1
|
Song X, Xu Y, Tao X, Gao X, Wu Y, Yu R, He Y, Tao Y. BODIPY Cored A-D-A'-D-A Type Nonfused-Ring Electron Acceptor for Efficient Polymer Solar Cells. Macromol Rapid Commun 2022; 43:e2100828. [PMID: 35032076 DOI: 10.1002/marc.202100828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/05/2022] [Indexed: 11/11/2022]
Abstract
In this work, boron dipyrromethene (BODIPY) is for the first time employed as electron-deficient core (A') to construct an A-D-A'-D-A type nonfused-ring electron acceptor (NFREA) for polymer solar cells (PSCs). Among, cyclopentadithiophene (CPDT) and fluorinated dicyanoindanone (DFIC) are involved as electron-donating (D) bridges and terminal A groups, respectively. Bearing with the steric BODIPY core, tMBCIC exhibits twisted configuration with dihedral angles >45o between BODIPY and CPDT bridges. Thus, compared with the BODIPY-free planar A-D-D-A structured bCIC, reduced aggregation, weakened intramolecular D-A interactions with up-shifted LUMO by 0.4 eV as well as blue-shifted absorption by up to 150 nm is observed in tMBCIC. Moreover, owing to the intrinsic large molar extinction coefficient from BODIPY, promoted light-harvest ability is achieved for tMBCIC, particularly in its blend films. Therefore, PSCs by using PBDB-T as donor, tMBCIC as NFREA afford superior power conversion efficiency (PCE) of 9.22% and higher open-circuit voltage (Voc ) of 0.954 V compared to 4.47% and 0.739 V from bCIC-devices. Moreover, compared to other BODIPY-flanked electron acceptors (<5%) reported so far, BODIPY-cored tMBCIC realizes a remarkable progress in PCE. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiaochen Song
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Yuanyuan Xu
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Xianwang Tao
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Xuyu Gao
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Yijing Wu
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Ruitao Yu
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Yinming He
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Youtian Tao
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| |
Collapse
|
2
|
Shavez M, Panda AN. Assessing Effects of Different π bridges on Properties of Random Benzodithiophene-thienothiophene Donor and Non-fullerene Acceptor Based Active Layer. J Phys Chem A 2021; 125:9852-9864. [PMID: 34738461 DOI: 10.1021/acs.jpca.1c07378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This report presents the effect of insertion of four different π bridges, furan, thienothiophene, thiophene, and thiazole, into a random benzodithiophene (BDT)-fluorinated-thienothiophene (TT-F) based donor. Starting from a structure of synthesized donor (D)-acceptor (A) random copolymer with 3:1 ratio, we have designed four D-π-A systems with four different π bridges. Structural, optoelectronic, and charge transport/transfer properties of these donors and donor/NDI (NDI = poly[N,N'-bis(2-hexyldecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)) blends are investigated using DFT and TD-DFT methodologies. Our results show that the thiazole based TzP1 oligomer has the deepest HOMO value resulting in the highest open circuit voltage among all systems. The maximum absorption wavelengths of π-linked systems are red-shifted compared to the parent molecule. Rates of charge transfer and charge recombination are the highest and smallest in case of the thiazole/NDI blend system. In addition, hole mobilities in thiophene, thienothiophene, and thiazole based systems are larger than in the parent system. The results indicate that the thiazole unit among the four π bridge units is the most suitable for active layer construction.
Collapse
Affiliation(s)
- Mohd Shavez
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Aditya N Panda
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
3
|
Luo Y, Luo Y, Huang X, Liu S, Cao Z, Guo L, Li Q, Cai YP, Wang Y. A New Ester-Substituted Quinoxaline-Based Narrow Bandgap Polymer Donor for Organic Solar Cells. Macromol Rapid Commun 2020; 42:e2000683. [PMID: 33350003 DOI: 10.1002/marc.202000683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/08/2020] [Indexed: 12/28/2022]
Abstract
The electron-deficient ester group substitution in the sidechain of the commonly used electron-withdrawing quinoxaline (Qx) unit is seldom studied, while ester-substituted Qx units possess easy syntheses and facile modulation of the polymer solubility, and the enhanced electron-withdrawing property of ester substituted Qx unit can theoretically broaden the optical absorption of the resulting polymers and improve the open circuit voltage in the corresponding organic solar cells (OSCs). In this work, a novel ester-substituted Qx-based narrow bandgap polymer (NBG) donor material PBDTT-EFQx, which exhibits an absorption edge of 790 nm (bandgap < 1.6 eV), is designed and synthesized. Results show that the OSCs composed of PBDTT-EFQx and PC71 BM present the highest power conversion efficiency (PCE) of 6.8%, compared to PCEs of 5.0% for PBDTT-EFQx:ITIC based devices and 4.1% for PBDTT-EFQx:N2200 based devices, respectively. Characterizations and analyses indicate that the PC71 BM-based OSCs have well-matched energy levels, better complementary light absorption, the highest and most balanced carrier mobilities, as well as the lowest degree of recombination losses, and therefore, leading to the highest PCE among the three types of OSCs. This work reveals that the ester-substituted quinoxaline unit is one of the potential building blocks for NBG polymer donors.
Collapse
Affiliation(s)
- Yue Luo
- School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangdong Provincial Engineering Technology Research Center for Materials for Energy Conversion and Storage, South China Normal University (SCNU), Guangzhou, Guangdong, 510006, P. R. China
| | - Yingtong Luo
- School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangdong Provincial Engineering Technology Research Center for Materials for Energy Conversion and Storage, South China Normal University (SCNU), Guangzhou, Guangdong, 510006, P. R. China
| | - Xuelong Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, P. R. China
| | - Shengjian Liu
- School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangdong Provincial Engineering Technology Research Center for Materials for Energy Conversion and Storage, South China Normal University (SCNU), Guangzhou, Guangdong, 510006, P. R. China
| | - Zhixiong Cao
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, P. R. China
| | - Lingzhi Guo
- School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangdong Provincial Engineering Technology Research Center for Materials for Energy Conversion and Storage, South China Normal University (SCNU), Guangzhou, Guangdong, 510006, P. R. China
| | - Qingduan Li
- School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangdong Provincial Engineering Technology Research Center for Materials for Energy Conversion and Storage, South China Normal University (SCNU), Guangzhou, Guangdong, 510006, P. R. China
| | - Yue-Peng Cai
- School of Chemistry, Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangdong Provincial Engineering Technology Research Center for Materials for Energy Conversion and Storage, South China Normal University (SCNU), Guangzhou, Guangdong, 510006, P. R. China
| | - Yang Wang
- Allstar Tech (Zhongshan) Co., Ltd, Yanjiang West 1, No.6 Road, Keji Avenue, Torch Hi-tech Industrial Development Zone, Zhongshan, Guangdong, 528437, P. R. China
| |
Collapse
|
4
|
Liao Z, Yang K, Hou L, Li J, Lv J, Singh R, Kumar M, Chen Q, Dong X, Xu T, Hu C, Duan T, Kan Z, Lu S, Xiao Z. Thiazole-Functionalized Terpolymer Donors Obtained via Random Ternary Copolymerization for High-Performance Polymer Solar Cells. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01462] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zhihui Liao
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing 400714, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Ke Yang
- Key Laboratory of Low-Grade Energy Utilization Technologies and Systems (Ministry of Education), School of Power Engineering, Chongqing University, Chongqing 400044, P.R. China
| | - Licheng Hou
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing 400714, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jun Li
- Library & Information Center, Anhui University of Finance and Economics, Bengbu 233030, P.R. China
| | - Jie Lv
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing 400714, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Ranbir Singh
- Department of Energy & Materials Engineering, Dongguk University, Seoul 04620, South Korea
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, South Korea
| | - Manish Kumar
- Department of Energy & Materials Engineering, Dongguk University, Seoul 04620, South Korea
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, South Korea
| | - Qianqian Chen
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing 400714, P.R. China
| | - Xiyue Dong
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing 400714, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Tongle Xu
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing 400714, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Chao Hu
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing 400714, P.R. China
| | - Tainan Duan
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing 400714, P.R. China
| | - Zhipeng Kan
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing 400714, P.R. China
| | - Shirong Lu
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing 400714, P.R. China
| | - Zeyun Xiao
- Chongqing Institute of Green and Intelligent Technology, Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chinese Academy of Sciences, Chongqing 400714, P.R. China
| |
Collapse
|
5
|
Wang X, Han J, Huang D, Wang J, Xie Y, Liu Z, Li Y, Yang C, Zhang Y, He Z, Bao X, Yang R. Optimized Molecular Packing and Nonradiative Energy Loss Based on Terpolymer Methodology Combining Two Asymmetric Segments for High-Performance Polymer Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:20393-20403. [PMID: 32286056 DOI: 10.1021/acsami.0c01323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, a random terpolymer methodology combining two electron-rich units, asymmetric thienobenzodithiophene (TBD) and thieno[2,3-f]benzofuran segments, is systematically investigated. The synergetic effect is embodied on the molecular packing and nanophase when copolymerized with 1,3-bis(2-ethylhexyl)benzo[1,2-c:4,5-c']dithiophene-4,8-dione, producing an impressive power conversion efficiency (PCE) of 14.2% in IT-4F-based NF-PSCs, which outperformed the corresponding D-A copolymers. The balanced aggregation and better interpenetrating network of the TBD50:IT-4F blend film can lead to mixing region exciton splitting and suppress carrier recombination, along with high yields of long-lived carriers. Moreover, the broad applicability of terpolymer methodology is successfully validated in most electron-deficient systems. Especially, the TBD50/Y6-based device exhibits a high PCE of 15.0% with a small energy loss (0.52 eV) enabled by the low nonradiative energy loss (0.22 eV), which are among the best values reported for polymers without using benzodithiophene unit to date. These results demonstrate an outstanding terpolymer approach with backbone engineering to raise the hope of achieving even higher PCEs and to enrich organic photovoltaic materials reservoir.
Collapse
Affiliation(s)
- Xunchang Wang
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianhua Han
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Da Huang
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Jianing Wang
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, Institute of Semiconductor Science and Technology, South China Normal University, Guangzhou 510631, China
| | - Yuan Xie
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Zhilin Liu
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Yonghai Li
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Chunming Yang
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Yong Zhang
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, Institute of Semiconductor Science and Technology, South China Normal University, Guangzhou 510631, China
| | - Zhicai He
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Xichang Bao
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Renqiang Yang
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| |
Collapse
|
6
|
Gao X, Wu Y, Tao Y, Huang W. Conjugated Random Terpolymer Donors towardsHigh‐EfficiencyPolymer Solar Cells. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.201900503] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xuyu Gao
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University 30 South Puzhu Road Nanjing Jiangsu 211816 China
| | - Yijing Wu
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University 30 South Puzhu Road Nanjing Jiangsu 211816 China
| | - Youtian Tao
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University 30 South Puzhu Road Nanjing Jiangsu 211816 China
| | - Wei Huang
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University 30 South Puzhu Road Nanjing Jiangsu 211816 China
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications 9 Wenyuan Road Nanjing Jiangsu 210046 China
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU) 127 West Youyi Road, Xi'an Shaanxi 710072 China
| |
Collapse
|
7
|
Dang D, Yu D, Wang E. Conjugated Donor-Acceptor Terpolymers Toward High-Efficiency Polymer Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1807019. [PMID: 30701605 DOI: 10.1002/adma.201807019] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/06/2018] [Indexed: 06/09/2023]
Abstract
The development of conjugated alternating donor-acceptor (D-A) copolymers with various electron-rich and electron-deficient units in polymer backbones has boosted the power conversion efficiency (PCE) over 17% for polymer solar cells (PSCs) over the past two decades. However, further enhancements in PCEs for PSCs are still imperative to compensate their imperfect stability for fulfilling practical applications. Meanwhile development of these alternating D-A copolymers is highly demanding in creative design and syntheses of novel D and/or A monomers. In this regard, when being possible to adopt an existing monomer unit as a third component from its libraries, either a D' unit or an A' moiety, to the parent D-A type polymer backbones to afford conjugated D-A terpolymers, it will give a facile and cost-effective method to improve their light absorption and tune energy levels and also interchain packing synergistically. Moreover, the rationally controlled stoichiometry for these components in such terpolymers also provides access for further fine-tuning these factors, thus resulting in high-performance PSCs. Herein, based on their unique features, the recent progress of conjugated D-A terpolymers for efficient PSCs is reviewed and it is discussed how these factors influence their photovoltaic performance, for providing useful guidelines to design new terpolymers toward high-efficiency PSCs.
Collapse
Affiliation(s)
- Dongfeng Dang
- School of Science, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Donghong Yu
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, DK-9220, Denmark
- Sino-Danish Center for Education and Research (SDC), Aarhus, DK-8000, Denmark
| | - Ergang Wang
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
| |
Collapse
|
8
|
Zhang X, Wang F, Tong J, Zhang M, Guo P, Li J, Xia Y, Wang C, Wu H. Systematically investigating the influence of inserting alkylthiophene spacers on the aggregation, photo-stability and optoelectronic properties of copolymers from dithieno[2,3-d:2′,3′-d′]benzo[1,2-b:4,5-b′]dithiophene and benzothiadiazole derivatives. Polym Chem 2019. [DOI: 10.1039/c8py01764f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PDTBDT-SBT and PDTBDT-SFBT presented a superior trade-off between band gaps and photo-stabilities.
Collapse
Affiliation(s)
- Xiaofang Zhang
- School of Materials Science and Engineering
- Lanzhou Jiaotong University
- Lanzhou
- P.R. China
- Key Laboratory of Optoelectronic Technology and Intelligent Control of Ministry Education
| | - Fang Wang
- School of Materials Science and Engineering
- Lanzhou Jiaotong University
- Lanzhou
- P.R. China
- Key Laboratory of Optoelectronic Technology and Intelligent Control of Ministry Education
| | - Junfeng Tong
- School of Materials Science and Engineering
- Lanzhou Jiaotong University
- Lanzhou
- P.R. China
- Key Laboratory of Optoelectronic Technology and Intelligent Control of Ministry Education
| | - Mingjin Zhang
- School of Materials Science and Engineering
- Lanzhou Jiaotong University
- Lanzhou
- P.R. China
- Key Laboratory of Optoelectronic Technology and Intelligent Control of Ministry Education
| | - Pengzhi Guo
- National green coating technology and equipment Engineering Technology Research Center
- Lanzhou Jiaotong University
- Lanzhou
- P.R. China
| | - Jianfeng Li
- School of Materials Science and Engineering
- Lanzhou Jiaotong University
- Lanzhou
- P.R. China
| | - Yangjun Xia
- School of Materials Science and Engineering
- Lanzhou Jiaotong University
- Lanzhou
- P.R. China
| | - Chenglong Wang
- National green coating technology and equipment Engineering Technology Research Center
- Lanzhou Jiaotong University
- Lanzhou
- P.R. China
| | - Hongbin Wu
- Institute of Polymer Optoelectronic Materials and Devices
- State Key Laboratory of Luminescent Materials and Devices
- South China University of Technology
- Guangzhou 510640
- P.R. China
| |
Collapse
|
9
|
Xu B, Pelse I, Agarkar S, Ito S, Zhang J, Yi X, Chujo Y, Marder S, So F, Reynolds JR. Randomly Distributed Conjugated Polymer Repeat Units for High-Efficiency Photovoltaic Materials with Enhanced Solubility and Processability. ACS APPLIED MATERIALS & INTERFACES 2018; 10:44583-44588. [PMID: 30543279 DOI: 10.1021/acsami.8b15522] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Three structurally disordered terpolymer derivatives of PffBT4T-2OD (PCE11), prepared by replacing a varied amount of bithiophene linkers with single thiophenes, were found to exhibit reduced aggregation in solution with increasing thiophene content, while important redox and optoelectronic properties remained similar to those of PffBT4T-2OD. Solar cells based on random terpolymer-PC71BM blends exhibited average power conversion efficiencies of over 9.5% when processed with preheated substrates, with fill factors above 70%, exceeding those from PffBT4T-2OD. Thanks to increased solubility, random terpolymer devices were able to be fabricated on room-temperature substrates, reaching virtually identical performance among all three polymers despite remarkable thicknesses of ∼400 nm. Thus, we show that the random terpolymer approach is successful in improving processability while maintaining device performance.
Collapse
Affiliation(s)
| | | | | | - Shunichiro Ito
- Department of Polymer Chemistry, Graduate School of Engineering , Kyoto University , Katsura, Nishikyo-ku, Kyoto 615-8510 , Japan
| | | | - Xueping Yi
- Department of Materials Science and Engineering , North Carolina State University , Raleigh , North Carolina 27606 , United States
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering , Kyoto University , Katsura, Nishikyo-ku, Kyoto 615-8510 , Japan
| | | | - Franky So
- Department of Materials Science and Engineering , North Carolina State University , Raleigh , North Carolina 27606 , United States
| | | |
Collapse
|