was investigated by utilizing combined density functional theory with non-equilibrium Green's function (DFT-NEGF) techniques. The interaction energy (Ei) and the charge density difference (CDD) plots exploit the charge modulation around the nanogap edges due to the presence of each nucleotide. Our results revealed a distinct variation in the tunnelling conductance, as a characteristic fingerprint of each nucleotide at the Fermi level. The calculated tunnelling current variation across the nanogap under an applied bias voltage was also significant due to the effective coupling of nucleotides with the electrode edges. The current was in the picoampere (pA) range, which was fairly higher than the electrical background noise and also experimentally detectable by the canning tunnelling microscopy (STM) technique. Our findings demonstrated that in the borophene nanopore vs. nanogap scenario, the nanogap has several advantages and is a more promising nanobiosensor. Moreover, we also compared our results with various previous experimental and theoretical reports on nanogaps as well as nanopores for gaining better insights.
Collapse
Affiliation(s)
- Milan Kumar Jena
- Department of Chemistry, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India.
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology Indore, Indore, Madhya Pradesh, 453552, India.
| |
Collapse
|
10
|
Kumawat RL, Pathak B. Conductance and tunnelling current characteristics for individual identification of synthetic nucleic acids with a graphene device. Phys Chem Chem Phys 2022; 24:15756-15766. [PMID: 35757959 DOI: 10.1039/d2cp01255c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on combined density functional theory and non-equilibrium Green's function quantum transport studies, in the present work we have demonstrated the quantum interference (QI) effect on the transverse conductance of Hachimoji (synthetic) nucleic acids when placed between the oxygen-terminated zigzag graphene nanoribbon (O-ZGNR) nanoelectrodes. We theorize that the QI effect could be well preserved in π-π coupling between a target nucleobase molecule and the carbon-based nanoelectrodes. Our study indicates that the QI effect, such as anti-resonance or Fano-resonance, affects the variation of transverse conductance depending on the nucleobase conformation. Furthermore, a variation of up to 2-5 orders of magnitude is observed in the conductance upon rotation for all the nucleobases. The current-voltage (I-V) characteristics results suggest a distinct variation in the electronic tunnelling current across the proposed nanogap device for all five nucleobases with the applied bias voltage ranges from 0.1-1.0 V. The different rotation angles keep the distinct feature of the nucleobases in both transverse conductance and tunnelling current features. Both features could be utilized in an accurate synthetic DNA sequencing device.
Collapse
Affiliation(s)
- Rameshwar L Kumawat
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh, 453552, India. .,Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, and School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh, 453552, India.
| |
Collapse
|
11
|
Zou H, Wen S, Wu X, Wong KW, Yam C. DNA sequencing based on electronic tunneling in a gold nanogap: a first-principles study. Phys Chem Chem Phys 2022; 24:5748-5754. [PMID: 35191434 DOI: 10.1039/d1cp04910k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Deoxyribonucleic acid (DNA) sequencing has found wide applications in medicine including treatment of diseases, diagnosis and genetics studies. Rapid and cost-effective DNA sequencing has been achieved by measuring the transverse electronic conductance as a single-stranded DNA is driven through a nanojunction. With the aim of improving the accuracy and sensitivity of DNA sequencing, we investigate the electron transport properties of DNA nucleobases within gold nanogaps based on first-principles quantum transport simulations. Considering the fact that the DNA bases can rotate within the nanogap during measurements, different nucleobase orientations and their corresponding residence time within the nanogap are explicitly taken into account based on their energetics. This allows us to obtain an average current that can be compared directly to experimental measurements. Our results indicate that bare gold electrodes show low distinguishability among the four DNA nucleobases while the distinguishability can be substantially enhanced with sulfur atom decorated electrodes. We further optimized the size of the nanogap by maximizing the residence time of the desired orientation.
Collapse
Affiliation(s)
- Hao Zou
- Beijing Computational Science Research Center, Haidian District, Beijing 100193, China.
| | - Shizheng Wen
- Beijing Computational Science Research Center, Haidian District, Beijing 100193, China. .,Jiangsu Province Key Laboratory of Modern Measurement Technology and Intelligent Systems, School of Physics and Electronic Electrical Engineering, Huaiyin Normal University, Huaian 223300, China
| | - Xiaoyan Wu
- Shenzhen JL Computational Science and Applied Research Institute, Shenzhen 518109, China
| | - Ka-Wai Wong
- Genvida Technology Company Limited, Hong Kong, China.
| | - ChiYung Yam
- Beijing Computational Science Research Center, Haidian District, Beijing 100193, China. .,Shenzhen JL Computational Science and Applied Research Institute, Shenzhen 518109, China
| |
Collapse
|
12
|
Kiakojouri A, Frank I, Nadimi E. In-plane graphene/h-BN/graphene heterostructures with nanopores for electrical detection of DNA nucleotides. Phys Chem Chem Phys 2021; 23:25126-25135. [PMID: 34729571 DOI: 10.1039/d1cp03597e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The in-plane heterostructure of graphene and h-BN has unique physical and electrical characteristics, which can be exploited for single-molecule DNA sequencing. On this account, we propose a nanostructure based on a nanopore in graphene/h-BN/graphene heterostructures as a viable approach for in-plane electrical detection. The insulating h-BN layer changes the charge transport to the quantum tunneling regime, which is very sensitive to the electrostatic interactions induced by nucleotides during their translocation through the nanopore. Density functional theory (DFT) is utilized to study the membrane/nanopore interactions as well as their interactions with different nucleotides (dAMP, dGMP, dCMP, and dTMP). The results indicate that the nucleotides show stronger interactions with nanopores in h-BN rather than nanopores in pristine graphene. For the calculation of electronic transport, non-equilibrium Green's function (NEGF) formalism at the first principles level is employed. The in-plane currents at different applied voltages are calculated in the presence of different nucleotides in the nanopore. The sensitivity of the proposed nanostructure towards different nucleotides is measured based on the current modulation induced by each nucleotide. The graphene/h-BN/graphene heterostructure shows higher sensitivity toward different nucleotides compared to a similar structure consisting of pristine graphene and can be considered as a promising candidate for DNA sequencing applications.
Collapse
Affiliation(s)
- Ali Kiakojouri
- Center for Computational Micro and Nanoelectronics, Faculty of Electrical Engineering, K. N. Toosi University of Technology, 16317-14191 Tehran, Iran.
| | - Irmgard Frank
- Theoretische Chemie, Universität Hannover, Callinstr. 3A, 30167 Hannover, Germany
| | - Ebrahim Nadimi
- Center for Computational Micro and Nanoelectronics, Faculty of Electrical Engineering, K. N. Toosi University of Technology, 16317-14191 Tehran, Iran.
| |
Collapse
|
13
|
Djurišić I, Jovanović VP, Dražić MS, Tomović AŽ, Zikic R. Predicting Finite-Bias Tunneling Current Properties from Zero-Bias Features: The Frontier Orbital Bias Dependence at an Exemplar Case of DNA Nucleotides in a Nanogap. NANOMATERIALS 2021; 11:nano11113021. [PMID: 34835784 PMCID: PMC8624643 DOI: 10.3390/nano11113021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 01/06/2023]
Abstract
The electrical current properties of single-molecule sensing devices based on electronic (tunneling) transport strongly depend on molecule frontier orbital energy, spatial distribution, and position with respect to the electrodes. Here, we present an analysis of the bias dependence of molecule frontier orbital properties at an exemplar case of DNA nucleotides in the gap between H-terminated (3, 3) carbon nanotube (CNT) electrodes and its relation to transversal current rectification. The electronic transport properties of this simple single-molecule device, whose characteristic is the absence of covalent bonding between electrodes and a molecule between them, were obtained using density functional theory and non-equilibrium Green's functions. As in our previous studies, we could observe two distinct bias dependences of frontier orbital energies: the so-called strong and the weak pinning regimes. We established a procedure, from zero-bias and empty-gap characteristics, to estimate finite-bias electronic tunneling transport properties, i.e., whether the molecular junction would operate in the weak or strong pinning regime. We also discuss the use of the zero-bias approximation to calculate electric current properties at finite bias. The results from this work could have an impact on the design of new single-molecule applications that use tunneling current or rectification applicable in high-sensitivity sensors, protein, or DNA sequencing.
Collapse
|
14
|
Han Z, Li M, Li L, Jiao F, Wei Z, Geng D, Hu W. When graphene meets white graphene - recent advances in the construction of graphene and h-BN heterostructures. NANOSCALE 2021; 13:13174-13194. [PMID: 34477725 DOI: 10.1039/d1nr03733a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
2D heterostructures have very recently witnessed a boom in scientific and technological activities owing to the customized spatial orientation and tailored physical properties. A large amount of 2D heterostructures have been constructed on the basis of the combination of mechanical exfoliation and located transfer method, opening wide possibilities for designing novel hybrid systems with tuned structures, properties, and applications. Among the as-developed 2D heterostructures, in-plane graphene and h-BN heterostructures have drawn the most attention in the past few decades. The controllable synthesis, the investigation of properties, and the expansion of applications have been widely explored. Herein, the fabrication of graphene and h-BN heterostructures is mainly focused on. Then, the spatial configurations for the heterostructures are systematically probed to identify the highly related unique features. Moreover, as a most promising approach for the scaled production of 2D materials, the in situ CVD fabrication of the heterostructures is summarized, demonstrating a significant potential in the controllability of size, morphology, and quality. Further, the recent applications of the 2D heterostructures are discussed. Finally, the concerns and challenges are fully elucidated and a bright future has been envisioned.
Collapse
Affiliation(s)
- Ziyi Han
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072 P. R. China.
| | | | | | | | | | | | | |
Collapse
|
15
|
Kumawat RL, Pathak B. Identifying DNA Nucleotides via Transverse Electronic Transport in Atomically Thin Topologically Defected Graphene Electrodes. ACS APPLIED BIO MATERIALS 2021; 4:1403-1412. [PMID: 35014491 DOI: 10.1021/acsabm.0c01309] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Extended line defects in graphene (ELDG) sheets have been found to be promising for biomolecule sensing applications. By means of the consistent-exchange van der Waals density-functional (vdW-DF-cx) method, the electronic, structural, and quantum transport properties of the ELDG nanogap setup has been studied when a DNA nucleotide molecule is positioned inside the nanogap electrodes. The interaction energy (Ei) values indicate charge transfer interaction between the nucleotide molecule and electrode edges. The charge density difference plots reveal that charge fluctuates around the ELDG nanogap edges adjacent to the nucleotides. This charge redistribution grounds the modulation of electronic charge transport in the ELDG nanogap device. Further, we study the electronic transverse-conductance and tunnelling current-voltage (I-V) characteristics across two closely spaced ELDG nanogap electrodes using the density functional theory and the nonequilibrium Green's function methods when a DNA nucleotide is translocated through the nanogap. Our outcomes indicate that the ELDG nano gap device could allow sequencing of DNA nucleotides with a robust and consistent yield, giving the tunneling electric current signals that vary by more than 1 order of magnitude electric current (I) for the different DNA nucleotides. So, we predict that the ELDG nanogap-based tunneling device can be suitable for sequencing DNA nucleobases.
Collapse
|
16
|
Ghasemi S, Moth-Poulsen K. Single molecule electronic devices with carbon-based materials: status and opportunity. NANOSCALE 2021; 13:659-671. [PMID: 33406181 DOI: 10.1039/d0nr07844a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The field of single molecule electronics has progressed remarkably in the past decades by allowing for more versatile molecular functions and improving device fabrication techniques. In particular, electrodes made from carbon-based materials such as graphene and carbon nanotubes (CNTs) may enable parallel fabrication of multiple single molecule devices. In this perspective, we review the recent progress in the field of single molecule electronics, with a focus on devices that utilizes carbon-based electrodes. The paper is structured in three main sections: (i) controlling the molecule/graphene electrode interface using covalent and non-covalent approaches, (ii) using CNTs as electrodes for fabricating single molecule devices, and (iii) a discussion of possible future directions employing new or emerging 2D materials.
Collapse
Affiliation(s)
- Shima Ghasemi
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412-96 Göteborg, Sweden.
| | - Kasper Moth-Poulsen
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412-96 Göteborg, Sweden.
| |
Collapse
|
17
|
Balasubramanian R, Pal S, Rao A, Naik A, Chakraborty B, Maiti PK, Varma MM. DNA Translocation through Vertically Stacked 2D Layers of Graphene and Hexagonal Boron Nitride Heterostructure Nanopore. ACS APPLIED BIO MATERIALS 2021; 4:451-461. [PMID: 35014296 DOI: 10.1021/acsabm.0c00929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cost-effective, fast, and reliable DNA sequencing can be enabled by advances in nanopore-based methods, such as the use of atomically thin graphene membranes. However, strong interaction of DNA bases with graphene leads to undesirable effects such as sticking of DNA strands to the membrane surface. While surface functionalization is one way to counter this problem, here, we present another solution based on a heterostructure nanopore system, consisting of a monolayer of graphene and hexagonal boron nitride (hBN) each. Molecular dynamics studies of DNA translocation through this heterostructure nanopore revealed a surprising and crucial influence of the heterostructure layer order in controlling the base specific signal variability. Specifically, the heterostructure with graphene on top of hBN had nearly 3-10× lower signal variability than the one with hBN on top of graphene. Simulations point to the role of differential underside sticking of DNA bases as a possible reason for the observed influence of the layer order. Our studies can guide the development of experimental systems to study and exploit DNA translocation through two-dimensional heterostructure nanopores for single molecule sequencing and sensing applications.
Collapse
Affiliation(s)
| | - Sohini Pal
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Anjana Rao
- Division of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, United States
| | - Akshay Naik
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Banani Chakraborty
- Department of Chemical Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Prabal K Maiti
- Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Manoj M Varma
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
18
|
Perez A, Amorim RG, Villegas CEP, Rocha AR. Nanogap-based all-electronic DNA sequencing devices using MoS 2 monolayers. Phys Chem Chem Phys 2020; 22:27053-27059. [PMID: 33215614 DOI: 10.1039/d0cp04138f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The realization of nanopores in atom-thick materials may pave the way towards electrical detection of single biomolecules in a stable and scalable manner. In this work, we theoretically study the potential of different phases of MoS2 nanogaps to act as all-electronic DNA sequencing devices. We carry out simulations based on density functional theory and the non-equilibrium Green's function formalism to investigate the electronic transport across the device. Our results suggest that the 1T'-MoS2 nanogap structure is energetically more favorable than its 2H counterpart. At zero bias, the changes in the conductance of the 1T'-MoS2 device can be well distinguished, making possible the selectivity of the DNA nucleobases. Although the conductance fluctuates around the resonances, the overall results suggest that it is possible to distinguish the four DNA bases for energies close to the Fermi level.
Collapse
Affiliation(s)
- A Perez
- Instituto de Física Teórica, Universidade Estadual Paulista (UNESP), Rua Dr Bento T. Ferraz, 271, São Paulo, SP 01140-070, Brazil.
| | | | | | | |
Collapse
|
19
|
Shepherd BA, Tanjil MRE, Jeong Y, Baloğlu B, Liao J, Wang MC. Ångström- and Nano-scale Pore-Based Nucleic Acid Sequencing of Current and Emergent Pathogens. MRS ADVANCES 2020; 5:2889-2906. [PMID: 33437534 PMCID: PMC7790041 DOI: 10.1557/adv.2020.402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
State-of-the-art nanopore sequencing enables rapid and real-time identification of novel pathogens, which has wide application in various research areas and is an emerging diagnostic tool for infectious diseases including COVID-19. Nanopore translocation enables de novo sequencing with long reads (> 10 kb) of novel genomes, which has advantages over existing short-read sequencing technologies. Biological nanopore sequencing has already achieved success as a technology platform but it is sensitive to empirical factors such as pH and temperature. Alternatively, ångström- and nano-scale solid-state nanopores, especially those based on two-dimensional (2D) membranes, are promising next-generation technologies as they can surpass biological nanopores in the variety of membrane materials, ease of defining pore morphology, higher nucleotide detection sensitivity, and facilitation of novel and hybrid sequencing modalities. Since the discovery of graphene, atomically-thin 2D materials have shown immense potential for the fabrication of nanopores with well-defined geometry, rendering them viable candidates for nanopore sequencing membranes. Here, we review recent progress and future development trends of 2D materials and their ångström- and nano-scale pore-based nucleic acid (NA) sequencing including fabrication techniques and current and emerging sequencing modalities. In addition, we discuss the current challenges of translocation-based nanopore sequencing and provide an outlook on promising future research directions.
Collapse
Affiliation(s)
- Britney A. Shepherd
- Department of Medical Engineering, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620 USA
| | - Md Rubayat-E Tanjil
- Department of Mechanical Engineering, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620 USA
| | - Yunjo Jeong
- Department of Mechanical Engineering, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620 USA
| | - Bilgenur Baloğlu
- Centre for Biodiversity Genomics, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G2W1 Canada
| | - Jingqiu Liao
- Department of Systems Biology, Columbia University, 1130 St. Nicholas Avenue, New York, New York 10032 USA
| | - Michael Cai Wang
- Department of Medical Engineering, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620 USA
- Department of Mechanical Engineering, University of South Florida, 4202 E. Fowler Avenue, Tampa, Florida 33620 USA
| |
Collapse
|
20
|
Kumawat RL, Pathak B. Functionalized carbon nanotube electrodes for controlled DNA sequencing. NANOSCALE ADVANCES 2020; 2:4041-4050. [PMID: 36132799 PMCID: PMC9417824 DOI: 10.1039/d0na00241k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 07/14/2020] [Indexed: 06/14/2023]
Abstract
In the last decade, solid-state nanopores/nanogaps have attracted significant attention in the rapid detection of DNA nucleotides. However, reducing the noise through controlled translocation of the DNA nucleobases is a central issue for the development of nanogap/nanopore-based DNA sequencing to achieve single-nucleobase resolution. Furthermore, the high reactivity of the graphene pores/gaps causes clogging of the pore/gap, leading to the blockage of the pores/gaps, sticking, and irreversible pore closure. To address the prospective of functionalization of the carbon nanostructure and for accomplishing this objective, herein, we have studied the performance of functionalized closed-end cap armchair carbon nanotube (CNT) nanogap-embedded electrodes, which can improve the coupling through non-bonding electrons and may provide the possibility of N/O-H⋯π interactions with the nucleotides, as single-stranded DNA is transmigrated across the electrode. We have investigated the effect of functionalizing the closed-end cap CNT (6,6) electrodes with purine (adenine, guanine) and pyrimidine (thymine, cytosine) molecules. Weak hydrogen bonds formed between the probe molecule and the target DNA nucleobase enhance the electronic coupling and temporarily stabilize the translocating nucleobase against the orientational fluctuations, which may reduce noise in the current signal during experimental measurements. The findings of our density functional theory and non-equilibrium Green's function-based study indicate that this modeled setup could allow DNA nucleotide sequencing with a better and reliable yield, giving current traces that differ by at least 1 order of current magnitude for all the four target nucleotides. Thus, we feel that the functionalized armchair CNT (6,6) nanogap-embedded electrodes may be utilized for controlled DNA sequencing.
Collapse
Affiliation(s)
- Rameshwar L Kumawat
- Discipline of Metallurgy Engineering and Materials Science Indore Madhya Pradesh 453552 India
| | - Biswarup Pathak
- Discipline of Metallurgy Engineering and Materials Science Indore Madhya Pradesh 453552 India
- Discipline of Chemistry, School of Basic Sciences, Indian Institute of Technology (IIT) Indore Indore Madhya Pradesh 453552 India
| |
Collapse
|
21
|
Tyagi A, Chu K, Hossain MD, Abidi IH, Lin W, Yan Y, Zhang K, Luo Z. Revealing the mechanism of DNA passing through graphene and boron nitride nanopores. NANOSCALE 2019; 11:23438-23448. [PMID: 31799536 DOI: 10.1039/c9nr07651d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanopores on 2D materials have great potential for DNA sequencing, which is attributed to their high sequencing speed and reduced cost. However, identifying DNA bases at such a high speed with nanometer precision has remained a big challenge. Here, we implemented theoretical calculations to show the translocation of single-stranded DNA (ssDNA) through solid-state nanopores on a 2D hexagonal boron nitride (h-BN) and graphene sheet. A base-specific ssDNA sequencing technique was devised, based on the individual differences in the ion current responses for the (polyA)16, (polyG)16, (polyC)16, and (polyT)16 bases of ssDNA. Our sequential procedure for sequencing is built on a comparative approach between the current signals obtained from the nanopores to achieve base-specific detection. Our results indicate that at higher voltages (1.0, 1.2, 1.4, 1.6, 1.8 and 2.0 V nm-1), DNA translocation is tracked though the 1.5 and 2.0 nm nanopores, and at the 1.5 nm pore size, folded ssDNA close to the nanopore accounts for 93% and 81% of events for graphene and h-BN. Our calculations indicate charge transfer from the graphene to ssDNA, while the reverse happens in the case of the h-BN membrane. These results provide critical insights into our understanding of single molecule sequencing through solid-state nanopore research.
Collapse
Affiliation(s)
- Abhishek Tyagi
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China. and Department of Chemical and Biological Engineering, William Mong Institute of Nano Science and Technology and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Kelvin Chu
- Department of Chemical and Biological Engineering, William Mong Institute of Nano Science and Technology and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Md Delowar Hossain
- Department of Chemical and Biological Engineering, William Mong Institute of Nano Science and Technology and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Irfan Haider Abidi
- Department of Chemical and Biological Engineering, William Mong Institute of Nano Science and Technology and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Weiyuan Lin
- Department of Chemical and Biological Engineering, William Mong Institute of Nano Science and Technology and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Yuwei Yan
- Department of Chemical and Biological Engineering, William Mong Institute of Nano Science and Technology and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Kai Zhang
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Zhengtang Luo
- Department of Chemical and Biological Engineering, William Mong Institute of Nano Science and Technology and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
22
|
Kumawat RL, Garg P, Kumar S, Pathak B. Electronic Transport through DNA Nucleotides in Atomically Thin Phosphorene Electrodes for Rapid DNA Sequencing. ACS APPLIED MATERIALS & INTERFACES 2019; 11:219-225. [PMID: 30540178 DOI: 10.1021/acsami.8b17239] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Rapid progresses in developing the fast, low-cost, and reliable methods for DNA sequencing are envisaged for development of personalized medicine. In this respect, nanotechnology has paved the role for the development of advanced DNA sequencing techniques including sequencing with solid-state nanopores or nanogaps. Herein, we have explored the application of a black phosphorene based nanogap-device for DNA sequencing. Using density-functional-theory based non-equilibrium Green's function approach, we have computed transverse transmission and current-voltage ( I- V) characteristics of all the four DNA nucleotides (deoxy adenosine monophosphate, deoxy guanidine monophosphate, deoxy thymidine monophosphate, and deoxy cytosine monophosphate) as functions of applied bias voltages. We deduce that it is in principle; possible to differentiate between all the four nucleotides by three sequencing runs at distinct applied bias voltages, i.e., at 0.2, 1.4, and 1.6 V, where individual identification of all the four nucleotides may be possible. Hence, we believe our study might be helpful for experimentalist towards the development of a phosphorene based nanodevice for DNA sequencing to diagnose critical diseases.
Collapse
|
23
|
Wu X, Mu F, Wang Y, Zhao H. Graphene and Graphene-Based Nanomaterials for DNA Detection: A Review. Molecules 2018; 23:E2050. [PMID: 30115822 PMCID: PMC6222676 DOI: 10.3390/molecules23082050] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 08/04/2018] [Accepted: 08/05/2018] [Indexed: 02/07/2023] Open
Abstract
DNA detection with high sensitivity and specificity has tremendous potential as molecular diagnostic agents. Graphene and graphene-based nanomaterials, such as graphene nanopore, graphene nanoribbon, graphene oxide, and reduced graphene oxide, graphene-nanoparticle composites, were demonstrated to have unique properties, which have attracted increasing interest towards the application of DNA detection with improved performance. This article comprehensively reviews the most recent trends in DNA detection based on graphene and graphene-related nanomaterials. Based on the current understanding, this review attempts to identify the future directions in which the field is likely to thrive, and stimulate more significant research in this subject.
Collapse
Affiliation(s)
- Xin Wu
- George S. Ansell Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, CO 80401, USA.
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.
| | - Fengwen Mu
- Department of Precision Engineering, The University of Tokyo, Tokyo 113-8656, Japan.
| | - Yinghui Wang
- Kunshan Branch, Institute of Microelectronics, Chinese Academy of Sciences, Suzhou 215347, China.
| | - Haiyan Zhao
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|