1
|
Kambhampati SP, Bhutto IA, Wu T, Ho K, McLeod DS, Lutty GA, Kannan RM. Systemic dendrimer nanotherapies for targeted suppression of choroidal inflammation and neovascularization in age-related macular degeneration. J Control Release 2021; 335:527-540. [PMID: 34058271 DOI: 10.1016/j.jconrel.2021.05.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022]
Abstract
Inflammation and neovascularization are key pathological events in human age-related macular degeneration (AMD). Activated microglia/macrophages (mi/ma) and retinal pigmented epithelium (RPE) play an active role in every stage of disease progression. Systemic therapies that can target these cells and address both inflammation and neovascularization will broaden the impact of existing therapies and potentially open new avenues for early AMD where there are no viable therapies. Utilizing a clinically relevant rat model of AMD that mirrors many aspects that of human AMD pathological events, we show that systemic hydroxyl-terminated polyamidoamine dendrimer-triamcinolone acetonide conjugate (D-TA) is selectively taken up by the injured mi/ma and RPE (without the need for targeting ligands). D-TA suppresses choroidal neovascularization significantly (by >80%, >50-fold better than free drug), attenuates inflammation in the choroid and retina, by limiting macrophage infiltration in the pathological area, significantly suppressing pro-inflammatory cytokines and pro-angiogenic factors, with minimal side effects to healthy ocular tissue and other organs. In ex vivo studies on human postmortem diabetic eyes, the dendrimer is also taken up into choroidal macrophages. These results suggest that the systemic hydroxyl dendrimer-drugs can offer new avenues for therapies in treating early/dry AMD and late/neovascular AMD alone, or in combination with current anti-VEGF therapies. This hydroxyl dendrimer platform but conjugated to a different drug is undergoing clinical trials for severe COVID-19, potentially paving the way for faster clinical translation of similar compounds for ocular and retinal disorders.
Collapse
Affiliation(s)
- Siva P Kambhampati
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Imran A Bhutto
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Tony Wu
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Katie Ho
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - D Scott McLeod
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Gerard A Lutty
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America.
| | - Rangaramanujam M Kannan
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States of America.
| |
Collapse
|
2
|
Xin G, Zhang M, Zhong Z, Tang L, Feng Y, Wei Z, Li S, Li Y, Zhang J, Zhang B, Zhang M, Rowell N, Chen Z, Niu H, Yu K, Huang W. Ophthalmic Drops with Nanoparticles Derived from a Natural Product for Treating Age-Related Macular Degeneration. ACS APPLIED MATERIALS & INTERFACES 2020; 12:57710-57720. [PMID: 33320520 DOI: 10.1021/acsami.0c17296] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
There is a continuing, urgent need for an ophthalmic (eye) drop for the clinical therapy of age-related macular degeneration (AMD), a leading cause of blindness. Here, we report the first formulation of an eye drop that is effective via autophagy for AMD treatment. This eye drop is based on a single natural product derivative (ACD), which is an amphiphilic molecule containing a 6-aminohexanoate group (H2N(CH2)5COO-). We demonstrate that this eye drop reverses the abnormal angiogenesis induced in a primate model of AMD that has the pathological characteristics close to that of human AMD. The ACD molecule was self-assembled in an aqueous environment leading to nanoparticles (NPs) about 9.0 nm in diameter. These NPs were encapsulated in calcium alginate hydrogel. The resulting eye drop effectively slowed the release of ACD and displayed extended release periods in both simulated blood (pH 7.4) and inflammatory (pH 5.2) environments. We show that the eye drop penetrated both the corneal and blood-eye barriers and reached the fundus. With low cellular toxicity, the drop targeted S1,25D3-membrane-associated rapid response steroid-binding protein (1,25D3-MARRS) promoting autophagy in a dose-dependent manner. In addition, the drop inhibited cell migration and tubular formation. On the other hand, when protein 1,25D3-MARRS was knocked down, the eye drop did not exhibit such inhibition functionalities. Our study indicates that the 6-aminohexanoate group on self-assembled NPs encapsulated in hydrogel leads to the positive in vivo outcomes. The present formulation offers a promising approach for clinical treatment of human AMD.
Collapse
Affiliation(s)
- Guang Xin
- Laboratory of Ethnopharmacology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Ming Zhang
- Department of Ophthalmology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Zhihui Zhong
- Laboratory of Ethnopharmacology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Li Tang
- Department of Ophthalmology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Yuliang Feng
- Department of Ophthalmology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Zeliang Wei
- Laboratory of Ethnopharmacology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Shiyi Li
- Laboratory of Ethnopharmacology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Youping Li
- Laboratory of Ethnopharmacology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Junhua Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P. R. China
| | - Boli Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P. R. China
| | - Meng Zhang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Nelson Rowell
- Metrology Research Centre, National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Zhen Chen
- Laboratory of Ethnopharmacology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Hai Niu
- College of Mathematics, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Kui Yu
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan 610065, P. R. China
| | - Wen Huang
- Laboratory of Ethnopharmacology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| |
Collapse
|
3
|
Ganugula R, Arora M, Lepiz MA, Niu Y, Mallick BK, Pflugfelder SC, Scott EM, Kumar MNVR. Systemic anti-inflammatory therapy aided by double-headed nanoparticles in a canine model of acute intraocular inflammation. SCIENCE ADVANCES 2020; 6:eabb7878. [PMID: 32923645 PMCID: PMC7449680 DOI: 10.1126/sciadv.abb7878] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/10/2020] [Indexed: 05/10/2023]
Abstract
Novel approaches circumventing blood-ocular barriers in systemic drug delivery are lacking. We hypothesize receptor-mediated delivery of curcumin (CUR) across intestinal and ocular barriers leads to decreased inflammation in a model of lens-induced uveitis. CUR was encapsulated in double-headed polyester nanoparticles using gambogic acid (GA)-coupled polylactide-co-glycolide (PLGA). Orally administered PLGA-GA2-CUR led to notable aqueous humor CUR levels and was dosed (10 mg/kg twice daily) to adult male beagles (n = 8 eyes) with induced ocular inflammation. Eyes were evaluated using a semiquantitative preclinical ocular toxicology scoring (SPOTS) and compared to commercial anti-inflammatory treatment (oral carprofen 2.2 mg/kg twice daily) (n = 8) and untreated controls (n = 8). PLGA-GA2-CUR offered improved protection compared with untreated controls and similar protection compared with carprofen, with reduced aqueous flare, miosis, and chemosis in the acute phase (<4 hours). This study highlights the potential of PLGA-GA2 nanoparticles for systemic drug delivery across ocular barriers.
Collapse
Affiliation(s)
- R. Ganugula
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Reynolds Medical Building, Texas A&M University, Mailstop 1114, College Station, TX, USA
- Corresponding author. (M.N.V.R.K.); (E.M.S.); (R.G.)
| | - M. Arora
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Reynolds Medical Building, Texas A&M University, Mailstop 1114, College Station, TX, USA
| | - M. A. Lepiz
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Y. Niu
- Department of Statistics, Texas A&M University, College Station, TX, USA
| | - B. K. Mallick
- Department of Statistics, Texas A&M University, College Station, TX, USA
| | - S. C. Pflugfelder
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - E. M. Scott
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
- Corresponding author. (M.N.V.R.K.); (E.M.S.); (R.G.)
| | - M. N. V. Ravi Kumar
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Reynolds Medical Building, Texas A&M University, Mailstop 1114, College Station, TX, USA
- Corresponding author. (M.N.V.R.K.); (E.M.S.); (R.G.)
| |
Collapse
|