1
|
Horkay F, Douglas JF. Influence of solvent quality on the swelling and deswelling and the shear modulus of semi-dilute solution cross-linked poly(vinyl acetate) gels. J Chem Phys 2023; 158:244901. [PMID: 37377156 PMCID: PMC10310356 DOI: 10.1063/5.0156604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
We systematically examine the influence of varying temperature (T) over a large range in model poly(vinyl acetate) gels swollen in isopropyl alcohol. The theta temperature Θ, at which the second virial coefficient A2 vanishes, is found to be equal to within numerical uncertainty to the corresponding high molecular mass polymer solution value without cross-links, and we quantify the swelling and deswelling of our model gels relative to their size at T = Θ, as customary for individual flexible polymer chains in solutions. We also quantify the "solvent quality" dependence of the shear modulus G relative to G(T = Θ) and compare to the hydrogel swelling factor, α. We find that all our network swelling and deswelling data can be reduced to a scaling equation of the same general form as derived from renormalization group theory for flexible linear polymer chains in solutions so that it is not necessary to invoke either the Flory-Huggins mean field theory or the Flory-Rehner hypothesis that the elastic and mixing contributions to the free energy of network swelling are separable to describe our data. We also find that changes of G relative to G(T = Θ) are directly related to α. At the same time, we find that classical rubber elasticity theory describes many aspects of these semi-dilute solution cross-linked networks, regardless of the solvent quality, although the prefactor clearly reflects the existence of network defects whose concentration depends on the initial polymer concentration of the polymer solution from which the networks were synthesized.
Collapse
Affiliation(s)
- Ferenc Horkay
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jack F. Douglas
- Material Measurement Laboratory, Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
2
|
Clarke BR, Kim H, Ilton M, Watkins JJ, Crosby AJ, Tew GN. The Impact of Polymerization Chemistry on the Mechanical Properties of Poly(dimethylsiloxane) Bottlebrush Elastomers. Macromolecules 2022. [PMID: 37502106 PMCID: PMC10373355 DOI: 10.1021/acs.macromol.2c01332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We compare the low-strain mechanical properties of bottlebrush elastomers (BBEs) synthesized using ring-opening metathesis and free radical polymerization. Through comparison of experimentally measured elastic moduli and those predicted by an ideal, affine model, we evaluate the efficiency of our networks in forming stress-supporting strands. This comparison allowed us to develop a structural efficiency ratio that facilitates the prediction of mechanical properties relative to polymerization chemistry (e.g., softer BBEs when polymerizing under dilute conditions). This work highlights the impact that polymerization chemistry has on the structural efficiency ratio and the resultant mechanical properties of BBEs with identical side chains, providing another "knob" by which to control polymer network properties.
Collapse
Affiliation(s)
- Brandon R. Clarke
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Hyemin Kim
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Mark Ilton
- Department of Physics, Harvey Mudd College, Claremont, California 91711, United States
| | - James J. Watkins
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Alfred J. Crosby
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Gregory N. Tew
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
3
|
Fraser D, Nguyen T, Kotelsky A, Lee W, Buckley M, Benoit DSW. Hydrogel Swelling-Mediated Strain Induces Cell Alignment at Dentin Interfaces. ACS Biomater Sci Eng 2022; 8:3568-3575. [PMID: 35793542 PMCID: PMC9364318 DOI: 10.1021/acsbiomaterials.2c00566] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Cell and tissue alignment
is a defining feature of periodontal
tissues. Therefore, the development of scaffolds that can guide alignment
of periodontal ligament cells (PDLCs) relative to tooth root (dentin)
surfaces is highly relevant for periodontal tissue engineering. To
control PDLC alignment adjacent to the dentin surface, poly(ethylene
glycol) (PEG)-based hydrogels were explored as a highly tunable matrix
for encapsulating cells and directing their activity. Specifically,
a composite system consisting of dentin blocks, PEG hydrogels, and
PDLCs was created to control PDLC alignment through hydrogel swelling.
PDLCs in composites with minimal hydrogel swelling showed random alignment
adjacent to dentin blocks. In direct contrast, the presence of hydrogel
swelling resulted in PDLC alignment perpendicular to the dentin surface,
with the degree and extension of alignment increasing as a function
of swelling. Replicating this phenomenon with different molds, block
materials, and cells, together with predictive modeling, indicated
that PDLC alignment was primarily a biomechanical response to swelling-mediated
strain. Altogether, this study describes a novel method for inducing
cell alignment adjacent to stiff surfaces through applied strain and
provides a model for the study and engineering of periodontal and
other aligned tissues.
Collapse
Affiliation(s)
- David Fraser
- Eastman Institute for Oral Health, Department of Periodontology, University of Rochester Medical Center, Rochester, New York 14620, United States.,Translational Biomedical Science, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Tram Nguyen
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Alexander Kotelsky
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Whasil Lee
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Department of Pharmacology & Physiology, University of Rochester Medical Center, Rochester, New York 14642, United States.,Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Mark Buckley
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, United States.,Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York 14642, United States.,Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, United States.,Materials Science Program, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
4
|
Arora A, Lin TS, Olsen BD. Coarse-Grained Simulations for Fracture of Polymer Networks: Stress Versus Topological Inhomogeneities. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Akash Arora
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Tzyy-Shyang Lin
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Bradley D. Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Rebello NJ, Beech HK, Olsen BD. Adding the Effect of Topological Defects to the Flory-Rehner and Bray-Merrill Swelling Theories. ACS Macro Lett 2021; 10:531-537. [PMID: 35570765 DOI: 10.1021/acsmacrolett.0c00909] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Flory-Rehner and Bray-Merrill swelling theories are venerable theories for calculating the swelling of polymer networks and are widely applied across polymer materials. Here, these theories are revised to include cyclic topological defects present in polymer networks by using a modified phantom network model. These closed-form equations assume defect contributions to the swelling elasticity to be linear and additive and allow different assumptions regarding prestrain of larger loops to be incorporated. To compare to the theories, swelling experiments are performed on end-linked poly(ethylene glycol) gels in which the topological defects (primary and secondary loops) have been previously measured. Gels with higher loop densities exhibit higher swelling ratios. An equation is derived to compare swelling models independent of knowledge of the Flory-Huggins χ parameter, showing that the revised swelling models for loop defects are more accurate than both the phantom network model that neglects loops and the Bray-Merrill equation.
Collapse
Affiliation(s)
- Nathan J. Rebello
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Haley K. Beech
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Bradley D. Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
6
|
Danielsen SPO, Beech HK, Wang S, El-Zaatari BM, Wang X, Sapir L, Ouchi T, Wang Z, Johnson PN, Hu Y, Lundberg DJ, Stoychev G, Craig SL, Johnson JA, Kalow JA, Olsen BD, Rubinstein M. Molecular Characterization of Polymer Networks. Chem Rev 2021; 121:5042-5092. [PMID: 33792299 DOI: 10.1021/acs.chemrev.0c01304] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polymer networks are complex systems consisting of molecular components. Whereas the properties of the individual components are typically well understood by most chemists, translating that chemical insight into polymer networks themselves is limited by the statistical and poorly defined nature of network structures. As a result, it is challenging, if not currently impossible, to extrapolate from the molecular behavior of components to the full range of performance and properties of the entire polymer network. Polymer networks therefore present an unrealized, important, and interdisciplinary opportunity to exert molecular-level, chemical control on material macroscopic properties. A barrier to sophisticated molecular approaches to polymer networks is that the techniques for characterizing the molecular structure of networks are often unfamiliar to many scientists. Here, we present a critical overview of the current characterization techniques available to understand the relation between the molecular properties and the resulting performance and behavior of polymer networks, in the absence of added fillers. We highlight the methods available to characterize the chemistry and molecular-level properties of individual polymer strands and junctions, the gelation process by which strands form networks, the structure of the resulting network, and the dynamics and mechanics of the final material. The purpose is not to serve as a detailed manual for conducting these measurements but rather to unify the underlying principles, point out remaining challenges, and provide a concise overview by which chemists can plan characterization strategies that suit their research objectives. Because polymer networks cannot often be sufficiently characterized with a single method, strategic combinations of multiple techniques are typically required for their molecular characterization.
Collapse
Affiliation(s)
- Scott P O Danielsen
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Haley K Beech
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Shu Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Bassil M El-Zaatari
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Xiaodi Wang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | | | | | - Zi Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Patricia N Johnson
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Yixin Hu
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - David J Lundberg
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Georgi Stoychev
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Stephen L Craig
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Julia A Kalow
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Bradley D Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Michael Rubinstein
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States.,Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.,Departments of Biomedical Engineering and Physics, Duke University, Durham, North Carolina 27708, United States.,World Primer Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
7
|
Pronoitis C, Hakkarainen M, Odelius K. Long-chain polyamide covalent adaptable networks based on renewable ethylene brassylate and disulfide exchange. Polym Chem 2021. [DOI: 10.1039/d1py00811k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Long-chain polyamide covalent adaptable networks with high strength and short relaxation times were prepared based on a renewable ethylene brassylate and disulfide exchange.
Collapse
Affiliation(s)
- Charalampos Pronoitis
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, 100 44 Stockholm, Sweden
| | - Minna Hakkarainen
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, 100 44 Stockholm, Sweden
| | - Karin Odelius
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, 100 44 Stockholm, Sweden
| |
Collapse
|
8
|
Jangizehi A, Schmid F, Besenius P, Kremer K, Seiffert S. Defects and defect engineering in Soft Matter. SOFT MATTER 2020; 16:10809-10859. [PMID: 33306078 DOI: 10.1039/d0sm01371d] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Soft matter covers a wide range of materials based on linear or branched polymers, gels and rubbers, amphiphilic (macro)molecules, colloids, and self-assembled structures. These materials have applications in various industries, all highly important for our daily life, and they control all biological functions; therefore, controlling and tailoring their properties is crucial. One way to approach this target is defect engineering, which aims to control defects in the material's structure, and/or to purposely add defects into it to trigger specific functions. While this approach has been a striking success story in crystalline inorganic hard matter, both for mechanical and electronic properties, and has also been applied to organic hard materials, defect engineering is rarely used in soft matter design. In this review, we present a survey on investigations on defects and/or defect engineering in nine classes of soft matter composed of liquid crystals, colloids, linear polymers with moderate degree of branching, hyperbranched polymers and dendrimers, conjugated polymers, polymeric networks, self-assembled amphiphiles and proteins, block copolymers and supramolecular polymers. This overview proposes a promising role of this approach for tuning the properties of soft matter.
Collapse
Affiliation(s)
- Amir Jangizehi
- Johannes Gutenberg University Mainz, Department of Chemistry, Duesbergweg 10-14, D-55128 Mainz, Germany
| | | | | | | | | |
Collapse
|
9
|
Arora A, Lin TS, Beech HK, Mochigase H, Wang R, Olsen BD. Fracture of Polymer Networks Containing Topological Defects. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01038] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Akash Arora
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Tzyy-Shyang Lin
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Haley K. Beech
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Hidenobu Mochigase
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Furukawa Electric Co., Ltd., Marunouchi Nakadori Bldg., 2-3, Marunouchi 2-chome,
Chiyodaku, Tokyo 100-8322, Japan
| | - Rui Wang
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Bradley D. Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
Luo K, Wangari C, Subhash G, Spearot DE. Effect of Loop Defects on the High Strain Rate Behavior of PEGDA Hydrogels: A Molecular Dynamics Study. J Phys Chem B 2020; 124:2029-2039. [DOI: 10.1021/acs.jpcb.9b11378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
11
|
Gu Y, Zhao J, Johnson JA. Polymer Networks: From Plastics and Gels to Porous Frameworks. Angew Chem Int Ed Engl 2020; 59:5022-5049. [PMID: 31310443 DOI: 10.1002/anie.201902900] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/02/2019] [Indexed: 12/21/2022]
Abstract
Polymer networks, which are materials composed of many smaller components-referred to as "junctions" and "strands"-connected together via covalent or non-covalent/supramolecular interactions, are arguably the most versatile, widely studied, broadly used, and important materials known. From the first commercial polymers through the plastics revolution of the 20th century to today, there are almost no aspects of modern life that are not impacted by polymer networks. Nevertheless, there are still many challenges that must be addressed to enable a complete understanding of these materials and facilitate their development for emerging applications ranging from sustainability and energy harvesting/storage to tissue engineering and additive manufacturing. Here, we provide a unifying overview of the fundamentals of polymer network synthesis, structure, and properties, tying together recent trends in the field that are not always associated with classical polymer networks, such as the advent of crystalline "framework" materials. We also highlight recent advances in using molecular design and control of topology to showcase how a deep understanding of structure-property relationships can lead to advanced networks with exceptional properties.
Collapse
Affiliation(s)
- Yuwei Gu
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Julia Zhao
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| |
Collapse
|
12
|
Gu Y, Zhao J, Johnson JA. Polymernetzwerke: Von Kunststoffen und Gelen zu porösen Gerüsten. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201902900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuwei Gu
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Julia Zhao
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Jeremiah A. Johnson
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| |
Collapse
|
13
|
Mann J, Rossi RL, Smith AAA, Appel EA. Universal Scaling Behavior during Network Formation in Controlled Radical Polymerizations. Macromolecules 2019; 52:9456-9465. [PMID: 31894160 PMCID: PMC6933816 DOI: 10.1021/acs.macromol.9b02109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/15/2019] [Indexed: 01/14/2023]
Abstract
Despite the ubiquity of branched and network polymers in biological, electronic, and rheological applications, it remains difficult to predict the network structure arising from polymerization of vinyl and multivinyl monomers. While controlled radical polymerization (CRP) techniques afford modularity and control in the synthesis of (hyper)branched polymers, a unifying understanding of network formation providing grounded predictive power is still lacking. A current limitation is the inability to predict the number and weight average molecular weights that arise during the synthesis of (hyper)branched polymers using CRP. This study addresses this literature gap through first building intuition via a growth boundary analysis on how certain environmental cues (concentration, monomer choice, and cross-linker choice) affect the cross-link efficiency during network formation through experimental gel point measurements. We then demonstrate, through experimental gel point normalization, universal scaling behavior of molecular weights in the synthesis of branched polymers corroborated by previous literature experiments. Moreover, the normalization employed in this analysis reveals trends in the macroscopic mechanical properties of networks synthesized using CRP techniques. Gel point normalization employed in this analysis both enables a polymer chemist to target specific number and weight average molecular weights of (hyper)branched polymers using CRP and demonstrates the utility of CRP for gel synthesis.
Collapse
Affiliation(s)
- Joseph
L. Mann
- Department of Materials Science
and Engineering, Stanford University, Stanford, California 94305, United States
| | - Rachel L. Rossi
- Department of Materials Science
and Engineering, Stanford University, Stanford, California 94305, United States
| | - Anton A. A. Smith
- Department of Materials Science
and Engineering, Stanford University, Stanford, California 94305, United States
| | - Eric A. Appel
- Department of Materials Science
and Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
14
|
Wiley KL, Ovadia EM, Calo CJ, Huber RE, Kloxin AM. Rate-based approach for controlling the mechanical properties of 'thiol-ene' hydrogels formed with visible light. Polym Chem 2019; 10:4428-4440. [PMID: 32405326 PMCID: PMC7218207 DOI: 10.1039/c9py00447e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The mechanical properties of synthetic hydrogels traditionally have been controlled with the concentration, molecular weight, or stoichiometry of the macromolecular building blocks used for hydrogel formation. Recently, the rate of formation has been recognized as an important and effective handle for controlling the mechanical properties of these water-swollen polymer networks, owing to differences in network heterogeneity (e.g., defects) that arise based on the rate of gelation. Building upon this, in this work, we investigate a rate-based approach for controlling mechanical properties of hydrogels both initially and temporally with light. Specifically, synthetic hydrogels are formed with visible light-initiated thiol-ene 'click' chemistry (PEG-8-norbornene, dithiol linker, LAP photoinitiator with LED lamp centered at 455 nm), using irradiation conditions to control the rate of formation and the mechanical properties of the resulting hydrogels. Further, defects within these hydrogels were subsequently exploited for temporal modulation of mechanical properties with a secondary cure using low doses of long wavelength UV light (365 nm). The elasticity of the hydrogel, as measured with Young's and shear moduli, was observed to increase with increasing light intensity and concentration of photoinitiator used for hydrogel formation. In situ measurements of end group conversion during hydrogel formation with magic angle spinning (MAS 1H NMR) correlated with these mechanical properties measurements, suggesting that both dangling end groups and looping contribute to the observed mechanical properties. Dangling end groups provide reactive handles for temporal stiffening of hydrogels with a secondary UV-initiated thiol-ene polymerization, where an increase in Young's modulus by a factor of ~ 2.5x was observed. These studies demonstrate how the rate of photopolymerization can be tuned with irradiation wavelength, intensity, and time to control the properties of synthetic hydrogels, which may prove useful in a variety of applications from coatings to biomaterials for controlled cell culture and regenerative medicine.
Collapse
Affiliation(s)
- Katherine L Wiley
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States
| | - Elisa M Ovadia
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States
| | - Christopher J Calo
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States
| | - Rebecca E Huber
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States
| | - April M Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States
- Department of Material Science and Engineering, University of Delaware, Newark, DE 19716, United States
| |
Collapse
|
15
|
|
16
|
Oshri O, Biswas S, Balazs AC. Modeling the formation of double rolls from heterogeneously patterned gels. Phys Rev E 2019; 99:033003. [PMID: 30999426 DOI: 10.1103/physreve.99.033003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Indexed: 11/07/2022]
Abstract
Both stimuli-responsive gels and growing biological tissue can undergo pronounced morphological transitions from two-dimensional (2D) layers into 3D geometries. We derive an analytical model that allows us to quantitatively predict the features of 2D-to-3D shape changes in polymer gels that encompasses different degrees of swelling within the sample. We analyze a particular configuration that emerges from a flat rectangular gel that is divided into two strips (bistrips), where each strip is swollen to a different extent in solution. The final configuration yields double rolls that display a narrow transition layer between two cylinders of constant radii. To characterize the rolls' shapes, we modify the theory of thin incompatible elastic sheets to account for the Flory-Huggins interaction between the gel and the solvent. This modification allows us to derive analytical expressions for the radii, the amplitudes, and the length of the transition layer within a given roll. Our predictions agree quantitatively with available experimental data. In addition, we carry out numerical simulations that account for the complete nonlinear behavior of the gel and show good agreement between the analytical predictions and the numerical results. Our solution sheds light on a stress focusing pattern that forms at the border between two dissimilar soft materials. Moreover, models that provide quantitative predictions on the final morphology in such heterogeneously swelling hydrogels are useful for understanding growth patterns in biology as well as accurately tailoring the structure of gels for various technological applications.
Collapse
Affiliation(s)
- Oz Oshri
- Chemical Engineering Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Santidan Biswas
- Chemical Engineering Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Anna C Balazs
- Chemical Engineering Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| |
Collapse
|
17
|
Kim J, Lee D. Crisscrossing coordination networks: ligand doping to control the chemomechanical properties of stimuli-responsive metallogels. Chem Sci 2019; 10:3864-3872. [PMID: 31015928 PMCID: PMC6461021 DOI: 10.1039/c8sc05480k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 02/23/2019] [Indexed: 11/21/2022] Open
Abstract
Metallogels respond to external stimuli by changing their mechanical properties. To gain a fine control over this phase-shifting event, we have designed and introduced intentional structural mismatches into the otherwise tightly knit metal-organic networks. Built using biphenolate-derived multidirectional/multidentate ligands, these soft materials display markedly different rheological properties depending on the level of "ligand doping", as well as the type of metal ion serving as a key structural support. A zinc metallogel optimized through this process responds to acids, both in the gas stream and liquid phase, by a rapid gel-sol transition and visually discernible colour change.
Collapse
Affiliation(s)
- Junghwan Kim
- Department of Chemistry , Seoul National University , 1 Gwanak-ro, Gwanak-gu , Seoul 08826 , Korea .
| | - Dongwhan Lee
- Department of Chemistry , Seoul National University , 1 Gwanak-ro, Gwanak-gu , Seoul 08826 , Korea .
| |
Collapse
|
18
|
Gu Y, Schauenburg D, Bode JW, Johnson JA. Leaving Groups as Traceless Topological Modifiers for the Synthesis of Topologically Isomeric Polymer Networks. J Am Chem Soc 2018; 140:14033-14037. [DOI: 10.1021/jacs.8b07967] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yuwei Gu
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Dominik Schauenburg
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Jeffrey W. Bode
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Jeremiah A. Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
19
|
Saalwächter K, Seiffert S. Dynamics-based assessment of nanoscopic polymer-network mesh structures and their defects. SOFT MATTER 2018; 14:1976-1991. [PMID: 29504001 DOI: 10.1039/c7sm02444d] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Polymer-network gels often exhibit complex nanoscopic architectures. First, the polymer-network mesh topology on scales of 1-10 nm is usually not uniform and regular, but disordered and irregular. Second, on top of that, many swollen polymer networks display spatial inhomogeneity of their polymer segmental density and crosslinking density on scales of 10-100 nm. This multi-scale structural complexity affects the permeability, mechanical strength, and optical clarity of the polymer gels, which is of central relevance for their performance in popular applications. As a result, there is a need to characterize the polymer network structures on multiple scales. On the scale of the spatial inhomogeneity of crosslinking, 10-100 nm, scattering of neutrons, X-rays, and light has extraordinary utility and is well established. On the scale of the mesh topology, 1-10 nm, in contrast, experimental techniques are less established. This review intends to close this gap by reviewing two intrinsically dynamic methods that yield information on polymer network mesh structures. First, NMR-based assessment of residual dipolar proton-spin couplings, which arise upon the introduction of crosslinks into a liquidlike polymer system to impart partial solidlike characteristics, is suitable to quantitatively assess network meshes and local network defects. Second, diffusive penetration of molecular, macromolecular, and mesoscopic colloidal probes through a polymer gel provides insight into its obstructing network mesh structure and its potential irregularity. Either method is highly synergistic to scattering-based assessment of the network structures on larger scales, and in concert, a rich picture on the nano- and mesoscopic gel topology is obtained.
Collapse
Affiliation(s)
- Kay Saalwächter
- Martin-Luther-University Halle-Wittenberg, Institute of Physics - NMR Group, Betty-Heimann-Str. 7, D-06120 Halle/Saale, Germany.
| | | |
Collapse
|