1
|
Zhang LL, Li L, Wang D, Hong Y, Tang K, Hong J, Chen Z, Yang W, Lu L, Duan LY. Rapid redox-response featured visual ascorbic acid sensor based on simple-assembled europium metal-organic framework. Food Chem 2024; 459:140339. [PMID: 38986206 DOI: 10.1016/j.foodchem.2024.140339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
A facile, fast and visible sensing platform for ascorbic acid (AA) detection has been developed based on self-assembled hydrangea-like europium metal-organic framework (HL-EuMOF). HL-EuMOF was synthesized through a simple one-step mixing process with Eu3+ and 1, 10-phenanthroline-2, 9-dicarboxylic acid at room temperature, which exhibited excellent properties including strong red fluorescence, long decay lifetime (548.623 μs) and good luminescent stability. Based on the specific redox reaction between Fe3+ and AA, the HL-EuMOF@Fe3+ was fabricated with "turn-off" response for AA, where the resulting Fe2+ displayed effective fluorescence quenching ability toward HL-EuMOF. The sensor demonstrated low detection limit (31.94 nM), rapid response time (30 s) and high selectivity. Integration of smartphone-assisted RGB analysis with HL-EuMOF@Fe3+ permitted convenient and visible quantitative determination of AA level. This approach also presented good detection performances in complex human serum and beverage samples, which could provide a valuable tool for AA detection in biomedical research and food industry.
Collapse
Affiliation(s)
- Lin-Lin Zhang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Li Li
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, College of Science, Jiangxi Agricultural University, Nanchang 330045, China
| | - Dan Wang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yanping Hong
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Kaijie Tang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jiaxin Hong
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zeng Chen
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wuying Yang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Limin Lu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, College of Science, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Lu-Ying Duan
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
2
|
Zhu H, Chen S, Huang X, Chen X, Gong Z. An ingenious chemiluminescence sensing strategy for recalcitrant triphenyl phosphate based on oxidant-free UV-activated MIL-100(Fe) gel system. Anal Chim Acta 2024; 1330:343274. [PMID: 39489957 DOI: 10.1016/j.aca.2024.343274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/06/2024] [Accepted: 09/20/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Organophosphate flame retardants (OPFRs) are notorious emerging contaminants threatening the environment and human health. Triphenyl phosphate (TPHP), which has an extremely serious biotoxicity, is a typical harmful OPFR. Due to its wide use, TPHP has been discovered in various environmental mediums. Moreover, it is pretty recalcitrant to the removal process, resulting in the need for a technique to understand it better. Hence, accurate and quick discrimination of TPHP in the environment is critical to further evaluate its potential effect on ecosystems and human health. RESULTS An ingenious oxidant-free chemiluminescence (CL) sensor based on the oxidant-free UV/MIL-100(Fe) gel system was established for TPHP detection. The oxidation of luminol in the UV-activated MIL-100(Fe) gel has resulted in remarkable CL emission, which is contributed by reactive oxygen species (ROS) generated by it. Notably, the CL intensity was inhibited significantly after introducing TPHP. An investigation into the mechanism underlying the effect of CL suppression demonstrated that TPHP competed with luminol to consume ROS from UV-activated MIL-100(Fe) gel, contributing to CL inhibition. The subsequent sensing performance experiments demonstrated the advantages of environmentally friendly, economic efficiency, user-friendly operation, rapid determination, potential for compact size, high selectivity, and sensitivity. Additionally, these investigations confirmed the low limit of detection (210 ng L-1) and wide linear range (10-1000 μg L-1). SIGNIFICANCE In this paper, a green, economical, and oxidant-free CL sensing strategy for TPHP has been established. It has the advantage of being rapid, having the potential for compact size, high selectivity, and sensitivity. This ingenious method has promising applications in real-time and online environmental monitoring, and it paves the way for the rapid and environmentally friendly identification of emerging contaminants that are structurally stable and recalcitrant to remove.
Collapse
Affiliation(s)
- Huanhuan Zhu
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Shuo Chen
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Xiaoying Huang
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Xi Chen
- SCIEX Analytical Instrument Trading Co., Shanghai, 200335, China
| | - Zhengjun Gong
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China; State-Province Joint Engineering Laboratory of Spatial Information Technology of High-Speed Rail Safety, Chengdu, 611756, China.
| |
Collapse
|
3
|
Yan X, Cheng S, Xiao Y, Wu S, Mu H, Shi Z, Guo L, Ai F, Zheng X. Based on Fe and Ni prepared organic colloidal materials as efficient oxide nanozymes for chemiluminescence detection of GSH and Hg(II) ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124696. [PMID: 38950475 DOI: 10.1016/j.saa.2024.124696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024]
Abstract
Metal-organic gels (MOGs) are a type of metal-organic colloid material with a large specific surface area, loose porous structure, and open metal active sites. In this work, FeNi-MOGs were synthesized by the simple one-step static method, using Fe(III) and Ni(II) as the central metal ions and terephthalic acid as the organic ligand. The prepared FeNi-MOGs could effectively catalyze the chemiluminescence of luminol without the involvement of H2O2, which exhibited good catalytic activity. Then, the multifunctional detected platform was constructed for the detection of GSH and Hg2+, based on the antioxidant capacity of GSH, and the strong affinity between mercury ion (Hg2+) and GSH which inactivated the antioxidant capacity of GSH. The experimental limits of detection (LOD) for GSH and Hg2+ were 76 nM and 210 nM, and the detection ranges were 2-100 μM and 8-4000 μM, respectively. The as-proposed sensor had good performance in both detection limit and detection range of GSH and Hg2+, which fully met the needs of daily life. Surprisingly, the sensor had low detection limits and an extremely wide detection range for Hg2+, spanning five orders of magnitude. Furthermore, the detection of mercury ions in actual lake water and GSH in human serum showed good results, with recovery rates ranging from 90.10 % to 105.37 %, which proved that the method was accurate and reliable. The as-proposed sensor had great potential as the platform for GSH and Hg2+ detection applications.
Collapse
Affiliation(s)
- Xiluan Yan
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China; School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China
| | - Shiyun Cheng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China
| | - Yipi Xiao
- Nanchang Hongdu Hospital of TCM, Nanchang 330013, PR China
| | - Shuangbin Wu
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Hongyi Mu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China
| | - Zhiying Shi
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China
| | - Liang Guo
- Sino German Joint Research Institute, Nanchang University, Nanchang 330096, PR China
| | - Fanrong Ai
- School of Advanced Manufacturing, Nanchang University, Nanchang 330031, PR China
| | - Xiangjuan Zheng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China.
| |
Collapse
|
4
|
Xie J, Lei J, Zhang L, Liang J, Mei S, Chen L, Wang X, Liu W, Wang Y, Hu B. AIEgen-functionalized metal-organic gel as a bifunctional platform for efficient adsorption and portable sensing of gaseous iodine. Chem Commun (Camb) 2024; 60:12409-12412. [PMID: 39373597 DOI: 10.1039/d4cc04040f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Herein, we proposed a novel metal-organic gel (YTU-G-1) for efficient adsorption and portable sensing of gaseous iodine. YTU-G-1 exhibits an unprecedentedly high detection sensitivity (KSV = 2.21 × 106 L mol-1) and an extremely low limit of detection (LOD) down to the pmol level (481 pmol L-1). YTU-G-1 also shows a marked iodine adsorption capacity of 1.398 g g-1. A wearable membrane was successfully fabricated via the electrospinning technique, which exhibits excellent skin-compatibility and serves as a portable tool for sensitive response to potential on-site nuclear emergencies.
Collapse
Affiliation(s)
- Jian Xie
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, China.
| | - Ji Lei
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, China.
| | - Lilin Zhang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Jinpeng Liang
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, China.
| | - Sen Mei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Lixi Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xia Wang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Wei Liu
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Yanlong Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Baowei Hu
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, China.
| |
Collapse
|
5
|
Hassanzadeh J, Al Lawati HAJ, Bagheri N. Bifunctional oxidase-peroxidase mimicking Fe-Ce MOF on paper-based analytical devices to intensify luminol chemiluminescence: Application for measuring different sugars with a smartphone readout. Talanta 2024; 276:126219. [PMID: 38733936 DOI: 10.1016/j.talanta.2024.126219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/03/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
This study presents a potent paper-based analytical device (PAD) for quantifying various sugars using an innovative bi-nanozyme made from a 2-dimensional Fe/Ce metal-organic framework (FeCe-BTC). The MOF showed excellent bifunctional peroxidase-oxidase activities, efficiently catalyzing luminol's chemiluminescence (CL) reaction. As a peroxidase-like nanozyme, FeCe-BTC could facilitate the dissociation of hydrogen peroxide (H2O2) into hydroxyl radicals, which then oxidize luminol. Additionally, it was also discovered that when reacting with H2O2, the MOF turns into a mixed-valence MOF, and acts as an oxidase nanozyme. This activity is caused by the generated Ce4+ ions in the structure of MOF that can directly oxidize luminol. The MOF was directly synthesized on the PAD and cascaded with specific natural enzymes to establish simple, rapid, and selective CL sensors for the measurement of different sugars. A cell phone was also used to record light intensities, which were then correlated to the analyte concentration. The designed PAD showed a wide linear range of 0.1-10 mM for glucose, fructose, and sucrose, with detection limits of 0.03, 0.04, and 0.04 mM, respectively. It showed satisfactory results in food and biological samples with recovery values ranging from 95.8 to 102.4 %, which makes it a promising candidate for point-of-care (POC) testing for food control and medicinal purposes.
Collapse
Affiliation(s)
- Javad Hassanzadeh
- Department of Chemistry, College of Science, Sultan Qaboos University, Box 36, Al-Khod, 123, Oman
| | - Haider A J Al Lawati
- Department of Chemistry, College of Science, Sultan Qaboos University, Box 36, Al-Khod, 123, Oman.
| | - Nafiseh Bagheri
- Department of Chemistry, College of Science, Sultan Qaboos University, Box 36, Al-Khod, 123, Oman
| |
Collapse
|
6
|
Hu C, Guo W, Zhen S, Li Y, Huang C, Zhan L. Bimetallic Ag/Fe-MOG derived flake-like Ag 2O/Fe 2O 3 p-n heterojunction for efficient photodegradation organic pollutants within a wide pH range. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121686. [PMID: 38971057 DOI: 10.1016/j.jenvman.2024.121686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
In this paper, we reported a facile and clean strategy to prepare the flake-like Ag2O/Fe2O3 bimetallic p-n heterojunction composites for photodegradation organic pollutants. The surface morphology, crystal structure, chemical composition and optical properties of Ag2O/Fe2O3 were characterized by SEM, high-resolution TEM images with EDX spectra, XRD, XPS, FT-IR and UV-vis DRS spectra respectively. The formation of Ag2O/Fe2O3 p-n heterojunction facilitated the interfacial transfer of electrons as well as the separation of charge carries. Hence, the as-synthesized Ag2O/Fe2O3-3 composites exhibited ultra-high photocatalytic activity. Under the experimental conditions of catalyst dosage of 0.4 mg mL-1 and irradiation time of 60 min, the degradation conversion rate of rhodamine B reached 96.1 %, which was 5.0 and 2.8 times of pure phase Ag2O and Fe2O3, respectively. Meanwhile, the degradation performance of Ag2O/Fe2O3-3 was not limited by pH, and it can achieve high degradation efficiency under 3-11. In addition, Ag2O/Fe2O3-3 also showed superb degradation ability for other common anionic dyes, cationic dyes and antibiotics. XPS and FT-IR spectra showed that Ag2O/Fe2O3-3 retained a carbon skeleton that facilitated electron transport and light absorption conversion. And the analyses of quenching experiment and EPR demonstrated •O2-, •OH and h+ were crucial reactive oxidant species contributing to the rapid organic pollutant degradation. This work provides new insights into obtaining p-n photocatalysts heterojunction with excellent catalytic activity for removing organic pollutants from wastewater.
Collapse
Affiliation(s)
- Congyi Hu
- Key Laboratory of Luminescence and Real-Time Analysis System, Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Wan Guo
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Shujun Zhen
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Yuanfang Li
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Chengzhi Huang
- Key Laboratory of Luminescence and Real-Time Analysis System, Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Lei Zhan
- Key Laboratory of Luminescence and Real-Time Analysis System, Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
7
|
Sharma A, Kaur N, Singh N. An Encyclopedic Compendium on Chemosensing Supramolecular Metal-Organic Gels. Chem Asian J 2024; 19:e202400258. [PMID: 38629210 DOI: 10.1002/asia.202400258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/16/2024] [Indexed: 05/16/2024]
Abstract
Chemosensing, an interdisciplinary scientific domain, plays a pivotal role ranging from environmental monitoring to healthcare diagnostics and (inter)national security. Metal-organic gels (MOGs) are recognized for their stability, selectivity, and responsiveness, making them valuable for chemosensing applications. Researchers have explored the development of MOGs based on different metal ions and ligands, allowing for tailored properties and sensitivities, and have even demonstrated their applications as portable sensors such as paper-based test strips for practical use. Herein, several studies related to MOGs development and their applications in the chemosensing field via UV-visible or luminance along with electrochemical approach are presented. These papers explored MOGs as versatile materials with their use in sensing bio or environmental analytes. This review provides a foundational understanding of key concepts, methodologies, and recent advancements in this field, fostering the scientific community.
Collapse
Affiliation(s)
- Arun Sharma
- Department of Chemistry, Indian Institute of Technology Ropar, 140001, Rupnagar, Panjab, India
| | - Navneet Kaur
- Department of Chemistry, Panjab University, 160014, Chandigarh, India
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology Ropar, 140001, Rupnagar, Panjab, India
| |
Collapse
|
8
|
Goswami A, Ghosh D, Garai A, Pradhan D, Biradha K. Bimetallic Organic Frameworks via In Situ Solvothermal Sol-Gel-Crystal and Sol-Crystal Transformation as Durable Electrocatalysts for Oxygen Reduction Reaction. Inorg Chem 2024; 63:7303-7313. [PMID: 38597285 DOI: 10.1021/acs.inorgchem.4c00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The in situ solvothermal conversion of metal-organic gels (MOGs) to crystalline metal-organic frameworks (MOFs) represents a versatile and ingenious strategy that has been employed for the synthesis of MOF materials with specific morphologies, high yield, and improved functional properties. Herein, we have adopted an in situ solvothermal conversion of bimetallic MOGs to crystalline bimetallic MOFs with the aim of introducing a redox-active metal heterogeneity into the monometallic counterpart. The formation of bimetallic NiZn-MOF and CoZn-MOF via in situ solvothermal sol-gel-crystal and sol-crystal transformation is found to depend on the solvent systems used. The sol-to-gel-to-crystal transformation of NiZn-MOF via the formation of NiZn-MOG is found to occur through the gradual disruption of gel fibers leading to subsequent formation of microcrystals and single crystals of NiZn-MOF. These bimetallic MOFs and MOGs serve as promising electrocatalysts for oxygen reduction reaction (ORR) with an excellent methanol tolerance property, which can be attributed to the enhanced mass and charge transfer, higher oxygen vacancies, and bimetallic synergistic interactions among the heterometals. This work demonstrates a convenient strategy for producing bimetallic MOGs to MOFs through the introduction of a redox-active metal heterogeneity in the inorganic hybrid functional materials for fundamental and applied research. Our results connect MOGs and MOFs which have been regarded as having opposite physical states, that is, soft vs hard, and provide promising structural correlation between MOGs and MOFs at the molecular level.
Collapse
Affiliation(s)
- Anindita Goswami
- Department of Chemistry, Indian Institute of Technology Kharagpur, 721302 Kharagpur, India
| | - Debanjali Ghosh
- Materials Science Centre, Indian Institute of Technology Kharagpur, 721302 Kharagpur, India
| | - Abhijit Garai
- Department of Chemistry, Indian Institute of Technology Kharagpur, 721302 Kharagpur, India
| | - Debabrata Pradhan
- Materials Science Centre, Indian Institute of Technology Kharagpur, 721302 Kharagpur, India
| | - Kumar Biradha
- Department of Chemistry, Indian Institute of Technology Kharagpur, 721302 Kharagpur, India
| |
Collapse
|
9
|
Wen Y, Qin T, Zhou Y. Metal-Organic Frameworks Based Sensor Platforms for Rapid Detection of Contaminants in Wastewater. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5026-5039. [PMID: 38420691 DOI: 10.1021/acs.langmuir.3c03545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Metal-organic frameworks (MOFs) are a type of multifunctional material with organic-inorganic doped metal complexes that have a lot of unsaturated metal sites and a consistent network structure. MOFs work has great performance for enhancing the mass transfer, signal, and sensitivity as well as analyte enrichment. This study highlights the recent advancements of MOFs-based sensors for pollutant detection in a water environment and summarizes the effect of various synthetic materials on the performance of MOFs-based sensors. The related challenges and optimization techniques have been discussed. Then the research results of various MOFs sensors in the detection of wastewater pollutants are analyzed. Finally, the challenges facing MOFs-based water sensor development and the outlook for future research are discussed.
Collapse
Affiliation(s)
- Yitian Wen
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, P. R. China
| | - Tian Qin
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, P. R. China
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, P. R. China
| |
Collapse
|
10
|
Qi Y, Xing Z, Xiu F, Wang Y, Gao X. Chemiluminescence sensing for Hg 2+ in environment water using carbon materials from PVC dechlorination as signal initiator. Anal Bioanal Chem 2024; 416:243-254. [PMID: 37910200 DOI: 10.1007/s00216-023-05012-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023]
Abstract
Chemiluminescence (CL) sensing with good performance remains a challenge. The utilization of secondary residues from polyvinyl chloride (PVC) treatment is the key to improve PVC recycling rate. Herein, dechlorinated carbon materials from PVC/iron scrap co-treatment in subcritical water were used as CL sensing element. It was found that tiny changes in the spatial structure of aptamer could cause huge changes in CL signal of the residue-luminol system. A CL biosensor was constructed for mercury in environment water for the first time. The detection limit was estimated to be 0.37 pM. High sensitivity was mainly due to strong CL triggering and signal amplification from residues and effective regulating residue activity by aptamer space dimension. For real water samples, the results by residue CL analysis were consistent with that by cold vapor atom adsorption spectroscopy (CVAAS). Most strikingly, the used material was secondary residues from the treatment of PVC waste, which reduced the time and energy consumption of CL sensing. This research proposed the approach for routine monitoring mercury in environment but also provided the reference for developing other environmentally beneficial analysis platforms.
Collapse
Affiliation(s)
- Yingying Qi
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China.
| | - Zefeng Xing
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Furong Xiu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Yuan Wang
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Xiang Gao
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| |
Collapse
|
11
|
Zhou D, Zhang S, Khan AU, Chen L, Ge G. A wearable AuNP enhanced metal-organic gel (Au@MOG) sensor for sweat glucose detection with ultrahigh sensitivity. NANOSCALE 2023; 16:163-170. [PMID: 38073477 DOI: 10.1039/d3nr05179j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The demand for sensitive and non-invasive sensors for monitoring glucose levels in sweat has grown considerably in recent years. This study presents the development of a wearable sensor for sweat glucose detection with ultrahigh sensitivity. The sensor was fabricated by embedding Au nanoparticles (AuNPs) and metal-organic gels (MOGs) on nickel foam (NF). A non-enzymatic electrocatalytic glucose sensor has been developed to combine the three-dimensional network of MOGs with more active sites favourable for glucose diffusion and the transfer of electrons from glucose to the electrode. These results show that the sensor has an ultrahigh sensitivity of 13.94 mA mM-1 cm-2, a linear detection range between 2 and 600 μM, and a lower detection limit as low as 1 μM (signal/noise = 3) with comparable accuracy and reliability under non-alkaline conditions to those of high-pressure ion chromatography (HPIC). Furthermore, a wearable sweat glucose sensor has been constructed by sputtering an Au conductive layer on a flexible polydimethylsiloxane (PDMS) substrate and coating it with Au@MOGs. Our work demonstrates that the combination of Au NPs and MOGs can enhance the sensitivity and activity of these materials, making them useful for electrocatalytic glucose monitoring with ultrahigh sensitivity.
Collapse
Affiliation(s)
- Dengfeng Zhou
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 ZhongguancunBeiyitiao, Beijing 100190, PR China.
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shuangbin Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 ZhongguancunBeiyitiao, Beijing 100190, PR China.
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Atta Ullah Khan
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 ZhongguancunBeiyitiao, Beijing 100190, PR China.
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lan Chen
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 ZhongguancunBeiyitiao, Beijing 100190, PR China.
| | - Guanglu Ge
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 ZhongguancunBeiyitiao, Beijing 100190, PR China.
| |
Collapse
|
12
|
Peng Y, Yu L, Sheng M, Wang Q, Jin Z, Huang J, Yang X. Room-Temperature Synthesized Iron/Cobalt Metal-Organic Framework Nanosheets with Highly Efficient Catalytic Activity toward Luminol Chemiluminescence Reaction. Anal Chem 2023; 95:18436-18442. [PMID: 38058120 DOI: 10.1021/acs.analchem.3c03538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Two-dimensional (2D) iron/cobalt metal-organic framework nanosheets (Fe/Co-MOF NSs) were synthesized via the cooperative self-assembly reaction of Fe3+/Co2+ and terephthalic acid at room temperature. The as-prepared 2D Fe/Co-MOF NSs display superior performance in catalysis of the chemiluminescence (CL) reaction between luminol and H2O2. The CL spectrum, UV-vis absorption spectroscopy, radical scavenger experiments, and electron spin resonance (ESR) spectroscopy are utilized to research the possible CL mechanism of the luminol-H2O2-Fe/Co-MOF NSs system. All results indicate that Fe/Co-MOF NSs present outstanding peroxidase-like activity and could catalyze H2O2 to produce 1O2, O2·-, and ·OH, which could react rapidly with the luminol anion radical and result in strong CL. With the highly efficient CL of the luminol-H2O2-Fe/Co-MOF NSs system, a sensitive sensor for the detection of dopamine (DA) is developed based on the inhibitory effect of DA on the CL intensity. Good linearity over the range of 50-800 nM is achieved with a limit of detection of 20.88 nM (S/N = 3). This research demonstrates that 2D Fe/Co-MOF NSs is a highly effective catalyst for luminol CL reaction and has great application potential in the CL field.
Collapse
Affiliation(s)
- Yao Peng
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Linying Yu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Mengting Sheng
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Qian Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhiying Jin
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Jianshe Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Xiurong Yang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| |
Collapse
|
13
|
Cao W, Lin Z, Zheng D, Zhang J, Heng W, Wei Y, Gao Y, Qian S. Metal-organic gels: recent advances in their classification, characterization, and application in the pharmaceutical field. J Mater Chem B 2023; 11:10566-10594. [PMID: 37916468 DOI: 10.1039/d3tb01612a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Metal-organic gels (MOGs) are a type of functional soft substance with a three-dimensional (3D) network structure and solid-like rheological behavior, which are constructed by metal ions and bridging ligands formed under the driving force of coordination interactions or other non-covalent interactions. As the homologous substances of metal-organic frameworks (MOFs) and gels, they exhibit the potential advantages of high porosity, flexible structure, and adjustable mechanical properties, causing them to attract extensive research interest in the pharmaceutical field. For instance, MOGs are often used as excellent vehicles for intelligent drug delivery and programmable drug release to improve the clinical curative effect with reduced side effects. Also, MOGs are often applied as advanced biomedical materials for the repair and treatment of pathological tissue and sensitive detection of drugs or other molecules. However, despite the vigorous research on MOGs in recent years, there is no systematic summary of their applications in the pharmaceutical field to date. The present review systematically summarize the recent research progress on MOGs in the pharmaceutical field, including drug delivery systems, drug detection, pharmaceutical materials, and disease therapies. In addition, the formation principles and classification of MOGs are complemented and refined, and the techniques for the characterization of the structures/properties of MOGs are overviewed in this review.
Collapse
Affiliation(s)
- Wei Cao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China.
| | - Zezhi Lin
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China.
| | - Daoyi Zheng
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Weili Heng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China.
| | - Yuanfeng Wei
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China.
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China.
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China.
| |
Collapse
|
14
|
Zhang Y, Tao CA. Metal-Organic Framework Gels for Adsorption and Catalytic Detoxification of Chemical Warfare Agents: A Review. Gels 2023; 9:815. [PMID: 37888388 PMCID: PMC10606365 DOI: 10.3390/gels9100815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
Chemical warfare agents (CWAs) have brought great threats to human life and social stability, and it is critical to investigate protective materials. MOF (metal-organic framework) gels are a class with an extended MOF architecture that are mainly formed using metal-ligand coordination as an effective force to drive gelation, and these gels combine the unique characteristics of MOFs and organic gel materials. They have the advantages of a hierarchically porous structure, a large specific surface area, machinable block structures and rich metal active sites, which inherently meet the requirements for adsorption and catalytic detoxification of CWAs. A series of advances have been made in the adsorption and catalytic detoxification of MOF gels as chemical warfare agents; however, overall, they are still in their infancy. This review briefly introduces the latest advances in MOF gels, including pure MOF gels and MOF composite gels, and discusses the application of MOF gels in the adsorption and catalytic detoxification of CWAs. Meanwhile, the influence of microstructures (pore structures, metal active site, etc.) on the detoxification performance of protective materials is also discussed, which is of great significance in the exploration of high-efficiency protective materials. Finally, the review looks ahead to next priorities. Hopefully, this review can inspire more and more researchers to enrich the performance of MOF gels for applications in chemical protection and other purification and detoxification processes.
Collapse
Affiliation(s)
| | - Cheng-An Tao
- College of Science, National University of Defense Technology, Changsha 410073, China;
| |
Collapse
|
15
|
Zhang L, Zhang L, Xue J, Yuan H, Zhou C, Guo T, Wang L, Fu Z. Cobalt Species-Loaded MOFs as Chemiluminescent Catalysts for Monitoring Carbendazim. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12785-12792. [PMID: 37643321 DOI: 10.1021/acs.langmuir.3c01634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The application of active metal-based nanoscale catalysts as signal enhancers for chemiluminescent immunoassay (CLIA) is restricted by poor thermodynamic stability and ease of aggregation. For the present exploration, zirconium-based MOFs UiO-66-NH2 were adopted as supports to load cobalt species by an impregnation-reduction approach. Cobalt species were uniformly distributed in the framework architecture of the MOF materials. The prepared cobalt-loaded MOF hybrids, noted as UiO-66-NH2/Co, display superior chemiluminescence (CL) catalytic activity owing to the introduction of cobalt catalytic centers. The CL catalytic capability of UiO-66-NH2/Co hybrids is about 18 times of that of free cobalt ions at the same cobalt amount. The results of mechanism exploration manifest that the hybrids are capable of accelerating the decay of hydrogen peroxide and promoting the yield of reactive oxygen species. Based on their remarkable CL catalytic capability, a CLIA approach was proposed to monitor carbendazim by adopting the hybrids as signal probes, which showed the merits of high sensitivity and satisfactory selectivity. Carbendazim was quantitated within a concentration range of 0.05 to 60 ng mL-1, with a detection limit of 19.8 pg mL-1. The results for monitoring spiked samples verify the acceptable practicality of the proposed CLIA approach.
Collapse
Affiliation(s)
- Lvxia Zhang
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Lingli Zhang
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, Chongqing Institute for Food and Drug Control, Chongqing 401121, China
| | - Jinxia Xue
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Hongwei Yuan
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Chunjie Zhou
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, Chongqing Institute for Food and Drug Control, Chongqing 401121, China
| | - Ting Guo
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Lin Wang
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Zhifeng Fu
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
16
|
Wu X, Hu C, Xiao S, Wang X, Zhen S, Huang C, Li Y. A novel luminol-coordinated silver(I) organic gel with self-enhanced chemiluminescence applied for uric acid detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 300:122906. [PMID: 37257321 DOI: 10.1016/j.saa.2023.122906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023]
Abstract
A novel silver(I)-based metal-organic gel (AgMOG) consisting of luminol as the ligand was synthesized by a facile strategy, which was found to exhibit self-enhancing chemiluminescence (CL) property. Based on this, a new AgMOG-K2S2O8 CL system without additional catalyst was established. According to the results of CL spectra, electron spin resonance (ESR) spectra as well as the influence of radical scavengers to AgMOG-K2S2O8 system, the possible CL mechanism of this system was discussed. In this CL system, AgMOG exhibited the dual properties of catalysis and luminescence. On the one hand, AgMOG can catalyze K2S2O8 to produce SO4•-. The generated SO4•- can be converted to hydroxyl radical (OH•) under alkaline condition, and further converted to other radical oxygen species (ROS, such as 1O2 and O2•-). Furthermore, the reaction between the K2S2O8 and H2O can form H2O2, which also can be catalyzed by AgMOG to produce ROS. On the other hand, the AgMOG can be oxidized by ROS to emit strong CL signal. Then, based on the quenching effect of uric acid (UA) to this CL system, a method for UA detection was established with a good linearity over the range from 0.08 to 10 µmol·L-1. In this work, a new CL luminant with catalytic property was synthesized by a simple method, and a self-enhancing AgMOG-K2S2O8 CL system was developed for the first time, providing a novel direction for the application of MOG in the CL field.
Collapse
Affiliation(s)
- Xinjie Wu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Congyi Hu
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Siyu Xiao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Xue Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Shujun Zhen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Chengzhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Yuanfang Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
17
|
Yang R, Ren Y, Dong W. A novel enzyme-free long-lasting chemiluminescence system based on a luminol functionalized β-cyclodextrin hydrogel for sensitive detection of H 2O 2 in urine and cells. J Mater Chem B 2023; 11:1320-1330. [PMID: 36655431 DOI: 10.1039/d2tb01813f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A novel long-lasting chemiluminescent (CL) hydrogel (β-CD@luminol-Co2+) was synthesized by embedding luminol and cobalt ions (Co2+) into β-cyclodextrin (β-CD) through non-covalent interactions. Due to its porous structure and viscosity, the synthesized β-CD@luminol-Co2+ hydrogel exhibited long-lasting CL properties and can emit light for 12 h under both alkaline and neutral conditions. In addition, the CL intensities of β-CD@luminol-Co2+ were linear with the logarithm of the hydrogen peroxide (H2O2) concentration in the range of 1.0 × 10-11-1.0 × 10-7 M, and the limit of detection (LOD) was 0.63 × 10-11 M and 0.85 × 10-11 M under alkaline and neutral conditions, respectively. On this basis, an enzyme-free CL sensor based on β-CD@luminol-Co2+ was fabricated for the sensitive detection of H2O2 in human urine samples under alkaline conditions, and showed good accuracy and recovery. Since β-CD@luminol-Co2+ showed good CL properties under neutral conditions, it can be applied to detect H2O2 in cells. In order to prolong the emission wavelength of β-CD@luminol-Co2+ for better cell imaging, β-CD@luminol-FL-Co2+ was prepared by adding fluorescein (FL) to β-CD@luminol-Co2+. The as-prepared β-CD@luminol-FL-Co2+ also displayed long-lasting CL properties and showed a linear relationship with H2O2 concentrations. In addition, the maximum emission wavelength of β-CD@luminol-FL-Co2+ was 520 nm, which was red-shifted by 95 nm compared with β-CD@luminol-Co2+. The methyl thiazolyl tetrazolium (MTT) assay results and confocal microscopy images illustrated that β-CD@luminol-FL-Co2+ had low toxicity and can be taken up by A549 cells. Finally, β-CD@luminol-FL-Co2+ was successfully applied for CL imaging and detection of intracellular H2O2 in A549 cells under neutral conditions. This enzyme-free long-lasting CL system with high sensitivity can also be extended to real-time monitoring of H2O2in vivo.
Collapse
Affiliation(s)
- Rui Yang
- School of Pharmacy, Anhui Medical University, Hefei 230032, P. R. China.
| | - Yueran Ren
- School of Pharmacy, Anhui Medical University, Hefei 230032, P. R. China.
| | - Wenxuan Dong
- School of Pharmacy, Anhui Medical University, Hefei 230032, P. R. China.
| |
Collapse
|
18
|
Qi Y, Sun Y, Song D, Wang Y, Xiu F. PVC dechlorination residues as new peroxidase-mimicking nanozyme and chemiluminescence sensing probe with high activity for glucose and ascorbic acid detection. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Guo Y, Hou Y, Lv C, Ma X, Yang M, Jin Y, Li B, Liu W. Tetrakis(4-pyridylphenyl)ethylene-based Zinc Metal-Organic Framework with Aggregation-Induced Chemiluminescence Emission on a Paper Platform for Formaldehyde Detection in Breath. Anal Chem 2023; 95:1739-1746. [PMID: 36574337 DOI: 10.1021/acs.analchem.2c05048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Volatile formaldehyde (FA) in exhaled breath (EB) is considered as a biomarker for lung cancer (LC). On-the-spot selective and sensitive detection of gaseous FA is rather important for LC screening and diagnosis. Herein, a tetrakis(4-pyridylphenyl)ethylene (Py-TPE)-based zinc metal-organic framework (MOF) with excellent aggregation-induced emission (AIE) property was utilized for absorption and selective detection of FA in EB. The porous Zn-Py-TPE served as a gaseous confinement cavity for the adsorption of FA in EB. Interestingly, Zn-Py-TPE was aggregated on paper, and then aggregation-induced chemiluminescence (CL) emission can be triggered by only adding bis(2,4,6-trichlorophenyl)oxalate (TCPO). Though without H2O2, the CL of Zn-Py-TPE-TCPO was enhanced greatly by FA. FA promoted the aggregation of Zn-Py-TPE on paper by forming halogen bonding between FA and Zn-Py-TPE, which contributed to the better selectivity. FA can also stimulate the production of more singlet oxygen (1O2) in the Zn-Py-TPE-TCPO CL system. Hence, FA could be detected via the proposed Zn-Py-TPE-TCPO system with a quantification linear range of 1.0-100.0 ppb and detection limit of 0.3 ppb. This portable, low-cost, and sensitive paper-based platform can achieve trace FA detection in EB and is expected to provide an on-the-spot screening platform for lung cancer.
Collapse
Affiliation(s)
- Yanli Guo
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yue Hou
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Congcong Lv
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Xiaohu Ma
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Min Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yan Jin
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Baoxin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Wei Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
20
|
Qi P, Jia L, Yi M, Zhao E, Liu Y, Song A, Hao J. Chemiluminescent gels of G-quadruplexes in deep eutectic solvents. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Applications of nanomaterial-based chemiluminescence sensors in environmental analysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Kiani A, Alinezhad H, Nemati A, Chaichi MJ. Luminol immobilized on the metal‐organic framework: As an efficient and highly sensitive sensor for the detection of antibiotics in aqueous medium. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ameneh Kiani
- Faculty of Chemistry University of Mazandaran Babolsar Iran
| | | | - Afsaneh Nemati
- Faculty of Chemistry University of Mazandaran Babolsar Iran
| | | |
Collapse
|
23
|
Gu D, Liu Y, Zhu H, Gan Y, Zhang B, Yang W, Hao J. Magnetic porphyrin-based metal organic gel for rapid RhB removal and enhanced antibacterial activity by heterogeneous Photo-Fenton reaction under visible light. CHEMOSPHERE 2022; 303:135114. [PMID: 35623427 DOI: 10.1016/j.chemosphere.2022.135114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Nanomaterials with visible light-driven catalytic ability are beneficial in controlling environmental pollutants. Porphyrin-based metal organic gel (MOG) was herein synthesized in one step and magnetic metal organic gel (MMOG) was successfully prepared via in-situ reaction of MOG and Fe3O4. This MMOG was developed as a novel visible light assisted Fenton-like catalyst. The catalytic experiments showed the high photo-Fenton activity of MMOG in the degradation of Rhodamine B (RhB) in the presence of visible light and H2O2 with a RhB degradation efficiency of 94.2% within 40 min. Notably, the obtained MMOG can kill E. coli and S. aureus with high killing rate (>99.999%) under visible light. Importantly, the MMOG can be recovered simply by an external magnetic field due to the unique magnetic property. This easily synthesized MMOG with photo-Fenton activity under visible light and magnetic property makes MOG based on the photo-Fenton reaction a prospective material for the environmental and biomedical applications.
Collapse
Affiliation(s)
- Dongxu Gu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Yu Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, PR China.
| | - Hongyu Zhu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Ying Gan
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Biao Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Weiting Yang
- School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, PR China.
| | - Jianyuan Hao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, PR China.
| |
Collapse
|
24
|
Ghrayeb M, Chai L. Demonstrating Principle Aspects of Peptide‐ and Protein‐ Based Hydrogels Using Metallogels Examples. Isr J Chem 2022. [DOI: 10.1002/ijch.202200011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mnar Ghrayeb
- Institute of Chemistry The Hebrew University of Jerusalem Edmond J. Safra campus Jerusalem 91904 Israel
| | - Liraz Chai
- Institute of Chemistry The Hebrew University of Jerusalem Edmond J. Safra campus Jerusalem 91904 Israel
| |
Collapse
|
25
|
Wang W, Tasset A, Pyatnitskiy I, Mohamed HG, Taniguchi R, Zhou R, Rana M, Lin P, Capocyan SLC, Bellamkonda A, Chase Sanders W, Wang H. Ultrasound triggered organic mechanoluminescence materials. Adv Drug Deliv Rev 2022; 186:114343. [PMID: 35580814 PMCID: PMC10202817 DOI: 10.1016/j.addr.2022.114343] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/05/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022]
Abstract
Ultrasound induced organic mechanoluminescence materials have become one of the focal topics in wireless light sources since they exhibit high spatiotemporal resolution, biocompatibility and excellent tissue penetration depth. These properties promote great potential in ultrahigh sensitive bioimaging with no background noise and noninvasive nanodevices. Recent advances in chemistry, nanotechnology and biomedical research are revolutionizing ultrasound induced organic mechanoluminescence. Herein, we try to summarize some recent researches in ultrasound induced mechanoluminescence that use various materials design strategies based on the molecular conformational changes and cycloreversion reaction. Practical applications, like noninvasive bioimaging and noninvasive optogenetics, are also presented and prospected.
Collapse
Affiliation(s)
- Wenliang Wang
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Aaron Tasset
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Ilya Pyatnitskiy
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Heba G Mohamed
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Rayna Taniguchi
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Richard Zhou
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Manini Rana
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Peter Lin
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Sam Lander C Capocyan
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Arjun Bellamkonda
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - W Chase Sanders
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Huiliang Wang
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
26
|
Wu XJ, Yang CP, Jiang ZW, Xiao SY, Wang XY, Hu CY, Zhen SJ, Wang DM, Huang CZ, Li YF. A catalyst-free co-reaction system of long-lasting and intensive chemiluminescence applied to the detection of alkaline phosphatase. Mikrochim Acta 2022; 189:181. [PMID: 35394213 DOI: 10.1007/s00604-022-05287-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/17/2022] [Indexed: 10/18/2022]
Abstract
A catalyst-free co-reaction luminol-H2O2-K2S2O8 chemiluminescence (CL) system was developed, with long-life and high-intensity emission, and CL emission lasting for 6 h. A possible mechanism of persistent and intense emission in this CL system was discussed in the context of CL spectra, cyclic voltammetry, electron spin resonance (ESR), and the effects of radical scavengers on luminol-H2O2-K2S2O8 system. H2O2 and K2S2O8 co-reactants can promote each other to continuously generate corresponding radicals (OH•, 1O2, O2•-, SO4•-) that trigger the CL emission of luminol. H2O2 can also be constantly produced by the reaction of K2S2O8 and H2O to further extend the persistence of this CL system. CL emission can be quenched via ascorbic acid (AA), which can be generated through hydrolysis reaction of L-ascorbic acid 2-phosphate trisodium salt (AAP) and alkaline phosphatase (ALP). Next, a CL-based method was established for the detection of ALP with good linearity from 0.08 to 5 U·L-1 and a limit of detection of 0.049 U·L-1. The proposed method was used to detect ALP in human serum samples.
Collapse
Affiliation(s)
- Xin Jie Wu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China
| | - Chang Ping Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China
| | - Zhong Wei Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China
| | - Si Yu Xiao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China
| | - Xiao Yan Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China
| | - Cong Yi Hu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China
| | - Shu Jun Zhen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China
| | - Dong Mei Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, People's Republic of China.
| | - Yuan Fang Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
27
|
Sharma P, Wang G. 4,6- O-Phenylethylidene Acetal Protected D-Glucosamine Carbamate-Based Gelators and Their Applications for Multi-Component Gels. Gels 2022; 8:191. [PMID: 35323304 PMCID: PMC8953293 DOI: 10.3390/gels8030191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 11/21/2022] Open
Abstract
The self-assembly of carbohydrate-based low molecular weight gelators has led to useful advanced soft materials. The interactions of the gelators with various cations and anions are important in creating novel molecular architectures and expanding the scope of the small molecular gelators. In this study, a series of thirteen new C-2 carbamates of the 4,6-O-phenylethylidene acetal-protected D-glucosamine derivatives has been synthesized and characterized. These compounds are rationally designed from a common sugar template. All carbamates synthesized were found to be efficient gelators and three compounds are also hydrogelators. The resulting gels were characterized using optical microscopy, atomic force microscopy, and rheology. The gelation mechanisms were further elucidated using 1H NMR spectroscopy at different temperatures. The isopropyl carbamate hydrogelator 7 formed hydrogels at 0.2 wt% and also formed gels with several tetra alkyl ammonium salts, and showed effectiveness in the creation of gel electrolytes. The formation of metallogels using earth-abundant metal ions such as copper, nickel, iron, zinc, as well as silver and lead salts was evaluated for a few gelators. Using chemiluminescence spectroscopy, the metal-organic xerogels showed enzyme-like properties and enhanced luminescence for luminol. In addition, we also studied the applications of several gels for drug immobilizations and the gels showed sustained release of naproxen from the gel matrices. This robust sugar carbamate-derived gelator system can be used as the scaffold for the design of other functional materials with various types of applications.
Collapse
Affiliation(s)
| | - Guijun Wang
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529, USA;
| |
Collapse
|
28
|
Zhang YW, Cao Y, Mao CJ, Jiang D, Zhu W. An Iron(III)-Based Metal-Organic Gel-Catalyzed Dual Electrochemiluminescence System for Cytosensing and In Situ Evaluation of the VEGF 165 Subtype. Anal Chem 2022; 94:4095-4102. [PMID: 35196001 DOI: 10.1021/acs.analchem.2c00032] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The recent surge of interest in metal-organic gels (MOGs) has emerged for their soft porous structure, large surface area, and abundant active metal sites, making them a promising candidate for building catalyst matrices. In this work, facilely synthesized Fe(III)-organic gel was directly used as a robust electrode matrix. Detailed studies illustrated that their Fe(III) centers can speed up the electro-oxidation/reduction of the H2O2 coreactant to produce reactive oxygen species for enhancing a potential-resolved dual electrochemiluminescence (ECL) emission. Among them, the anodic signal of luminol varied with the cell concentration based on the impedance ECL mechanism, while the cathodic signal of CdS quantum dots traced the VEGF165 subtype at cell surface by specific aptamer recognition. Based on this, a ratiometric strategy was proposed for accurate cytosensing by eliminating environmental interference. Moreover, by cooperating these two signals, a novel strategy was developed for direct evaluation of the VEGF165 subtype, further realizing rapid drug screening and subtype assessment on different cell lines. This work not only opens up the promising application of MOGs as an effective catalyst matrix but also develops reliable cell assays and protein subtype identification for clinical diagnosis and research.
Collapse
Affiliation(s)
- Yi-Wen Zhang
- School of the Environment, School of Chemistry and Chemical Engineering, State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, PR China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, PR China
| | - Yue Cao
- School of the Environment, School of Chemistry and Chemical Engineering, State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, PR China
| | - Chang-Jie Mao
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Ministry of Education), Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, PR China
| | - Dechen Jiang
- School of the Environment, School of Chemistry and Chemical Engineering, State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, PR China
| | - Wenlei Zhu
- School of the Environment, School of Chemistry and Chemical Engineering, State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, PR China
| |
Collapse
|
29
|
Wychowaniec JK, Saini H, Scheibe B, Dubal DP, Schneemann A, Jayaramulu K. Hierarchical porous metal–organic gels and derived materials: from fundamentals to potential applications. Chem Soc Rev 2022; 51:9068-9126. [DOI: 10.1039/d2cs00585a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review summarizes recent progress in the development and applications of metal–organic gels (MOGs) and their hybrids and derivatives dividing them into subclasses and discussing their synthesis, design and structure–property relationship.
Collapse
Affiliation(s)
- Jacek K. Wychowaniec
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - Haneesh Saini
- Department of Chemistry, Indian Institute of Technology Jammu, Nagrota Bypass Road, Jammu & Kashmir, 181221, India
| | - Błażej Scheibe
- Adam Mickiewicz University in Poznań, NanoBioMedical Centre, Wszechnicy Piastowskiej 3, PL61614 Poznań, Poland
| | - Deepak P. Dubal
- School of Chemistry and Physics, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4001, Australia
| | - Andreas Schneemann
- Lehrstuhl für Anorganische Chemie I, Technische Universität Dresden, Bergstr. 66, 01067 Dresden, Germany
| | - Kolleboyina Jayaramulu
- Department of Chemistry, Indian Institute of Technology Jammu, Nagrota Bypass Road, Jammu & Kashmir, 181221, India
| |
Collapse
|
30
|
Wan G, Congyi H, Shujun Z, Chengzhi H, Yuanfang L. Iron-based Metal-organic gel-derived Ferric oxide Nanosheets for Photo-Fenton Degradation of Rhodamine B. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22070304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
31
|
Wang Y, Du C, Liu Z, Pei K, Zhang Y, Qi W. Chemiluminescence “turn-on” detection of tyrosinase activity via in situ generation of dopamine based on a lucigenin and riboflavin system. NEW J CHEM 2022. [DOI: 10.1039/d1nj05628j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A lucigenin and riboflavin chemiluminescence system was utilized for the first to achieve “turn-on” detection of tyrosinase activity via the in situ generation of dopamine.
Collapse
Affiliation(s)
- Yi Wang
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing, 401331, P. R. China
| | - Chengpei Du
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing, 401331, P. R. China
| | - Ze Liu
- Technology Center, China Tobacco Yunnan Industrial Co., Ltd, Kunming, 650231, P. R. China
| | - Kanglin Pei
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing, 401331, P. R. China
| | - Yan Zhang
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing, 401331, P. R. China
| | - Wenjing Qi
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing, 401331, P. R. China
| |
Collapse
|
32
|
Xu M, Wang T. Postsynthetic Modification of Mixed‐Ligand Metal‐Organic Gels for Adsorbing Nonpolar Organic Solvents. ChemistrySelect 2021. [DOI: 10.1002/slct.202102848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Meng‐Ying Xu
- National Museum of China Beijing 100006 China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
| | - Tian‐Xiong Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Science Beijing 100049 China
| |
Collapse
|
33
|
Lv C, Guo X, Hou Y, Liu W, Guo Y, Zhang Z, Jin Y, Li B. Long-Lasting Luminol Chemiluminescence Emission with 1,10-Phenanthroline-2,9-dicarboxylic Acid Copper(II) Complex on Paper. ACS APPLIED MATERIALS & INTERFACES 2021; 13:53787-53797. [PMID: 34726366 DOI: 10.1021/acsami.1c14563] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As most of the known systems are flashtype, long-lasting chemiluminescence (CL) emissions are extremely needed for the application of cold light sources, accurate CL quantitative analysis, and biological mapping. In this work, the flashtype system of luminol was altered to a long lasting CL system just because of the paper substrate. The Cu(II)-based organic complex was loaded on the paper surface, which can trigger luminol-H2O2 to produce a long lasting CL emission for over 30 min. By using 1,10-phenanthroline-2,9-dicarboxylic acid (PDA) as the ligand, a hexacoordinated Cu(II)-based organic complex was synthesized by the simple freeze-drying method. It is interesting that the complex morphology can be controlled by adding different amounts of water in the synthesizing procedure. The complex with a certain size can be definitely trapped in the pores of the cellulose. Then, slow diffusion, which can be attributed to the long lasting CL emission, was produced. With the high catalytic activity of the complex, reactive oxygen species from H2O2 was generated and was responsible for the high CL intensity. By using the paper substrate, the flash-type luminol system can be easily transferred to the long-duration CL system without any extra reagent. This long-lasting emission system was used for hydrogen sulfide detection by the CL imaging method. This paper-based sensor has great potential for CL imaging in the clinical field in the future.
Collapse
Affiliation(s)
- Congcong Lv
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Xiaoyan Guo
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yue Hou
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Wei Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yanli Guo
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Zixuan Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yan Jin
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Baoxin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
34
|
Synthesis and Self-Assembling Properties of Peracetylated β-1-Triazolyl Alkyl D-Glucosides and D-Galactosides. CHEMISTRY 2021. [DOI: 10.3390/chemistry3030068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Carbohydrate-based low-molecular-weight gelators (LMWGs) are useful classes of compounds due to their numerous applications. Among sugar-based LMWGs, certain peracetylated sugar beta-triazole derivatives were found to be effective organogelators and showed interesting self-assembling properties. To further understand the structural influence towards molecular assemblies and obtain new functional materials with interesting properties, we designed and synthesized a library of tetraacetyl beta-1-triazolyl alkyl-D-glucosides and D-galactosides, in which a two or three carbon spacer is inserted between the anomeric position and the triazole moiety. A series of 16 glucose derivatives and 14 galactose derivatives were synthesized and analyzed. The self-assembling properties of these new triazole containing glycoconjugates in different solvents were analyzed. Several glucose derivatives were found to be effective LMWGs, with compound 7a forming gels in a variety of organic solvents as well as in the presence of metal ions in aqueous solutions. The organogels formed by several compounds were characterized using optical microscopy, atomic force microscopy (AFM) and UV-vis spectroscopy, etc. The co-gels formed by compound 7a with the Fmoc derivative 7i showed interesting fluorescence enhancement upon gelation. Several gelators were also characterized using powder X-ray diffraction and FT-IR spectroscopy. The potential applications of these sugar-based gelators for drug delivery and dye removal were also studied.
Collapse
|
35
|
Kong M, Wei W, Wang W, Chen H, He J. A novel metal organic gel with superior oxidase-like activity for efficient and sensitive chemiluminescence detection of uric acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 257:119773. [PMID: 33848952 DOI: 10.1016/j.saa.2021.119773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/07/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
It is found that MIL-100(Fe) gels, as a kind of metal-organic gels (MOGs), constitutting of iron (Fe3+) and trimesic acid (H3BTC), has been regarded as the efficient catalyst of luminol chemiluminescence (CL) system without the presence of extra oxidants in the present work. MIL-100(Fe) gels that have possessed mimicking oxidase-like activity can excellently enhanced luminol CL intensity by accelerating the generation of reactive oxygen species. Furthermore, with the addition of uric acid (UA), the CL signal has been dramatically inhibited under alkaline condition. Hence, the CL intensity inhibiting ratio (I0/IS) was proportional to the increasing concentration of UA in the rang from 10 nM to 4000 nM with the detection limit of 5.9 nM. This method has been successfully applied for analysis of UA with acceptable recoveries ranging from 97.0% to 107.9% in urine sample. These results indicates that this study open up a novel, sensitive and convenient method to detect UA in biological samples.
Collapse
Affiliation(s)
- Mengjuan Kong
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Wei Wei
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Weifeng Wang
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Hongli Chen
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China.
| | - Jiang He
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
36
|
Geiselhart CM, Mutlu H, Barner‐Kowollik C. Vorbeugen oder Heilen – die beispiellose Notwendigkeit von selbstberichtenden Materialien. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Christina M. Geiselhart
- Soft Matter Synthesis Laboratory Institut für Biologische Grenzflächen 3 Hermann-von-Helmholtz-Platz 1 76344 Eggenstein Leopoldshafen Deutschland
- Macromolecular Architectures Institut für Technische Chemie und Polymerchemie (ITCP) Karlsruher Institut für Technologie (KIT) Engesserstraße 18 76131 Karlsruhe Deutschland
| | - Hatice Mutlu
- Soft Matter Synthesis Laboratory Institut für Biologische Grenzflächen 3 Hermann-von-Helmholtz-Platz 1 76344 Eggenstein Leopoldshafen Deutschland
- Macromolecular Architectures Institut für Technische Chemie und Polymerchemie (ITCP) Karlsruher Institut für Technologie (KIT) Engesserstraße 18 76131 Karlsruhe Deutschland
| | - Christopher Barner‐Kowollik
- Macromolecular Architectures Institut für Technische Chemie und Polymerchemie (ITCP) Karlsruher Institut für Technologie (KIT) Engesserstraße 18 76131 Karlsruhe Deutschland
- Centre for Materials Science Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australien
- School of Chemistry and Physics Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australien
| |
Collapse
|
37
|
Geiselhart CM, Mutlu H, Barner‐Kowollik C. Prevent or Cure-The Unprecedented Need for Self-Reporting Materials. Angew Chem Int Ed Engl 2021; 60:17290-17313. [PMID: 33217121 PMCID: PMC8359351 DOI: 10.1002/anie.202012592] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/08/2020] [Indexed: 01/08/2023]
Abstract
Self-reporting smart materials are highly relevant in modern soft matter materials science, as they allow for the autonomous detection of changes in synthetic polymers, materials, and composites. Despite critical advantages of such materials, for example, prolonged lifetime or prevention of disastrous material failures, they have gained much less attention than self-healing materials. However, as diagnosis is critical for any therapy, it is of the utmost importance to report the existence of system changes and their exact location to prevent them from spreading. Thus, we herein critically review the chemistry of self-reporting soft matter materials systems and highlight how current challenges and limitations may be overcome by successfully transferring self-reporting research concepts from the laboratory to the real world. Especially in the space of diagnostic self-reporting systems, the recent SARS-CoV-2 (COVID-19) pandemic indicates an urgent need for such concepts that may be able to detect the presence of viruses or bacteria on and within materials in a self-reporting fashion.
Collapse
Affiliation(s)
- Christina M. Geiselhart
- Soft Matter Synthesis LaboratoryInstitute for Biological Interfaces 3Hermann-von-Helmholtz-Platz 176344Eggenstein LeopoldshafenGermany
- Macromolecular ArchitecturesInstitute for Technical Chemistry and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)Engesserstrasse 1876131KarlsruheGermany
| | - Hatice Mutlu
- Soft Matter Synthesis LaboratoryInstitute for Biological Interfaces 3Hermann-von-Helmholtz-Platz 176344Eggenstein LeopoldshafenGermany
- Macromolecular ArchitecturesInstitute for Technical Chemistry and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)Engesserstrasse 1876131KarlsruheGermany
| | - Christopher Barner‐Kowollik
- Macromolecular ArchitecturesInstitute for Technical Chemistry and Polymer Chemistry (ITCP)Karlsruhe Institute of Technology (KIT)Engesserstrasse 1876131KarlsruheGermany
- Centre for Materials ScienceQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
- School of Chemistry and PhysicsQueensland University of Technology (QUT)2 George StreetBrisbaneQLD4000Australia
| |
Collapse
|
38
|
A novel copper-based metal-organic framework as a peroxidase-mimicking enzyme and its glucose chemiluminescence sensing application. Anal Bioanal Chem 2021; 413:4407-4416. [PMID: 34081166 DOI: 10.1007/s00216-021-03394-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/06/2021] [Accepted: 05/06/2021] [Indexed: 12/20/2022]
Abstract
A novel copper-based metal-organic framework (Cu-MOF) with a large specific surface area and high porosity was synthesized. The Cu-MOF was a good peroxidase-mimicking enzyme and showed a high affinity with hydrogen peroxide in a wide pH range. The catalytic mechanism of Cu-MOF has been studied further based on comparing the characteristic of the Cu-MOF with some isomorphic MOFs. The catalytic activity center of Cu-MOF was determined to be the cupric ion rather than the ligand, which effectively promoted the generation of free radicals and electron transfer in the reaction progress. The high affinity of Cu-MOF to hydrogen peroxide proved it as an ideal catalyst for the chemiluminescence (CL) reaction involving hydrogen peroxide. Therefore, the CL method with high sensitivity could be established for detecting various substrates. A double-enzyme CL glucose biosensing platform was constructed for the determination of serum glucose employing the peroxidase-mimicking properties of Cu-MOF as well as glucose oxidase (GOx).
Collapse
|
39
|
Zong LP, Ruan LY, Li J, Marks RS, Wang JS, Cosnier S, Zhang XJ, Shan D. Fe-MOGs-based enzyme mimetic and its mediated electrochemiluminescence for in situ detection of H 2O 2 released from Hela cells. Biosens Bioelectron 2021; 184:113216. [PMID: 33894426 DOI: 10.1016/j.bios.2021.113216] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/16/2021] [Accepted: 03/31/2021] [Indexed: 12/20/2022]
Abstract
Enzyme mimetics have attracted wide interest due to their inherent enzyme-like activity and unique physicochemical properties, as well as promising applications in disease diagnosis, treatment and monitoring. Inspired by the attributes of nonheme iron enzymes, synthetic models were designed to mimic their capability and investigate the catalytic mechanisms. Herein, metal-organic gels (Fe-MOGs) with horseradish peroxidase (HRP) like Fe-NX structure were successfully synthesized though the coordination between iron and 1,10-phenanthroline-2,9-dicarboxylic acid (PDA) and exhibited excellent peroxidase-like activity. Its structure-activity relationship and the in-situ electrochemiluminescence (ECL) detection of H2O2 secreted by Hela cells were further investigated. The highly dispersed Fe-NX active sites inside Fe-MOGs were able to catalyze the decomposition of H2O2 into large amounts of reactive oxygen species (ROS) via a Fenton-like reaction under a low overpotential. Due to the accumulation of ROS free radicals, the luminol ECL emission was significantly amplified. A proof-of-concept biosensor was constructed with a detection limit as low as 2.2 nM and a wide linear range from 0.01 to 40 μM. As a novel metal organic gels based enzyme mimetic, Fe-MOGs show great promises in early cancer detection and pathological process monitoring.
Collapse
Affiliation(s)
- Li-Ping Zong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ling-Yu Ruan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Junji Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Robert S Marks
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jun-Song Wang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Serge Cosnier
- University of Grenoble Alpes-CNRS, DCM UMR 5250, F-38000, Grenoble, France
| | - Xue-Ji Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Dan Shan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
40
|
Li B, Xiao D, Gai X, Yan B, Ye H, Tang L, Zhou Q. A multi-responsive organogel and colloid based on the self-assembly of a Ag(i)-azopyridine coordination polymer. SOFT MATTER 2021; 17:3654-3663. [PMID: 33666629 DOI: 10.1039/d1sm00013f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this work, through the coordination of C3 symmetric azopyridine ligands and Ag(i), coordination polymers with azo groups on the main chain were prepared. The trans coordination polymer formed an organogel with a network of nanofibers at low critical gelation concentrations, and it exhibited the abilities of self-healing and multi-stimuli response to heating, light, mechanical shearing, and chemicals due to the presence of dynamic coordinating bonds. On the other hand, the cis coordination polymer was found to assemble into nanoparticles to give a responsive colloid, which can produce fibrous precipitation in several days upon visible light irradiation due to the isomerization of the azo groups. This work provides a novel example for the design of a multi-responsive organogel and colloid based on the structural transformation of coordination polymers.
Collapse
Affiliation(s)
- Botian Li
- Department of Materials Science and Engineering, China University of Petroleum, Beijing, 102249, P. R. China
| | | | | | | | | | | | | |
Collapse
|
41
|
Cui L, Zhao MH, Li CC, Wang Q, Luo X, Zhang CY. A Host–Guest Interaction-Based and Metal–Organic Gel-Based Biosensor with Aggregation-Induced Electrochemiluminescence Enhancement for Methyltransferase Assay. Anal Chem 2021; 93:2974-2981. [DOI: 10.1021/acs.analchem.0c04904] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Lin Cui
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Min-hui Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Chen-chen Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Quanbo Wang
- Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250014, China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Chun-yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
42
|
Yang CP, He L, Huang CZ, Li YF, Zhen SJ. Continuous singlet oxygen generation for persistent chemiluminescence in Cu-MOFs-based catalytic system. Talanta 2021; 221:121498. [DOI: 10.1016/j.talanta.2020.121498] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 11/30/2022]
|
43
|
Kong M, Jin P, Wei W, Wang W, Qin H, Chen H, He J. Covalent organic frameworks (COF-300-AR) with unique catalytic performance in luminol chemiluminescence for sensitive detection of serotonin. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
44
|
Wang R, Yue N, Fan A. Nanomaterial-enhanced chemiluminescence reactions and their applications. Analyst 2020; 145:7488-7510. [PMID: 33030463 DOI: 10.1039/d0an01300e] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chemiluminescence (CL) analysis is a trace analytical method that possesses advantages including high sensitivity, wide linear range, easy operation, and simple instruments. With the development of nanotechnology, many nanomaterial (NM)-enhanced CL systems have been established in recent years and applied for the CL detection of metal ions, anions, small molecules, tumor markers, sequence-specific DNA, and RNA. This review summarizes the research progress of the nanomaterial-enhanced CL systems the past five years. These CL reactions include luminol, peroxyoxalate, lucigenin, ultraweak CL reactions, and so on. The CL mechanisms of the nanomaterial-enhanced CL systems are discussed in the first section. Nanomaterials take part in the CL reactions as the catalyst, CL emitter, energy acceptor, and reductant. Their applications are summarized in the second section. Finally, the challenges and opportunities are discussed.
Collapse
Affiliation(s)
- Ruyuan Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China.
| | | | | |
Collapse
|
45
|
Wang D, Chen A, Morris J, Wang G. Stimuli-responsive gelators from carbamoyl sugar derivatives and their responses to metal ions and tetrabutylammonium salts. RSC Adv 2020; 10:40068-40083. [PMID: 35520864 PMCID: PMC9057480 DOI: 10.1039/d0ra07587f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/07/2020] [Indexed: 12/22/2022] Open
Abstract
Carbohydrate-based low molecular weight gelators (LMWGs) are interesting compounds with a variety of applications. In this research, a library of nineteen carbamate derivatives of N-acetyl-d-glucosamine were synthesized and characterized, and several derivatives were found to be effective LMWGs. They formed gels in pump oils as well as mixtures of water with ethanol or water with DMSO. The structures of the carbamoyl chains played an important role in the gelation properties, short chain aliphatic derivatives and phenyl carbamates formed gels in more solvents than certain aromatic and dimeric carbamates. The phenyl carbamate gelator was also selected for the encapsulation of naproxen sodium, and the drug slowly diffused from the gel to the aqueous phase as indicated by UV-vis spectroscopy. In addition, we also found that the p-methoxyl benzyl carbamate derivative showed interesting stimuli-responsive gelation properties in the presence of metal salts and tetrabutylammonium salts. The gels were characterized using optical microscopy, scanning electron microscopy, rheology and other methods. The self-assembling mechanisms of the gelators were studied using 1H NMR spectroscopy. The preparation, characterization, and molecular assembling properties of these compounds are reported. The results obtained from this study are useful for the design of other LMWGs and the sugar derivatives can be explored for different biological applications. The formation of spontaneous ionic gels can be applicable for a plethora of applications including catalysis and environmental remediation.
Collapse
Affiliation(s)
- Dan Wang
- Department of Chemistry and Biochemistry, Old Dominion University 4541 Hampton Boulevard Norfolk VA 23529-0126 USA +1 757 683 4628 +1 757 683 3781
| | - Anji Chen
- Department of Chemistry and Biochemistry, Old Dominion University 4541 Hampton Boulevard Norfolk VA 23529-0126 USA +1 757 683 4628 +1 757 683 3781
| | - Joedian Morris
- Department of Chemistry and Biochemistry, Old Dominion University 4541 Hampton Boulevard Norfolk VA 23529-0126 USA +1 757 683 4628 +1 757 683 3781
| | - Guijun Wang
- Department of Chemistry and Biochemistry, Old Dominion University 4541 Hampton Boulevard Norfolk VA 23529-0126 USA +1 757 683 4628 +1 757 683 3781
| |
Collapse
|
46
|
Wang Y, Wang S, Huang M, Chen F. Bifunctionalized Prussian blue analogue particles oxidize luminol to produce chemiluminescence without other oxidants. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
47
|
Xiao SY, Li Y, Zhen SJ, Huang CZ, Li YF. Efficient peroxydisulfate electrochemiluminescence system based the novel silver metal-organic gel as an effective enhancer. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
48
|
Zhang L, Hou Y, Lv C, Liu W, Zhang Z, Peng X. Copper-based metal-organic xerogels on paper for chemiluminescence detection of dopamine. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4191-4198. [PMID: 32780054 DOI: 10.1039/d0ay01191f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, copper(ii)-containing metal-organic xerogels (Cu-MOXs), which were composed of copper as the central ion and 2,2'-bipyridine-6,6'-dicarboxylic acid as the ligand, were quickly synthesized by a mild facile strategy. The Cu-MOXs exhibited superior catalytic performance for the luminol-H2O2 chemiluminescence (CL) system. The possible mechanism was studied via CL spectra, UV-Vis absorption and electron paramagnetic resonance (ESR). Since dopamine (DA) can inhibit the reaction of this system, a sensitive paper-based CL device for the detection of DA was established. Under the optimal experimental conditions, the linear range of this method was 40-200 nM with a detection limit of 10 nM. The proposed method was used for the determination of DA in urine samples.
Collapse
Affiliation(s)
- Liu Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, PR China.
| | | | | | | | | | | |
Collapse
|
49
|
Zhang J, Liu J. Nanozyme‐based luminescence detection. LUMINESCENCE 2020; 35:1185-1194. [DOI: 10.1002/bio.3893] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/19/2020] [Accepted: 06/02/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Jinyi Zhang
- Department of Chemistry, Waterloo Institute for Nanotechnology University of Waterloo Waterloo Ontario Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology University of Waterloo Waterloo Ontario Canada
| |
Collapse
|
50
|
Zhang L, Hou Y, Guo X, Liu W, Lv C, Zhang C, Jin Y, Li B. Fe(III) bipyridyl or phenanthroline complexes with oxidase-like activity for sensitive colorimetric detection of glutathione. LUMINESCENCE 2020; 35:1350-1359. [PMID: 32515064 DOI: 10.1002/bio.3897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/22/2020] [Accepted: 06/02/2020] [Indexed: 12/17/2022]
Abstract
In this study, three types of Fe(III) bipyridyl or phenanthroline (Fe(III)-L3 ) complex could directly catalyze 3,3',5,5'-tetramethylbenzidine (TMB) to induce blue chromogenic changes without H2 O2 . Fe(III)-L3 complex could induce a colour change in TMB directly after a short incubation time. Due to the high oxidase-like activity of the Fe(III)-L3 complexes, superoxide anion radicals (O2 •- ) were formed in solution. Intermediates radical involving oxo-iron species were then produced that oxidized TMB to its oxidation products (oxTMB), which had an absorbance maximum at 652 nm. Glutathione (GSH) could inhibit the oxidation reaction of the Fe(III)-L3 complex-TMB system, a rapidly colorimetric method was established for the specific detection of GSH that had a detection limit of 0.1 μM. Furthermore, Fe(III)-L3 complexes could catalyze TMB to oxTMB directly without H2 O2 . This fast and simple colorimetric method may open a new avenue for application in the point-of-care diagnosis field using the TMB chromogenic system.
Collapse
Affiliation(s)
- Liu Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Yue Hou
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Xiaoyan Guo
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Wei Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Congcong Lv
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Chunyang Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Yan Jin
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
| | - Baoxin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, China
| |
Collapse
|