1
|
Bharadwaj N, Pathak B. Localized charge-induced ORR/OER activity in doped fullerenes for Li-air battery applications. NANOSCALE 2024; 16:5257-5266. [PMID: 38363168 DOI: 10.1039/d3nr05309a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Non-aqueous Li-air batteries have garnered significant interest in recent years. The key challenge lies in the development of efficient catalysts to overcome the sluggish kinetics associated with the oxygen reduction reaction (ORR) during discharge and the oxygen evolution reaction (OER) during charging at the cathode. In this work, we conducted a comprehensive study on B/N-doped and BN co-doped fullerenes using first-principles analysis. Our results show significant changes in the geometries, electronic properties, and catalytic behaviors of doped and co-doped fullerenes. The coexistence of boron and nitrogen boosts the formation energy, enhancing stability compared to pristine and single-doped structures. C179B exhibits minimal overpotentials (0.98 V), implying superior catalyst performance for ORR and OER in LABs and significantly better performance than Pt (111) (3.48 V) and standard graphene (3.51 V). The electron-deficient nature of the B atom makes it provide its vacant 2pz orbital for conjugation with the p-electrons of nearby carbon atoms. Consequently, boron serves as a highly active site due to the localization of positive charge, which improves the adsorption of intermediates through oxygen atoms. Moreover, the higher activity of B-doped systems than N-doped systems in lithium-rich environments is opposite to the observed trend in the reported PEM fuel cells. This work introduces doped and co-doped fullerenes as LAB catalysts, offering insights into their tunable ORR/OER activity via doping with various heteroatoms and fullerene size modulation.
Collapse
Affiliation(s)
- Nishchal Bharadwaj
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| |
Collapse
|
2
|
He Y, Su Y, Qin Y, Ding L, Li X, Mei S, Zhang Y, Ma Y, Wei L, Gu Y, Peng Y, Deng Z. Stepping Up the Kinetics of Li-O 2 Batteries by Shrinking Down the Li 2O 2 Granules through Concertedly Enhanced Catalytic Activity and Photoactivity of Se-Doped LaCoO 3. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9285-9295. [PMID: 36758222 DOI: 10.1021/acsami.2c19975] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Owing to their structural tunability for furnishing high catalytic activity and photoactivity, perovskite oxides are a class of promising materials for high-performance photocathode catalysts in a photoassisted lithium oxygen battery (LOB), which is still in its infancy. Herein, single-crystalline LaCoO3 (LCO) is successfully synthesized through a microwave-assisted approach and selenylated to simultaneously introduce anionic doping and oxygen vacancies, boosting not only the electrocatalytic activity toward reversible Li2O2 formation/decomposition, but also the photoactivity to further reduce the charge/discharge polarization. As a result, LOBs utilizing Se-doped LCO as the photocathode catalyst demonstrate a superior performance under illumination in all aspects of energy efficiency, specific capacity, and cycling stability, ranking among the best reported in the literature for perovskite oxides. The photoenhanced charge kinetics is found to be correlated with the accelerated Li2O2 nucleation with lowered granule size, which is key to both the improved charge/discharge capacity and reversibility. The results underscore the tailoring of perovskite structure to aggrandize both the catalytic activity and photoactivity for concertedly promoting the kinetics of LOBs.
Collapse
Affiliation(s)
- Ying He
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Yanhui Su
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Yongze Qin
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Leyu Ding
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Xinjian Li
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Shiwei Mei
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Yanzhi Zhang
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Yong Ma
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Le Wei
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Yuting Gu
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Yang Peng
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Zhao Deng
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| |
Collapse
|
3
|
Kim JG, Noh Y, Kim Y. Highly Reversible Li‐ion Full Batteries: Coupling Li‐rich Li1.20Ni0.28Mn0.52O2 Microcube Cathodes with Carbon‐decorated MnO Microcube Anodes. ChemElectroChem 2022. [DOI: 10.1002/celc.202200233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jong Guk Kim
- Korea Basic Science Institute Research Center for Materials Analysis KOREA, REPUBLIC OF
| | - Yuseong Noh
- Pohang University of Science and Technology Department of Chemical Engineering KOREA, REPUBLIC OF
| | - Youngmin Kim
- Korea Research Institute of Chemical Technology Chemical & Process Technology Division 141 Gajeongro, Yuseong 34114 Daejeon KOREA, REPUBLIC OF
| |
Collapse
|
4
|
Metal-organic framework-derived ZrO2/NiCo2O4/graphene mesoporous cake-like structure as enhanced bifunctional electrocatalytic cathodes for long life Li-O2 batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Nanoarchitectonics of the supercapacitor performance of LaNiO3 perovskite on the graphitic-C3N4 doped reduced graphene oxide hydrogel. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127787] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Kim JG, Noh Y, Kim Y. Highly reversible Li-ion full batteries using a Mg-doped Li-rich Li 1.2Ni 0.28Mn 0.468Mg 0.052O 2 cathode and carbon-decorated Mn 3O 4 anode with hierarchical microsphere structures. NEW J CHEM 2022. [DOI: 10.1039/d2nj03401h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microsphere structured Mg-doped Li-rich Li1.2Ni0.28Mn0.468Mg0.052O2 cathode and carbon-decorated Mn3O4 anode materials were prepared for application to lithium-ion full batteries. As-assembled lithium-ion full batteries exhibited enhanced electrochemical performances like high charge/discharge capacity, and long-term capacity retention.
Collapse
Affiliation(s)
- Jong Guk Kim
- Research Center for Materials Analysis, Korea Basic Science Institute (KBSI), 169-148 Gwahak-ro, Yuseong-gu, Daejeon 34133, Republic of Korea
| | - Yuseong Noh
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Youngmin Kim
- Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| |
Collapse
|
7
|
Zheng T, Ren YR, Han X, Zhang J. Design Principles of Nitrogen-doped Graphene Nanoribbons as Highly Effective Bifunctional Catalysts for Li - O2 Batteries. Phys Chem Chem Phys 2022; 24:22589-22598. [DOI: 10.1039/d2cp03001b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Li-O2 batteries are promising candidates in fields demanding high capacities like electric vehicles due to their superior theoretical energy density in contrast to lithium-ion batteries. However, oxygen reduction reaction (ORR)...
Collapse
|
8
|
Kim JG, Noh Y, Kim Y. One-dimensional lithium-rich Li1.17Ni0.35Mn0.48O2 cathode and carbon-coated MnO anode materials for highly reversible Li-ion configurations. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.11.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
|
10
|
Nature-inspired Three-dimensional Au/Spinach as a Binder-free and Self-standing Cathode for High-performance Li-O2 Batteries. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1339-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Zhou Y, Gu Q, Li Y, Tao L, Tan H, Yin K, Zhou J, Guo S. Cesium Lead Bromide Perovskite-Based Lithium-Oxygen Batteries. NANO LETTERS 2021; 21:4861-4867. [PMID: 34044536 DOI: 10.1021/acs.nanolett.1c01631] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The main challenge for lithium-oxygen (Li-O2) batteries is their sluggish oxygen evolution reaction (OER) kinetics and high charge overpotentials caused by the poorly conductive discharge products of lithium peroxide (Li2O2). In this contribution, the cesium lead bromide perovskite (CsPbBr3) nanocrystals were first employed as a high-performance cathode for Li-O2 batteries. The battery with a CsPbBr3 cathode can exhibit the lowest charge overpotential of 0.5 V and the best cycling performance of 400 cycles among all the reported perovskite-based Li-O2 cells, which represents a new benchmark. Most importantly, the density functional theory (DFT) calculations further prove that the rate limitation step during OER processes is the decomposition of LiO2 to form O2 and Li+, and the weak adsorption strength between CsPbBr3 surfaces and LiO2 results in a low charge overpotential for the CsPbBr3-based Li-O2 battery. This work first demonstrates the good potential of CsPbBr3 for application in metal-air batteries.
Collapse
Affiliation(s)
- Yin Zhou
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Qianfeng Gu
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue 83, Kowloon, China
| | - Yiju Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Lu Tao
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Hao Tan
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Kun Yin
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Jinhui Zhou
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
12
|
Arslan Hamat B, Aydınol MK. Experimental investigation on the electrocatalytic behavior of Ag-based oxides, Ag2XO4 (X= Cr, Mo, W), for the oxygen reduction reaction in alkaline media. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Li X, Qian Z, Han G, Sun B, Zuo P, Du C, Ma Y, Huo H, Lou S, Yin G. Perovskite LaCo xMn 1-xO 3-σ with Tunable Defect and Surface Structures as Cathode Catalysts for Li-O 2 Batteries. ACS APPLIED MATERIALS & INTERFACES 2020; 12:10452-10460. [PMID: 32043859 DOI: 10.1021/acsami.9b21904] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rechargeable lithium-oxygen batteries have shown great potential as next-generation sustainable and green energy storage systems. The bifunctional catalyst plays an important role in accelerating the cathode kinetics for practical realization of the batteries. Herein, we employ the surface structure and defect engineering to introduce surface-roughened nanolayers and oxygen vacancies on the mesoporous hollow LaCoxMn1-xO3-σ perovskite catalyst by in situ cation substitution. The experimental results show that the O2-electrode with the LaCo0.75Mn0.25O3-σ catalyst exhibits an extremely high discharge capacity of 10,301 mA h g-1 at 200 mA g-1 for the initial cycle and superior cycling stability under a capacity limit of 500 mA h g-1 together with a low voltage gap of 1.12 V. Good electrochemical performance of LaCo0.75Mn0.25O3-σ can be attributed to the synergistic effect of the hierarchical mesoporous hollow structure and the abundant oxygen vacancies all over the catalyst surface. We reveal that the modified surface structure can provide more accessibility of active sites to promote electrochemical reactions, and the introduced oxygen vacancy can serve as an efficient substrate for binding intermediate products and decomposition reactions of Li2O2 during discharge and charge processes. Our methodology provides meaningful insights into the rational design of highly active perovskite catalysts in energy storage/conversion systems.
Collapse
Affiliation(s)
- Xudong Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Zhengyi Qian
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Guokang Han
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Baoyu Sun
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Pengjian Zuo
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Chunyu Du
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yulin Ma
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Hua Huo
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Shuaifeng Lou
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Geping Yin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
14
|
Outstanding supercapacitor performance of Nd–Mn co-doped perovskite LaFeO3@nitrogen-doped graphene oxide nanocomposites. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135699] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
15
|
Suvina V, Kokulnathan T, Wang TJ, Balakrishna RG. Unraveling the electrochemical properties of lanthanum cobaltite decorated halloysite nanotube nanocomposite: An advanced electrocatalyst for determination of flutamide in environmental samples. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:110098. [PMID: 31901811 DOI: 10.1016/j.ecoenv.2019.110098] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/09/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
Prostate cancer is one of the primary causes of death around the world. As an important drug, flutamide has been used in the clinical diagnosis of prostate cancer. However, the over dosage and improper discharge of flutamide could affect the living organism. Thus, it necessary to develop the sensor for detection of flutamide with highly sensitivity. In this paper, we report the synthesis of lanthanum cobaltite decorated halloysite nanotube (LCO/HNT) nanocomposite prepared by a facile method and evaluated for selective reduction of flutamide. The as-prepared LCO/HNT nanocomposite shows the best catalytic performance towards detection of flutamide, when compared to other bare and modified electrodes. The good electrochemical performance of the LCO/HNT nanocomposite modified electrode is ascribed to abundant active sites, large specific surface area and their synergetic effects. Furthermore, the LCO/HNT modified electrode exhibits low detection limit (0.002 μM), wide working range (0.009-145 μM) and excellent selectivity with remarkable stability. Meaningfully, the developed electrochemical sensor was applied in real environmental samples with an acceptable recovery range.
Collapse
Affiliation(s)
- V Suvina
- Centre for Nano and Material Sciences, Jain Global Campus, Jain University, Kanakapura, Bangalore, 562112, India
| | - Thangavelu Kokulnathan
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan, ROC
| | - Tzyy-Jiann Wang
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan, ROC.
| | - R Geetha Balakrishna
- Centre for Nano and Material Sciences, Jain Global Campus, Jain University, Kanakapura, Bangalore, 562112, India.
| |
Collapse
|
16
|
Li X, Zhu T, Wen C, Yang Y, Ma S, Huang X, Li H, Sun G. Mixed spinel and perovskite phased LaSrNiO nanoparticles as cathode catalyst for non-aqueous lithium-oxygen batteries. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.05.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Hwang C, Yoo J, Jung GY, Joo SH, Kim J, Cha A, Han JG, Choi NS, Kang SJ, Lee SY, Kwak SK, Song HK. Biomimetic Superoxide Disproportionation Catalyst for Anti-Aging Lithium-Oxygen Batteries. ACS NANO 2019; 13:9190-9197. [PMID: 31319025 DOI: 10.1021/acsnano.9b03525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Reactive oxygen species or superoxide (O2-), which damages or ages biological cells, is generated during metabolic pathways using oxygen as an electron acceptor in biological systems. Superoxide dismutase (SOD) protects cells from superoxide-triggered apoptosis by converting superoxide to oxygen and peroxide. Lithium-oxygen battery (LOB) cells have the same aging problems caused by superoxide-triggered side reactions. We transplanted the function of SOD of biological systems into LOB cells. Malonic acid-decorated fullerene (MA-C60) was used as a superoxide disproportionation chemocatalyst mimicking the function of SOD. As expected, MA-C60 as the superoxide scavenger improved capacity retention along charge/discharge cycles successfully. A LOB cell that failed to provide a meaningful capacity just after several cycles at high current (0.5 mA cm-2) with 0.5 mAh cm-2 cutoff survived up to 50 cycles after MA-C60 was introduced to the electrolyte. Moreover, the SOD-mimetic catalyst increased capacity, e.g., more than a 6-fold increase at 0.2 mA cm-2. The experimentally observed toroidal morphology of the final discharge product of oxygen reduction (Li2O2) and density functional theory calculation confirmed that the solution mechanism of Li2O2 formation, more beneficial than the surface mechanism from the capacity-gain standpoint, was preferred in the presence of MA-C60.
Collapse
Affiliation(s)
| | - JongTae Yoo
- R&D Investment Planning Team , Korea Institute of Science & Technology Evaluation and Planning (KISTEP) , Seoul 06775 , Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Yang A, Li T, Jiang S, Wang X, Qiu X, Lei W, Tang Y. High-density growth of ultrafine PdIr nanowires on graphene: reducing the graphene wrinkles and serving as efficient bifunctional electrocatalysts for water splitting. NANOSCALE 2019; 11:14561-14568. [PMID: 31259330 DOI: 10.1039/c9nr03027a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Manipulating the space distribution states, exposed surfaces, and interfacial interactions of graphene-based nanomaterials is a key strategy for taking full advantage of graphene's characteristics. Herein, we report the in situ deposition of numerous ultrafine PdIr alloy nanowires (diameter of 1.8 nm) to predominately cover the entire surface of graphene (PdIr UNWs/WFG). The high density but low atom loading (8.6 at%) of PdIr nanowires gives rise to abundant edge atoms and a rough surface, which are beneficial for the full exposure of active sites. Meanwhile, the compact PdIr overlay provides strong surface tension to stretch the graphene wrinkles, thus averting the wrapping of active sites and ensuring structural uniformity. The PdIr UNWs/WFG are qualified as efficient and robust electrocatalysts in both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), affording 10 mA cm-2 at an HER overpotential of 23 mV and 10 mA cm-2 at an OER overpotential of 290 mV, respectively. The corresponding water electrolyzer requires a cell voltage of only 1.51 V to achieve a water-splitting current density of 10 mA cm-2. This simple and novel approach for studying the coordinated form, dispersion state, and interfacial tension is promising to be a versatile method for improving the properties of graphene-based nanomaterials.
Collapse
Affiliation(s)
- Anzhou Yang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
19
|
Xu P, Chen C, Zhu J, Xie J, Zhao P, Wang M. RuO2-particle-decorated graphene-nanoribbon cathodes for long-cycle Li–O2 batteries. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.04.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Xu P, Zhu J, Chen C, Xie J, Wang M. Bi
2
S
3
/Ketjen Black as a Highly Efficient Bifunctional Catalyst for Long‐Cycle Lithium‐Oxygen Batteries. ChemElectroChem 2019. [DOI: 10.1002/celc.201900191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Peng Xu
- Department of PhysicsZhejiang University No.38, Zheda Road Hangzhou 310027 Zhejiang Province China
| | - Jiajia Zhu
- Department of PhysicsZhejiang University No.38, Zheda Road Hangzhou 310027 Zhejiang Province China
| | - Congdi Chen
- Department of PhysicsZhejiang University No.38, Zheda Road Hangzhou 310027 Zhejiang Province China
| | - Jian Xie
- School of Materials Science and EngineeringZhejiang University No.38, Zheda Road Hangzhou 310027 Zhejiang Province China
| | - Miao Wang
- Department of PhysicsZhejiang University No.38, Zheda Road Hangzhou 310027 Zhejiang Province China
| |
Collapse
|
21
|
Noh Y, Kim Y, Han H, Jung W, Kim JG, Kim Y, Kim HJ, Kim B, Kim WB. Improved Ion‐Transfer Behavior and Capacitive Energy Storage Characteristics of SnO
2
Nanospacer‐Incorporated Reduced Graphene Oxide Electrodes. ChemElectroChem 2019. [DOI: 10.1002/celc.201900543] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yuseong Noh
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH) 77 Cheongam-ro, Nam-gu Pohang 37673 Republic of Korea
| | - Yoongon Kim
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH) 77 Cheongam-ro, Nam-gu Pohang 37673 Republic of Korea
| | - Hyunsu Han
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH) 77 Cheongam-ro, Nam-gu Pohang 37673 Republic of Korea
| | - Wan‐Gil Jung
- School of Materials Science and EngineeringGwangju Institute of Science and Technology (GIST) 123 Cheomdangwagi-ro, Buk-gu Gwangju 61005 Republic of Korea
| | - Jong Guk Kim
- Division of Electron Microscopic Research GroupKorea Basic Science Institute (KBSI) 169-148 Gwahak-ro, Yuseong-gu Daejeon 34133 Republic of Korea
| | - Youngmin Kim
- Carbon Resources InstituteKorea Research Institute of Chemical Technology (KRICT) 141 Gajeong-ro, Yuseong-gu Daejeon 34114 Republic of Korea
| | - Hyung Ju Kim
- Carbon Resources InstituteKorea Research Institute of Chemical Technology (KRICT) 141 Gajeong-ro, Yuseong-gu Daejeon 34114 Republic of Korea
| | - Bong‐Joong Kim
- School of Materials Science and EngineeringGwangju Institute of Science and Technology (GIST) 123 Cheomdangwagi-ro, Buk-gu Gwangju 61005 Republic of Korea
| | - Won Bae Kim
- Department of Chemical EngineeringPohang University of Science and Technology (POSTECH) 77 Cheongam-ro, Nam-gu Pohang 37673 Republic of Korea
| |
Collapse
|
22
|
Yang Y, Wang Y, Yao M, Wang X, Huang H. First-principles study of rocksalt early transition-metal carbides as potential catalysts for Li-O 2 batteries. Phys Chem Chem Phys 2018; 20:30231-30238. [PMID: 30500014 DOI: 10.1039/c8cp06745g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A series of early transition-metal carbides (TMCs) in the NaCl structure have been constructed to compare the catalytic activity in Li-O2 batteries by first-principles calculations. The reasonable interfacial models of LixO2 (x = 4, 2, and 1) molecules adsorbed on early TMCs surfaces were used to simulate oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) processes. Taking overpotentials as a merit parameter of catalytic activity, more relationships between material properties relative to the adsorption/desorption behavior of active molecules and catalytic activity are constructed for early TMCs. The equilibrium and charging potentials used to calculate the OER overpotentials of early TMCs are inversely proportional to the adsorption energies of (Li2O)2 and LiO2, respectively. The ORR overpotentials are inversely proportional to the adsorption energies of (Li2O)2 and LiO2 for early TMCs, but the relationship between OER overpotentials and the adsorption energies of reactive intermediates is unclear. Additionally, the overpotentials of early TMCs for ORR and OER are proportional to the desorption energies of Li+ and O2, respectively. In general, both the adsorption energy of (Li2O)2/LiO2 and desorption energy of Li+/O2 are effective characterization parameters of catalytic activity. By providing the comprehensive valuable parameters on electrochemical performance to compare the catalytic activity of early TMCs and establishing more correlations between material properties relative to the adsorption/desorption behavior of active molecules with their catalytic activity, our investigation is helpful for knowing more about the catalytic process and beneficial to screen and design novel highly active catalysts for Li-O2 batteries.
Collapse
Affiliation(s)
- Yingying Yang
- School of Materials Science and Engineering, Dalian University of Technology, Dalian 116085, China.
| | | | | | | | | |
Collapse
|
23
|
Hu A, Long J, Shu C, Liang R, Li J. Three-Dimensional Interconnected Network Architecture with Homogeneously Dispersed Carbon Nanotubes and Layered MoS 2 as a Highly Efficient Cathode Catalyst for Lithium-Oxygen Battery. ACS APPLIED MATERIALS & INTERFACES 2018; 10:34077-34086. [PMID: 30207681 DOI: 10.1021/acsami.8b06912] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The structure and catalytic activity of the oxygen electrode determine the overall electrochemical performance of lithium-oxygen (Li-O2) batteries. Here, a three-dimensional (3D) porous interconnected network structure combined with ultrathin MoS2 nanosheets with homogeneously dispersed CNTs (MoS2/CNTs) was synthesized via a one-step hydrothermal reaction. The 3D interconnected architecture can efficiently promote the diffusion of O2 and Li ions as well as impregnation of electrolyte and provide more abundant storage space for the accommodation of discharge products, while the incorporation of uniformly dispersed CNTs improves the electronic conductivity and maintains the integrity of the cathode structure. Therefore, the Li-O2 battery based on MoS2/CNTs achieves improved performance with the low overpotentials (discharge/charge overpotentials of approximately 0.29 and 1.05 V), a high discharge specific capacity of 6904 mA h g-1 at a rate of 200 mA g-1, and excellent cycling stability (132 cycles). Experimental studies reveal that the improved electrochemical performance can be ascribed to the synergistic advantages of electronic conductive CNTs and excellent catalytic activity of the MoS2 nanosheets. Moreover, the unique 3D interconnected network structure can effectively facilitate fast charge transfer kinetics and a facile mass transport pathway. These encouraging performances demonstrate the metal sulfide catalyst as a promising catalytic material of oxygen electrodes for Li-O2 batteries.
Collapse
Affiliation(s)
- Anjun Hu
- College of Materials and Chemistry & Chemical Engineering , Chengdu University of Technology , 1#, Dongsanlu, Erxianqiao , Chengdu 610059 , Sichuan , P. R. China
| | - Jianping Long
- College of Materials and Chemistry & Chemical Engineering , Chengdu University of Technology , 1#, Dongsanlu, Erxianqiao , Chengdu 610059 , Sichuan , P. R. China
| | - Chaozhu Shu
- College of Materials and Chemistry & Chemical Engineering , Chengdu University of Technology , 1#, Dongsanlu, Erxianqiao , Chengdu 610059 , Sichuan , P. R. China
| | - Ranxi Liang
- College of Materials and Chemistry & Chemical Engineering , Chengdu University of Technology , 1#, Dongsanlu, Erxianqiao , Chengdu 610059 , Sichuan , P. R. China
| | - Jiabao Li
- College of Materials and Chemistry & Chemical Engineering , Chengdu University of Technology , 1#, Dongsanlu, Erxianqiao , Chengdu 610059 , Sichuan , P. R. China
| |
Collapse
|
24
|
Liu S, Zhang W, Chen N, Sun C. Porous Urchin-like Co3
O4
Microspheres as an Efficient Bifunctional Catalyst for Nonaqueous and Solid-State Li−O2
Batteries. ChemElectroChem 2018. [DOI: 10.1002/celc.201800426] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shengming Liu
- CAS Center for Excellence in Nanoscience Beijing Institute of Nanoenergy and Nanosystems; Chinese Academy of Sciences; Beijing 100083 P. R. China
- School of Materials Science and Engineering; University of Science and Technology Beijing; Beijing 100083 P.R. China
| | - Wenqiang Zhang
- CAS Center for Excellence in Nanoscience Beijing Institute of Nanoenergy and Nanosystems; Chinese Academy of Sciences; Beijing 100083 P. R. China
- School of Nanoscience and Technology; University of Chinese Academy of Sciences; Beijing 100083 P. R. China
| | - Ning Chen
- School of Materials Science and Engineering; University of Science and Technology Beijing; Beijing 100083 P.R. China
| | - Chunwen Sun
- CAS Center for Excellence in Nanoscience Beijing Institute of Nanoenergy and Nanosystems; Chinese Academy of Sciences; Beijing 100083 P. R. China
- School of Nanoscience and Technology; University of Chinese Academy of Sciences; Beijing 100083 P. R. China
| |
Collapse
|
25
|
Liu S, Wang C, Dong S, Hou H, Wang B, Wang X, Chen X, Cui G. A mesoporous tungsten carbide nanostructure as a promising cathode catalyst decreases overpotential in Li–O2 batteries. RSC Adv 2018; 8:27973-27978. [PMID: 35542720 PMCID: PMC9084176 DOI: 10.1039/c8ra05905e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 07/31/2018] [Indexed: 11/21/2022] Open
Abstract
Tungsten carbide with large specific surface area catalyzes reversible formation/decomposition of Li2O2 with low overpotential in a Li–O2 cell.
Collapse
Affiliation(s)
- Shuo Liu
- Qingdao Industrial Energy Storage Research Institute
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- 266101 Qingdao
- PR China
| | - Chengdong Wang
- Qingdao Industrial Energy Storage Research Institute
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- 266101 Qingdao
- PR China
| | - Shanmu Dong
- Qingdao Industrial Energy Storage Research Institute
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- 266101 Qingdao
- PR China
| | - Hongbin Hou
- Qingdao Industrial Energy Storage Research Institute
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- 266101 Qingdao
- PR China
| | - Ben Wang
- College of Environment and Safety Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- PR China
| | - Xiaogang Wang
- Qingdao Industrial Energy Storage Research Institute
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- 266101 Qingdao
- PR China
| | - Xiao Chen
- Qingdao Industrial Energy Storage Research Institute
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- 266101 Qingdao
- PR China
| | - Guanglei Cui
- Qingdao Industrial Energy Storage Research Institute
- Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- 266101 Qingdao
- PR China
| |
Collapse
|