1
|
Kitaw SL, Ahmed YW, Candra A, Wu TY, Anley BE, Chen YY, Cheng YT, Chen KJ, Thammaniphit C, Hsu CC, Wu YT, Khan MH, Tsai HC. An advanced plasmonic bimetallic nanostar composite for ultra-sensitive SERS detection of crystal violet. NANOSCALE 2024; 17:508-519. [PMID: 39569603 DOI: 10.1039/d4nr03299c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The controlled synthesis of Ag/Au nanocomposite particles has remained a significant challenge in nanomaterial research. This study presents the synthesis, characterization, and surface-enhanced Raman scattering (SERS) performance of silver (Ag) and gold (Au) nanostar composites. The structural and plasmonic properties of these nanocomposites were optimized by varying the molar ratios of silver nanostars (AgNSs) and gold nanostars (AuNSs). By synthesizing composite nanostars with differing AgNS/AuNS ratios, we systematically compared their optical and spectroscopic behaviors. The results demonstrated that Ag/Au nanostar composites function as highly effective SERS substrates for the detection of rhodamine 6G (R6G), with solutions tested at concentrations from 10-15 to 10-6 M. Compared to individual AgNS or AuNS substrates, the Ag/Au nanocomposites exhibited significantly enhanced SERS signals, with superior consistency and sensitivity. Notably, the nanostar composite with a 75 : 25 Ag/Au ratio showed the highest SERS performance, achieving an enhancement factor of 8.9 × 106 and a detection limit of 10-15 M for R6G. Additionally, this composite demonstrated excellent long-term stability, maintaining performance until ten weeks of storage. To our knowledge, this represents the highest sensitivity reported for R6G detection using label-free SERS. The study further provides a detailed analysis of the composition-dependent SERS activity, underscoring the potential of Ag/Au nanocomposites as advanced SERS substrates for applications in chemical and biological sensing, as well as environmental monitoring.
Collapse
Affiliation(s)
- Sintayehu Leshe Kitaw
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan, Republic of China.
- Department of Chemistry, College of Natural and Computational Sciences, Debremarkos University, Ethiopia
| | - Yohannis Wondosen Ahmed
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan, Republic of China.
| | - Andy Candra
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan, Republic of China.
| | - Tsung-Yun Wu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan, Republic of China.
| | - Beyadgalem Endawoke Anley
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan, Republic of China.
| | - Ying-Yu Chen
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan, Republic of China.
| | - Yu-Ting Cheng
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan, Republic of China.
| | - Kuan-Ju Chen
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan, Republic of China.
| | - Chayaporn Thammaniphit
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan, Republic of China.
| | - Chen Chu Hsu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan, Republic of China.
| | - Yi Ting Wu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan, Republic of China.
| | - Mahvash Hira Khan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan, Republic of China.
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan, Republic of China.
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan, Republic of China
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan, 320, Taiwan, Republic of China
| |
Collapse
|
2
|
Chen L, Liu H, Gao J, Wang J, Jin Z, Lv M, Yan S. Development and Biomedical Application of Non-Noble Metal Nanomaterials in SERS. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1654. [PMID: 39452990 PMCID: PMC11510763 DOI: 10.3390/nano14201654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/12/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024]
Abstract
Surface-enhanced Raman scattering (SERS) is vital in many fields because of its high sensitivity, fast response, and fingerprint effect. The surface-enhanced Raman mechanisms are generally electromagnetic enhancement (EM), which is mainly based on noble metals (Au, Ag, etc.), and chemical enhancement (CM). With more and more studies on CM mechanism in recent years, non-noble metal nanomaterial SERS substrates gradually became widely researched and applied due to their superior economy, stability, selectivity, and biocompatibility compared to noble metal. In addition, non-noble metal substrates also provide an ideal new platform for SERS technology to probe the mechanism of biomolecules. In this paper, we review the applications of non-noble metal nanomaterials in SERS detection for biomedical engineering in recent years. Firstly, we introduce the development of some more common non-noble metal SERS substrates and discuss their properties and enhancement mechanisms. Subsequently, we focus on the progress of the application of SERS detection of non-noble metal nanomaterials, such as analysis of biomarkers and the detection of some contaminants. Finally, we look forward to the future research process of non-noble metal substrate nanomaterials for biomedicine, which may draw more attention to the biosensor applications of non-noble metal nanomaterial-based SERS substrates.
Collapse
Affiliation(s)
- Liping Chen
- School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
| | - Hao Liu
- School of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (H.L.); (Z.J.)
| | - Jiacheng Gao
- School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
| | - Jiaxuan Wang
- School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
| | - Zhihan Jin
- School of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (H.L.); (Z.J.)
| | - Ming Lv
- Department of Medical Engineering, Medical Supplies Center of PLA General Hospital, Beijing 100039, China;
| | - Shancheng Yan
- School of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; (H.L.); (Z.J.)
| |
Collapse
|
3
|
Liu X, Yu Y, Xie T, Cao Z, Li Z, Li Y, Gu Y, Han C, Yang G, Qu L. Fabrication of multifunctional g-C 3N 4-modified Au/Ag NRs arrays for ultrasensitive and recyclable SERS detection of bisphenol A residues. Mikrochim Acta 2023; 191:51. [PMID: 38147085 DOI: 10.1007/s00604-023-06136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/30/2023] [Indexed: 12/27/2023]
Abstract
Monolayer g-C3N4-modified Au/Ag nanorods (g-C3N4/Au/Ag NRs) array is fabricated as a dual-function platform with high surface-enhanced Raman scattering (SERS) response and excellent photocatalytic degradation ability for bisphenol A (BPA) residues. FDTD simulation results of Au/Ag NRs proves that the electromagnetic field intensity is significantly enhanced at the gap of Ag NRs and Au NPs and the protrusion of Au NPs, which endows the arrays with excellent SERS activity. The arrays exhibit high sensitivity for rhodamine 6G (R6G) (LOD = 1.1 × 10-11 mol/L) and high SERS enhancement (EF = 9.2 × 107). In addition, the g-C3N4/Au/Ag NRs could degrade ˃90% of BPA adsorbed on the substrate surface within 140 min under visible light irradiation, and maintains its SERS activity after repeated use for 4 times. The dual-function platform with high SERS response and excellent recycling capability is proved to be reliable and is very promising for monitoring of BPA residues in food.
Collapse
Affiliation(s)
- Xinyu Liu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yang Yu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Tianhua Xie
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Zijin Cao
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China
| | - Zhiyan Li
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yuejing Li
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yingqiu Gu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Caiqin Han
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China.
| | - Guohai Yang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Lulu Qu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
4
|
Vidal A, Molina-Prados S, Cros A, Garro N, Pérez-Martínez M, Álvaro R, Mata G, Megías D, Postigo PA. Facile and Low-Cost Fabrication of SiO 2-Covered Au Nanoislands for Combined Plasmonic Enhanced Fluorescence Microscopy and SERS. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2729. [PMID: 37836370 PMCID: PMC10574186 DOI: 10.3390/nano13192729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
An easy and low-cost way to fabricate monometallic Au nanoislands for plasmonic enhanced spectroscopy is presented. The method is based on direct thermal evaporation of Au on glass substrates to form nanoislands, with thicknesses between 2 and 15 nm, which are subsequently covered by a thin layer of silicon dioxide. We have used HR-SEM and AFM to characterize the nanoislands, and their optical transmission reveals strong plasmon resonances in the visible. The plasmonic performance of the fabricated substrates has been tested in fluorescence and Raman scattering measurements of two probe materials. Enhancement factors up to 1.8 and 9×104 are reported for confocal fluorescence and Raman microscopies, respectively, which are comparable to others obtained by more elaborated fabrication procedures.
Collapse
Affiliation(s)
- Alejandro Vidal
- Instituto de Micro y Nanotecnología de Madrid (IMN-CSIC), Tres Cantos, 28760 Madrid, Spain; (A.V.); (R.Á.)
| | - Sergio Molina-Prados
- GROC-UJI, Institut de Noves Tecnologíes de la Imatge (INIT), Universitat Jamue I, 28760 Tres Cantos, Spain;
| | - Ana Cros
- Institut de Ciència dels Materials (ICMUV), Universitat de València, 46071 Valencia, Spain; (A.C.); (N.G.)
| | - Núria Garro
- Institut de Ciència dels Materials (ICMUV), Universitat de València, 46071 Valencia, Spain; (A.C.); (N.G.)
| | - Manuel Pérez-Martínez
- Confocal Microscopy Unit, Centro Nacional de Investigaciones Oncológicas (CNIO-ISCIII), 28029 Madrid, Spain; (M.P.-M.); (G.M.); (D.M.)
| | - Raquel Álvaro
- Instituto de Micro y Nanotecnología de Madrid (IMN-CSIC), Tres Cantos, 28760 Madrid, Spain; (A.V.); (R.Á.)
| | - Gadea Mata
- Confocal Microscopy Unit, Centro Nacional de Investigaciones Oncológicas (CNIO-ISCIII), 28029 Madrid, Spain; (M.P.-M.); (G.M.); (D.M.)
| | - Diego Megías
- Confocal Microscopy Unit, Centro Nacional de Investigaciones Oncológicas (CNIO-ISCIII), 28029 Madrid, Spain; (M.P.-M.); (G.M.); (D.M.)
| | - Pablo A. Postigo
- Instituto de Micro y Nanotecnología de Madrid (IMN-CSIC), Tres Cantos, 28760 Madrid, Spain; (A.V.); (R.Á.)
- The Institute of Optics, University of Rochester, Rochester, New York, NY 14627, USA
| |
Collapse
|
5
|
Chen YH, Chen CC, Lu LC, Lan CY, Chen HL, Yen TH, Wan D. Wafer-scale fibrous SERS substrates allow label-free, portable detection of food adulteration and diagnosis of pesticide poisoning. SENSORS AND ACTUATORS B: CHEMICAL 2023; 391:134035. [DOI: 10.1016/j.snb.2023.134035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
|
6
|
Lin HY, Chen WR, Lu LC, Chen HL, Chen YH, Pan M, Chen CC, Chen C, Yen TH, Wan D. Direct Thermal Growth of Gold Nanopearls on 3D Interweaved Hydrophobic Fibers as Ultrasensitive Portable SERS Substrates for Clinical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207404. [PMID: 36974592 DOI: 10.1002/smll.202207404] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS)-based biosensors have attracted much attention for their label-free detection, ultrahigh sensitivity, and unique molecular fingerprinting. In this study, a wafer-scale, ultrasensitive, highly uniform, paper-based, portable SERS detection platform featuring abundant and dense gold nanopearls with narrow gap distances, are prepared and deposited directly onto ultralow-surface-energy fluorosilane-modified cellulose fibers through simple thermal evaporation by delicately manipulating the atom diffusion behavior. The as-designed paper-based SERS substrate exhibits an extremely high Raman enhancement factor (3.9 × 1011 ), detectability at sub-femtomolar concentrations (single-molecule level) and great signal reproductivity (relative standard deviation: 3.97%), even when operated with a portable 785-nm Raman spectrometer. This system is used for fingerprinting identification of 12 diverse analytes, including clinical medicines (cefazolin, chloramphenicol, levetiracetam, nicotine), pesticides (thiram, paraquat, carbaryl, chlorpyrifos), environmental carcinogens (benzo[a]pyrene, benzo[g,h,i]perylene), and illegal drugs (methamphetamine, mephedrone). The lowest detection concentrations reach the sub-ppb level, highlighted by a low of 16.2 ppq for nicotine. This system appears suitable for clinical applications in, for example, i) therapeutic drug monitoring for individualized medication adjustment and ii) ultra-early diagnosis for pesticide intoxication. Accordingly, such scalable, portable and ultrasensitive fibrous SERS substrates open up new opportunities for practical on-site detection in biofluid analysis, point-of-care diagnostics and precision medicine.
Collapse
Affiliation(s)
- Hsin-Yao Lin
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30010, Taiwan
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, 30010, Taiwan
- Division of Neurosurgery, Department of Surgery, MacKay Memorial Hospital, 10449, Taipei, Taiwan
| | - Wan-Ru Chen
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30010, Taiwan
| | - Li-Chia Lu
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30010, Taiwan
| | - Hsuen-Li Chen
- Department of Materials Science and Engineering and Center of Atomic Initiative for New Materials (AI-MAT), National Taiwan University, Taipei, 10617, Taiwan
| | - Yu-Hsuan Chen
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30010, Taiwan
| | - Michael Pan
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30010, Taiwan
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, 30010, Taiwan
| | - Chi-Chia Chen
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30010, Taiwan
| | - Chihchen Chen
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, 30010, Taiwan
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, 30010, Taiwan
| | - Tzung-Hai Yen
- Division of Neurosurgery, Department of Surgery, MacKay Memorial Hospital, 10449, Taipei, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, 33378, Taiwan
| | - Dehui Wan
- Institute of Biomedical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30010, Taiwan
| |
Collapse
|
7
|
Hybrid Wetting Surface with Plasmonic Alloy Nanocomposites for Sensitive SERS Detection. Molecules 2023; 28:molecules28052190. [PMID: 36903436 PMCID: PMC10004610 DOI: 10.3390/molecules28052190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
In this paper, a hybrid wetting surface (HWS) with Au/Ag alloy nanocomposites was proposed for rapid, cost-effective, stable and sensitive SERS application. This surface was fabricated in a large area by facile electrospinning, plasma etching and photomask-assisted sputtering processes. The high-density 'hot spots' and rough surface from plasmonic alloy nanocomposites promoted the significant enhancement of the electromagnetic field. Meanwhile, the condensation effects induced by HWS further improved the density of target analytes at the SERS active area. Thus, the SERS signals increased ~4 orders of magnitude compared to the normal SERS substrate. In addition, the reproducibility, uniformity, as well as thermal performance of HWS were also examined by comparative experiments, indicating their high reliability, portability and practicability for on-site tests. The efficient results suggested that this smart surface had great potential to evolve as a platform for advanced sensor-based applications.
Collapse
|
8
|
Huang R, Xu Y, Du J, Guan Q, Cai X, Li F, Wang J, Chen W. A fluorescent sensor based on the cascade signal amplification strategy for ultra-sensitive detection of Cu 2. NANOSCALE 2023; 15:1806-1812. [PMID: 36602100 DOI: 10.1039/d2nr06539h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Copper is an essential element in the human body, participating in various physiological activities in the bodies of organisms. However, an excessive load of Cu2+ is associated with several neurodegenerative diseases and prion diseases, also identified as a symptom of Wilson's disease (WD). A straightforward, rapid, sensitive, and specific copper sensor is highly required but remains a challenge. In this study, guided by the simulation, we developed a chemical sensor using a cascade signal amplification strategy based on the Cu-catalyzed click reaction, combined with a fluorescence-enhanced substrate with gold nanorods coupled with silver nanoislands. The sensor can selectively detect Cu2+ as low as 3.87 nM within 10 min. We have demonstrated that this method can be directly employed for WD diagnosis in urine samples. In addition, using antibiotic susceptibility testing (AST) as an example, we verify whether this assay can be adapted to other targets where Cu is designed as an indirect indicator.
Collapse
Affiliation(s)
- Ruijia Huang
- Medical Research Center, Huazhong University of Science and Technology Union Shenzhen Hospital, the 6th Affiliated Hospital, Shenzhen University Medical School, Shenzhen 518052, P. R. China.
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, P. R. China.
| | - Ying Xu
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, P. R. China.
| | - Jihui Du
- Medical Research Center, Huazhong University of Science and Technology Union Shenzhen Hospital, the 6th Affiliated Hospital, Shenzhen University Medical School, Shenzhen 518052, P. R. China.
| | - Qiong Guan
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, P. R. China.
| | - Xiaoqing Cai
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, P. R. China.
| | - Feng Li
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, P. R. China.
| | - Jidong Wang
- Medical Research Center, Huazhong University of Science and Technology Union Shenzhen Hospital, the 6th Affiliated Hospital, Shenzhen University Medical School, Shenzhen 518052, P. R. China.
| | - Wenwen Chen
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, P. R. China.
| |
Collapse
|
9
|
Coviello V, Forrer D, Amendola V. Recent Developments in Plasmonic Alloy Nanoparticles: Synthesis, Modelling, Properties and Applications. Chemphyschem 2022; 23:e202200136. [PMID: 35502819 DOI: 10.1002/cphc.202200136] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/02/2022] [Indexed: 01/07/2023]
Abstract
Despite the traditional plasmonic materials are counted on one hand, there are a lot of possible combinations leading to alloys with other elements of the periodic table, in particular those renowned for magnetic or catalytic properties. It is not a surprise, therefore, that nanoalloys are considered for their ability to open new perspectives in the panorama of plasmonics, representing a leading research sector nowadays. This is demonstrated by a long list of studies describing multiple applications of nanoalloys in photonics, photocatalysis, sensing and magneto-optics, where plasmons are combined with other physical and chemical phenomena. In some remarkable cases, the amplification of the conventional properties and even new effects emerged. However, this field is still in its infancy and several challenges must be overcome, starting with the synthesis (control of composition, crystalline order, size, processability, achievement of metastable phases and disordered compounds) as well as the modelling of the structure and properties (accuracy of results, reliability of structural predictions, description of disordered phases, evolution over time) of nanoalloys. To foster the research on plasmonic nanoalloys, here we provide an overview of the most recent results and developments in the field, organized according to synthetic strategies, modelling approaches, dominant properties and reported applications. Considering the several plasmonic nanoalloys under development as well as the large number of those still awaiting synthesis, modelling, properties assessment and technological exploitation, we expect a great impact on the forthcoming solutions for sustainability, ultrasensitive and accurate detection, information processing and many other fields.
Collapse
Affiliation(s)
- Vito Coviello
- Department of Chemical Sciences, Università di Padova, via Marzolo 1, I-35131, Padova, Italy
| | - Daniel Forrer
- Department of Chemical Sciences, Università di Padova, via Marzolo 1, I-35131, Padova, Italy
- CNR - ICMATE, I-35131, Padova, Italy
| | - Vincenzo Amendola
- Department of Chemical Sciences, Università di Padova, via Marzolo 1, I-35131, Padova, Italy
| |
Collapse
|
10
|
Ray D, Wang HC, Kim J, Santschi C, Martin OJF. A Low-Temperature Annealing Method for Alloy Nanostructures and Metasurfaces: Unlocking a Novel Degree of Freedom. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108225. [PMID: 35167722 DOI: 10.1002/adma.202108225] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/02/2022] [Indexed: 06/14/2023]
Abstract
The material and exact shape of a nanostructure determine its optical response, which is especially strong for plasmonic metals. Unfortunately, only a few plasmonic metals are available, which limits the spectral range where these strong optical effects can be utilized. Alloying different plasmonic metals can overcome this limitation, at the expense of using a high-temperature alloying process, which adversely destroys the nanostructure shape. Here, a low-temperature alloying process is developed where the sample is heated at only 300 °C for 8 h followed by 30 min at 450 °C and Au-Ag nanostructures with a broad diversity of shapes, aspect ratios, and stoichiometries are fabricated. Energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy analyses confirm the homogeneous alloying through the entire sample. Varying the alloy stoichiometry tunes the optical response and controls spectral features, such as Fano resonances. Binary metasurfaces that combine nanostructures with different stoichiometries are fabricated using multiple-step electron-beam lithography, and their optical function as a hologram or a Fresnel zone plate is demonstrated at the visible wavelength of λ = 532 nm. This low-temperature annealing technique provides a versatile and cost-effective way of fabricating complex Au-Ag nanostructures with arbitrary stoichiometry.
Collapse
Affiliation(s)
- Debdatta Ray
- Nanophotonics and Metrology Laboratory, Swiss Federal Institute of Technology, Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Hsiang-Chu Wang
- Nanophotonics and Metrology Laboratory, Swiss Federal Institute of Technology, Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Jeonghyeon Kim
- Nanophotonics and Metrology Laboratory, Swiss Federal Institute of Technology, Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Christian Santschi
- Nanophotonics and Metrology Laboratory, Swiss Federal Institute of Technology, Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Olivier J F Martin
- Nanophotonics and Metrology Laboratory, Swiss Federal Institute of Technology, Lausanne (EPFL), Lausanne, 1015, Switzerland
| |
Collapse
|
11
|
Hou Y, Lv CC, Guo YL, Ma XH, Liu W, Jin Y, Li BX, Yang M, Yao SY. Recent Advances and Applications in Paper-Based Devices for Point-of-Care Testing. JOURNAL OF ANALYSIS AND TESTING 2022; 6:247-273. [PMID: 35039787 PMCID: PMC8755517 DOI: 10.1007/s41664-021-00204-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022]
Abstract
Point-of-care testing (POCT), as a portable and user-friendly technology, can obtain accurate test results immediately at the sampling point. Nowadays, microfluidic paper-based analysis devices (μPads) have attracted the eye of the public and accelerated the development of POCT. A variety of detection methods are combined with μPads to realize precise, rapid and sensitive POCT. This article mainly introduced the development of electrochemistry and optical detection methods on μPads for POCT and their applications on disease analysis, environmental monitoring and food control in the past 5 years. Finally, the challenges and future development prospects of μPads for POCT were discussed.
Collapse
Affiliation(s)
- Yue Hou
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Cong-Cong Lv
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Yan-Li Guo
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Xiao-Hu Ma
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Wei Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Yan Jin
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Bao-Xin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Min Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Shi-Yin Yao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| |
Collapse
|
12
|
Chen Y, Yu F, Wang Y, Liu W, Ye J, Xiao J, Liu X, Jiang H, Wang X. Recent Advances in Engineered Noble Metal Nanomaterials as a Surface-Enhanced Raman Scattering Active Platform for Cancer Diagnostics. J Biomed Nanotechnol 2022; 18:1-23. [PMID: 35180897 DOI: 10.1166/jbn.2022.3246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Recently, noble metal nanomaterials have been extensively studied in the fields of biosensing, environmental catalysis, and cancer diagnosis and treatment, due to their excellent electrical conductivity, high surface area, and individual physical and optical properties. Early research on the surface-enhanced Raman scattering (SERS) effect was focused on the cognition of the SERS phenomenon and enhancing its sensitivity for single-molecule detection. With the development of nanomaterials and nanotechnology, the advances and applications based on SERS substrates have been accelerated. Among them, noble metal nanomaterials are mainly used as SERS-active substrates to enhance SERS signals owing to their compelling surface plasmon resonance (SPR) properties. This review provides recent advances, perspectives, and challenges in SERS assays based on engineered noble metal nanomaterials for early cancer diagnosis.
Collapse
Affiliation(s)
- Yun Chen
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Fangfang Yu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yihan Wang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Weiwei Liu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jing Ye
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jiang Xiao
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaohui Liu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hui Jiang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
13
|
Macrelli A, Villa NS, Lucotti A, Dellasega D, Ossi PM, Tommasini M. Sensing the Anti-Epileptic Drug Perampanel with Paper-Based Spinning SERS Substrates. Molecules 2021; 27:molecules27010030. [PMID: 35011263 PMCID: PMC8746616 DOI: 10.3390/molecules27010030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/13/2021] [Accepted: 12/18/2021] [Indexed: 11/16/2022] Open
Abstract
The applications of SERS in therapeutic drug monitoring, or other fields of analytical chemistry, require the availability of sensitive sensors and experimental approaches that can be implemented in affordable ways. In this contribution, we show the production of cost-effective SERS sensors obtained by depositing Lee-Meisel Ag colloids on filter paper either by natural sedimentation or centrifugation. We have characterized the morphological and plasmonic features of the sensors by optical microscopy, SEM, and UV-Vis spectroscopy. Such sensors can be used to quantify by SERS the anti-epileptic drug Perampanel (in the concentration range 1 × 10−4–5 × 10−6 M) by spinning them during the micro-Raman measurements on the top of a custom device obtained from spare part hard disk drives. This approach minimizes laser-induced heating effects and allows averaging over the spatial non-uniformity of the sensor.
Collapse
Affiliation(s)
- Andrea Macrelli
- Department of Energy, Politecnico di Milano, 20133 Milan, Italy; (A.M.); (D.D.); (P.M.O.)
| | - Nicolò Simone Villa
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, 20133 Milan, Italy; (N.S.V.); (A.L.)
| | - Andrea Lucotti
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, 20133 Milan, Italy; (N.S.V.); (A.L.)
| | - David Dellasega
- Department of Energy, Politecnico di Milano, 20133 Milan, Italy; (A.M.); (D.D.); (P.M.O.)
| | - Paolo Maria Ossi
- Department of Energy, Politecnico di Milano, 20133 Milan, Italy; (A.M.); (D.D.); (P.M.O.)
| | - Matteo Tommasini
- Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, 20133 Milan, Italy; (N.S.V.); (A.L.)
- Correspondence: ; Tel.: +39-02-2399-3384
| |
Collapse
|
14
|
Hoang TX, Phan LMT, Vo TAT, Cho S. Advanced Signal-Amplification Strategies for Paper-Based Analytical Devices: A Comprehensive Review. Biomedicines 2021; 9:biomedicines9050540. [PMID: 34066112 PMCID: PMC8150371 DOI: 10.3390/biomedicines9050540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 11/21/2022] Open
Abstract
Paper-based analytical devices (PADs) have emerged as a promising approach to point-of-care (POC) detection applications in biomedical and clinical diagnosis owing to their advantages, including cost-effectiveness, ease of use, and rapid responses as well as for being equipment-free, disposable, and user-friendly. However, the overall sensitivity of PADs still remains weak, posing a challenge for biosensing scientists exploiting them in clinical applications. This review comprehensively summarizes the current applicable potential of PADs, focusing on total signal-amplification strategies that have been applied widely in PADs involving colorimetry, luminescence, surface-enhanced Raman scattering, photoacoustic, photothermal, and photoelectrochemical methods as well as nucleic acid-mediated PAD modifications. The advances in signal-amplification strategies in terms of signal-enhancing principles, sensitivity, and time reactions are discussed in detail to provide an overview of these approaches to using PADs in biosensing applications. Furthermore, a comparison of these methods summarizes the potential for scientists to develop superior PADs. This review serves as a useful inside look at the current progress and prospective directions in using PADs for clinical diagnostics and provides a better source of reference for further investigations, as well as innovations, in the POC diagnostics field.
Collapse
Affiliation(s)
- Thi Xoan Hoang
- Department of Life Science, Gachon University, Seongnam 13120, Gyeonggi-do, Korea; (T.X.H.); (T.A.T.V.)
| | - Le Minh Tu Phan
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Gyeonggi-do, Korea
- School of Medicine and Pharmacy, The University of Danang, Danang 550000, Vietnam
- Correspondence: (L.M.T.P.); (S.C.)
| | - Thuy Anh Thu Vo
- Department of Life Science, Gachon University, Seongnam 13120, Gyeonggi-do, Korea; (T.X.H.); (T.A.T.V.)
| | - Sungbo Cho
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Gyeonggi-do, Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
- Correspondence: (L.M.T.P.); (S.C.)
| |
Collapse
|
15
|
Multifunctional cellulose based substrates for SERS smart sensing: Principles, applications and emerging trends for food safety detection. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
16
|
Robust quantitative SERS analysis with Relative Raman scattering intensities. Talanta 2021; 221:121465. [DOI: 10.1016/j.talanta.2020.121465] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 11/19/2022]
|
17
|
Golubewa L, Karpicz R, Matulaitiene I, Selskis A, Rutkauskas D, Pushkarchuk A, Khlopina T, Michels D, Lyakhov D, Kulahava T, Shah A, Svirko Y, Kuzhir P. Surface-Enhanced Raman Spectroscopy of Organic Molecules and Living Cells with Gold-Plated Black Silicon. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50971-50984. [PMID: 33107725 DOI: 10.1021/acsami.0c13570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Black silicon (bSi) refers to an etched silicon surface comprising arrays of microcones that effectively suppress reflection from UV to near-infrared (NIR) while simultaneously enhancing the scattering and absorption of light. This makes bSi covered with a nm-thin layer of plasmonic metal, i.e., gold, an attractive substrate material for sensing of bio-macromolecules and living cells using surface-enhanced Raman spectroscopy (SERS). The performed Raman measurements accompanied with finite element numerical simulation and density functional theory analysis revealed that at the 785 nm excitation wavelength, the SERS enhancement factor of the bSi/Au substrate is as high as 108 due to a combination of electromagnetic and chemical mechanisms. This finding makes the SERS-active bSi/Au substrate suitable for detecting trace amounts of organic molecules. We demonstrate the outstanding performance of this substrate by highly sensitive and specific detection of a small organic molecule of 4-mercaptobenzoic acid and living C6 rat glioma cell nucleic acids/proteins/lipids. Specifically, the bSi/Au SERS-active substrate offers a unique opportunity to investigate the living cells' malignant transformation using characteristic protein disulfide Raman bands as a marker. Our findings evidence that bSi/Au provides a pathway to the highly sensitive and selective, scalable, and low-cost substrate for lab-on-a-chip SERS biosensors that can be integrated into silicon-based photonics devices.
Collapse
Affiliation(s)
- Lena Golubewa
- Center for Physical Sciences and Technology, Sauletekio Ave. 3, Vilnius LT-10257, Lithuania
- Institute for Nuclear Problems, Belarusian State University, Bobruiskaya 11, Minsk 220006, Belarus
| | - Renata Karpicz
- Center for Physical Sciences and Technology, Sauletekio Ave. 3, Vilnius LT-10257, Lithuania
| | - Ieva Matulaitiene
- Center for Physical Sciences and Technology, Sauletekio Ave. 3, Vilnius LT-10257, Lithuania
| | - Algirdas Selskis
- Center for Physical Sciences and Technology, Sauletekio Ave. 3, Vilnius LT-10257, Lithuania
| | - Danielis Rutkauskas
- Center for Physical Sciences and Technology, Sauletekio Ave. 3, Vilnius LT-10257, Lithuania
| | - Aliaksandr Pushkarchuk
- Institute for Nuclear Problems, Belarusian State University, Bobruiskaya 11, Minsk 220006, Belarus
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, Surganova 13, Minsk 220072, Belarus
| | - Tatsiana Khlopina
- Institute for Nuclear Problems, Belarusian State University, Bobruiskaya 11, Minsk 220006, Belarus
| | - Dominik Michels
- Computer, Electrical and Mathematical Science and Engineering Division, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Dmitry Lyakhov
- Computer, Electrical and Mathematical Science and Engineering Division, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Tatsiana Kulahava
- Institute for Nuclear Problems, Belarusian State University, Bobruiskaya 11, Minsk 220006, Belarus
| | - Ali Shah
- Department of Micro and Nanosciences, Aalto University, Espoo, P. O. Box 13500, FI-00076, Finland
| | - Yuri Svirko
- Institute of Photonics, University of Eastern Finland, Yliopistokatu 2, Joensuu FI-80100, Finland
| | - Polina Kuzhir
- Institute for Nuclear Problems, Belarusian State University, Bobruiskaya 11, Minsk 220006, Belarus
- Institute of Photonics, University of Eastern Finland, Yliopistokatu 2, Joensuu FI-80100, Finland
| |
Collapse
|
18
|
A metal-enhanced fluorescence sensing platform for selective detection of picric acid in aqueous medium. Anal Chim Acta 2020; 1129:12-23. [DOI: 10.1016/j.aca.2020.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/12/2020] [Accepted: 07/01/2020] [Indexed: 12/25/2022]
|
19
|
Park M, Eom K, Jung MH, Park YS, Lee JY, Nam SH. Design of Bio-Impedance Electrode Topologies for Specific Depth Sensing in Skin Layer. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:3961-3964. [PMID: 33018867 DOI: 10.1109/embc44109.2020.9175336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bio-impedance analysis provides non-invasive estimation of body composition. Recently, applications based on bio-impedance measurement in skin tissue such as skin cancer diagnosis and skin composition monitoring have been studied. For scanning the electrical properties along the skin depth, the relationship between the electrode topologies and the depth sensitivity should be clarified. This work reports a systematic analysis on designing line electrode topologies to measure the bio-impedance of the skin layer at specific depth using a finite element method (FEM). Four electrodes consisting of two outer current electrodes and two inner voltage electrodes in the form of Wenner-Schlumberger array were employed on the top of a collagen layer as a skin model. The numerical results demonstrate a change in the effective depth of measurement depending on the electrode topologies, which also have a good agreement with an analytic solution. This study suggests a decision guideline for designing the electrode topologies to achieve target depth sensitivity in bio-impedance measurement of skin tissue.Clinical Relevance-This establishes the effect of electrode topologies on depth sensitivity in bio-impedance measurements in skin layer.
Collapse
|
20
|
Liu S, Cui R, Ma Y, Yu Q, Kannegulla A, Wu B, Fan H, Wang AX, Kong X. Plasmonic cellulose textile fiber from waste paper for BPA sensing by SERS. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 227:117664. [PMID: 31670224 DOI: 10.1016/j.saa.2019.117664] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Flexible plasmonic Surface-enhanced Raman scattering (SERS) substrates were fabricated using cellulose textile fibers, in which the textile fibers were recycled from waste paper in an eco-friendly way. The Glycidyltrimethylammonium chloride (GTAC) with positive charges was grafted onto the surface of the cellulose textile fibers through cationization. Plasmonic silver nanoparticles (Ag NPs) with negative charges were decorated onto the cellulose textile fibers via electrostatic interactions. After cationization, the variation range of the diameter of the cellulose textile fibers was significantly increased because part of the cellulose was dissolved under alkaline condition, leading to more 'hot spots' for SERS during the shrinking process. The cellulose textile fiber-Ag NPs nanocomposite was employed for monitoring bisphenol A (BPA) in water and soft drink by SERS and the sensitivity of BPA detection achieved 50 ppb. The recovery values of BPA in soda water samples were from 96% to 105%. These results illustrate that the cellulose textile fiber-Ag NPs nanocomposite can be used as flexible, high sensitivity SERS substrates for detecting harmful ingredients in food or environment.
Collapse
Affiliation(s)
- Sijia Liu
- College of Chemistry, Chemical Engineering and Environment Engineering, Liaoning Shihua University, Fushun, Liaoning, 113001, PR China
| | - Rongkai Cui
- College of Chemistry, Chemical Engineering and Environment Engineering, Liaoning Shihua University, Fushun, Liaoning, 113001, PR China
| | - Yibo Ma
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 00076, Aalto, Finland
| | - Qian Yu
- College of Chemistry, Chemical Engineering and Environment Engineering, Liaoning Shihua University, Fushun, Liaoning, 113001, PR China.
| | - Akash Kannegulla
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Bo Wu
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Hongtao Fan
- College of Chemistry, Chemical Engineering and Environment Engineering, Liaoning Shihua University, Fushun, Liaoning, 113001, PR China
| | - Alan X Wang
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Xianming Kong
- College of Chemistry, Chemical Engineering and Environment Engineering, Liaoning Shihua University, Fushun, Liaoning, 113001, PR China.
| |
Collapse
|
21
|
|
22
|
Hwang CSH, Ahn MS, Lee Y, Chung T, Jeong KH. Ag/Au Alloyed Nanoislands for Wafer-Level Plasmonic Color Filter Arrays. Sci Rep 2019; 9:9082. [PMID: 31235848 PMCID: PMC6591299 DOI: 10.1038/s41598-019-45689-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/11/2019] [Indexed: 11/09/2022] Open
Abstract
Alloyed metals in nanoscale exhibit some intriguing features that are absent in mono-metallic nanostructures. Here we report silver and gold alloyed nanoislands with high tunability of localized surface plasmon resonance (LSPR) wavelength in the visible range for wafer-level plasmonic color filter arrays. The nanofabrication includes two simple steps of concurrent thermal evaporation of Ag and Au grains and solid-state dewetting of the as-deposited nanocomposite thin film. The alloy ratio during the evaporation precisely tunes the LSPR wavelengths within 415-609 nm spectrum range. The elemental composition map reveals that alloyed nanoislands are completely miscible while preserving uniform size, regardless of the alloy ratio. Besides, the multiple lift-off processes and thermal dewetting of Ag/Au nanocomposite thin films successfully demonstrate the wafer-level nanofabrication of plasmonic color filter mosaic. Each plasmonic color pixel comprises different alloy ratio and efficiently transmits colors ranging from cyan, yellow, and magenta. The transmission spectra transposed onto a CIE 1931 color map show comparable color diversity to the plasmonic color filters fabricated by conventional e-beam lithographic techniques. This novel method provides a new direction for large-scale and visible plasmonic color filter arrays in advanced display or imaging applications.
Collapse
Affiliation(s)
- Charles Soon Hong Hwang
- Department of Bio and Brain Engineering, KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Myeong-Su Ahn
- Department of Bio and Brain Engineering, KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Youngseop Lee
- Department of Bio and Brain Engineering, KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Taerin Chung
- Department of Bio and Brain Engineering, KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea
| | - Ki-Hun Jeong
- Department of Bio and Brain Engineering, KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Korea.
| |
Collapse
|
23
|
Chung T, Lee Y, Ahn MS, Lee W, Bae SI, Hwang CSH, Jeong KH. Nanoislands as plasmonic materials. NANOSCALE 2019; 11:8651-8664. [PMID: 31011743 DOI: 10.1039/c8nr10539a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Subwavelength metal nanoislands thermally dewetted from a thin film emerge as a powerful and cost-effective photonic material, due to the formation of substantially strong nano-gap-based plasmonic hot spots and their simple large-area nanofabrication. Unlike conventional nanostructures, nanoislands dewetted from thin metal films can be formed on a large scale at the wafer level and show substrate-dependent plasmonic phenomena across a broad spectral range from ultraviolet to infrared. Substrate-selective dewetting methods for metal nanoislands enable diverse nanophotonic and optoelectronic technologies, underlining mechanical, structural, and material properties of a substrate. Emerging bioplasmonic technology using metal nanoislands also serves as a high-throughput and surface-sensitive analytical technique with wide-ranging application in rapid, real-time, and point-of-care medical diagnostics. This review introduces an assortment of dewetting fabrication methods for metal nanoislands on distinct substrates from glass to cellulose fibers and provides novel findings for metal nanoislands on a substrate by three-dimensional numerical modeling. Furthermore, the plasmonic properties of metal nanoislands and recent examples for their photonic applications, in particular, biological sensing, are technically summarized and discussed.
Collapse
Affiliation(s)
- Taerin Chung
- Department of Bio and Brain Engineering, KAIST Institute for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), 291 Dahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
24
|
Bettini S, Pal S, Sawalha S, Licciulli A, Valli L, Giancane G, Pagano R. Cellulose‐Based Substrate for SERS‐Promoted Histamine Picomolar Detection in Beverages. ChemistrySelect 2019. [DOI: 10.1002/slct.201803323] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Simona Bettini
- Department of Engineering for InnovationUniversity of Salento, Via Per Arnesano Lecce Italy
| | - Sudipto Pal
- Department of Engineering for InnovationUniversity of Salento, Via Per Arnesano Lecce Italy
| | - Shadi Sawalha
- Department of Engineering for InnovationUniversity of Salento, Via Per Arnesano Lecce Italy
| | - Antonio Licciulli
- Department of Engineering for InnovationUniversity of Salento, Via Per Arnesano Lecce Italy
| | - Ludovico Valli
- Department of Biological and Environmental Sciences and TechnologiesUniversity of Salento, Via Monteroni Lecce Italy
| | - Gabriele Giancane
- Department of Cultural HeritageUniversity of Salento, Via D. Birago, 64 Lecce Italy
| | - Rosanna Pagano
- Department of Biological and Environmental Sciences and TechnologiesUniversity of Salento, Via Monteroni Lecce Italy
| |
Collapse
|
25
|
Kwak J, Lee W, Kim JB, Bae SI, Jeong KH. Fiber-optic plasmonic probe with nanogap-rich Au nanoislands for on-site surface-enhanced Raman spectroscopy using repeated solid-state dewetting. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-6. [PMID: 30873763 PMCID: PMC6975223 DOI: 10.1117/1.jbo.24.3.037001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/02/2019] [Indexed: 05/14/2023]
Abstract
We report a fiber-optic plasmonic probe with nanogap-rich gold nanoislands for on-site surface-enhanced Raman spectroscopy (SERS). The plasmonic probe features nanogap-rich Au nanoislands on the top surface of a single multimode fiber. Au nanoislands were monolithically fabricated using repeated solid-state dewetting of thermally evaporated Au thin film. The plasmonic probe shows 7.8 × 106 in SERS enhancement factor and 100 nM in limit-of-detection for crystal violet under both the excitation of laser light and the collection of SERS signals through the optical fiber. The fiber-through measurement also demonstrates the label-free SERS detection of folic acid at micromolar level. The plasmonic probe can provide a tool for on-site and in vivo SERS applications.
Collapse
Affiliation(s)
- Jihyun Kwak
- Korea Advanced Institute of Science and Technology (KAIST), Department of Bio and Brain Engineering, Daejeon, Republic of Korea
- Korea Advanced Institute of Science and Technology (KAIST), KAIST Institute for Health Science and Technology, Daejeon, Republic of Korea
| | - Wonkyoung Lee
- Korea Advanced Institute of Science and Technology (KAIST), Department of Bio and Brain Engineering, Daejeon, Republic of Korea
- Korea Advanced Institute of Science and Technology (KAIST), KAIST Institute for Health Science and Technology, Daejeon, Republic of Korea
- Electronics and Telecommunications Research Institute, Daejeon, Republic of Korea
| | - Jae-Beom Kim
- Korea Advanced Institute of Science and Technology (KAIST), Department of Bio and Brain Engineering, Daejeon, Republic of Korea
- Korea Advanced Institute of Science and Technology (KAIST), KAIST Institute for Health Science and Technology, Daejeon, Republic of Korea
| | - Sang-In Bae
- Korea Advanced Institute of Science and Technology (KAIST), Department of Bio and Brain Engineering, Daejeon, Republic of Korea
- Korea Advanced Institute of Science and Technology (KAIST), KAIST Institute for Health Science and Technology, Daejeon, Republic of Korea
| | - Ki-Hun Jeong
- Korea Advanced Institute of Science and Technology (KAIST), Department of Bio and Brain Engineering, Daejeon, Republic of Korea
- Korea Advanced Institute of Science and Technology (KAIST), KAIST Institute for Health Science and Technology, Daejeon, Republic of Korea
- Address all correspondence to Ki-Hun Jeong, E-mail:
| |
Collapse
|
26
|
Campu A, Susu L, Orzan F, Maniu D, Craciun AM, Vulpoi A, Roiban L, Focsan M, Astilean S. Multimodal Biosensing on Paper-Based Platform Fabricated by Plasmonic Calligraphy Using Gold Nanobypiramids Ink. Front Chem 2019; 7:55. [PMID: 30800650 PMCID: PMC6375850 DOI: 10.3389/fchem.2019.00055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/21/2019] [Indexed: 11/29/2022] Open
Abstract
In this work, we design new plasmonic paper-based nanoplatforms with interesting capabilities in terms of sensitivity, efficiency, and reproducibility for promoting multimodal biodetection via Localized Surface Plasmon Resonance (LSPR), Surface Enhanced Raman Spectroscopy (SERS), and Metal Enhanced Fluorescence (MEF). To succeed, we exploit the unique optical properties of gold nanobipyramids (AuBPs) deposited onto the cellulose fibers via plasmonic calligraphy using a commercial pen. The first step of the biosensing protocol was to precisely graft the previously chemically-formed p-aminothiophenol@Biotin system, as active recognition element for target streptavidin detection, onto the plasmonic nanoplatform. The specific capture of the target protein was successfully demonstrated using three complementary sensing techniques. As a result, while the LSPR based sensing capabilities of the nanoplatform were proved by successive 13-18 nm red shifts of the longitudinal LSPR associated with the change of the surface RI after each step. By employing the ultrasensitive SERS technique, we were able to indirectly confirm the molecular identification of the biotin-streptavidin interaction due to the protein fingerprint bands assigned to amide I, amide III, and Trp vibrations. Additionally, the formed biotin-streptavidin complex acted as a spacer to ensure an optimal distance between the AuBP surface and the Alexa 680 fluorophore for achieving a 2-fold fluorescence emission enhancement of streptavidin@Alexa 680 on the biotinylated nanoplatform compared to the same complex on bare paper (near the plasmonic lines), implementing thus a novel MEF sensing nanoplatform. Finally, by integrating multiple LSPR, SERS, and MEF nanosensors with multiplex capability into a single flexible and portable plasmonic nanoplatform, we could overcome important limits in the field of portable point-of-care diagnostics.
Collapse
Affiliation(s)
- Andreea Campu
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Laurentiu Susu
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Filip Orzan
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Dana Maniu
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Ana Maria Craciun
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Adriana Vulpoi
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Lucian Roiban
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, MATEIS, UMR, CNRS, Villeurbanne, France
| | - Monica Focsan
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Simion Astilean
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
27
|
Abstract
Paper has unique advantages over other materials, including low cost, flexibility, porosity, and self-driven liquid pumping, thus making it widely used in various fields in biology, chemistry, physics and materials science.
Collapse
Affiliation(s)
- Bingbing Gao
- School of Pharmaceutical Sciences
- Nanjing Tech University
- Nanjing 211816
- China
| | - Xin Li
- School of Pharmaceutical Sciences
- Nanjing Tech University
- Nanjing 211816
- China
| | - Yaqiong Yang
- School of Pharmaceutical Sciences
- Nanjing Tech University
- Nanjing 211816
- China
| | - Jianlin Chu
- School of Pharmaceutical Sciences
- Nanjing Tech University
- Nanjing 211816
- China
| | - Bingfang He
- School of Pharmaceutical Sciences
- Nanjing Tech University
- Nanjing 211816
- China
| |
Collapse
|