1
|
Molavi H, Mirzaei K, Barjasteh M, Rahnamaee SY, Saeedi S, Hassanpouryouzband A, Rezakazemi M. 3D-Printed MOF Monoliths: Fabrication Strategies and Environmental Applications. NANO-MICRO LETTERS 2024; 16:272. [PMID: 39145820 PMCID: PMC11327240 DOI: 10.1007/s40820-024-01487-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/25/2024] [Indexed: 08/16/2024]
Abstract
Metal-organic frameworks (MOFs) have been extensively considered as one of the most promising types of porous and crystalline organic-inorganic materials, thanks to their large specific surface area, high porosity, tailorable structures and compositions, diverse functionalities, and well-controlled pore/size distribution. However, most developed MOFs are in powder forms, which still have some technical challenges, including abrasion, dustiness, low packing densities, clogging, mass/heat transfer limitation, environmental pollution, and mechanical instability during the packing process, that restrict their applicability in industrial applications. Therefore, in recent years, attention has focused on techniques to convert MOF powders into macroscopic materials like beads, membranes, monoliths, gel/sponges, and nanofibers to overcome these challenges.Three-dimensional (3D) printing technology has achieved much interest because it can produce many high-resolution macroscopic frameworks with complex shapes and geometries from digital models. Therefore, this review summarizes the combination of different 3D printing strategies with MOFs and MOF-based materials for fabricating 3D-printed MOF monoliths and their environmental applications, emphasizing water treatment and gas adsorption/separation applications. Herein, the various strategies for the fabrication of 3D-printed MOF monoliths, such as direct ink writing, seed-assisted in-situ growth, coordination replication from solid precursors, matrix incorporation, selective laser sintering, and digital light processing, are described with the relevant examples. Finally, future directions and challenges of 3D-printed MOF monoliths are also presented to better plan future trajectories in the shaping of MOF materials with improved control over the structure, composition, and textural properties of 3D-printed MOF monoliths.
Collapse
Affiliation(s)
- Hossein Molavi
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Zanjan, 45137-66731, Iran.
| | - Kamyar Mirzaei
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Mahdi Barjasteh
- Center for Nano-Science and Nanotechnology, Institute for Convergence Science & Technology, Sharif University of Technology, Tehran, 15614, Iran
| | - Seyed Yahya Rahnamaee
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave., P.O.Box 15875-4413, Tehran, Iran
| | - Somayeh Saeedi
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Zanjan, 45137-66731, Iran
| | | | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, P.O. Box 3619995161, Iran.
| |
Collapse
|
2
|
Rozaini MT, Grekov DI, Bustam MA, Pré P. Low-Hydrophilic HKUST-1/Polymer Extrudates for the PSA Separation of CO 2/CH 4. Molecules 2024; 29:2069. [PMID: 38731559 PMCID: PMC11085341 DOI: 10.3390/molecules29092069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
HKUST-1 is an MOF adsorbent industrially produced in powder form and thus requires a post-shaping process for use as an adsorbent in fixed-bed separation processes. HKUST-1 is also sensitive to moisture, which degrades its crystalline structure. In this work, HKUST-1, in the form of crystalline powder, was extruded into pellets using a hydrophobic polymeric binder to improve its moisture stability. Thermoplastic polyurethane (TPU) was used for that purpose. The subsequent HKUST-1/TPU extrudate was then compared to HKUST-1/PLA extrudates synthesized with more hydrophilic polymer: polylactic acid (PLA), as the binder. The characterization of the composites was determined via XRD, TGA, SEM-EDS, and an N2 adsorption isotherm analysis. Meanwhile, the gas-separation performances of HKUST-1/TPU were investigated and compared with HKUST-1/PLA from measurements of CO2 and CH4 isotherms at three different temperatures, up to 10 bars. Lastly, the moisture stability of the composite materials was investigated via an aging analysis during storage under humid conditions. It is shown that HKUST-1's crystalline structure was preserved in the HKUST-1/TPU extrudates. The composites also exhibited good thermal stability under 523 K, whilst their textural properties were not significantly modified compared with the pristine HKUST-1. Furthermore, both extrudates exhibited larger CO2 and CH4 adsorption capacities in comparison to the pristine HKUST-1. After three months of storage under atmospheric humid conditions, CO2 adsorption capacities were reduced to only 10% for HKUST-1/TPU, whereas reductions of about 25% and 54% were observed for HKUST-1/PLA and the pristine HKUST-1, respectively. This study demonstrates the interest in shaping MOF powders by extrusion using a hydrophobic thermoplastic binder to operate adsorbents with enhanced moisture stability in gas-separation columns.
Collapse
Affiliation(s)
- Muhamad Tahriri Rozaini
- Centre of Research in Ionic Liquids, CORIL, Chemical Engineering Department, Universiti Teknologi Petronas, Bandar Seri Iskandar 32610, Perak, Malaysia or
- GEnie des Procédés Environnement-Agroalimentaire (GEPEA) UMR-CNRS 6144, Department of Energy Systems and Environment, IMT Atlantique, 44300 Nantes, France;
| | - Denys I. Grekov
- GEnie des Procédés Environnement-Agroalimentaire (GEPEA) UMR-CNRS 6144, Department of Energy Systems and Environment, IMT Atlantique, 44300 Nantes, France;
| | - Mohamad Azmi Bustam
- Centre of Research in Ionic Liquids, CORIL, Chemical Engineering Department, Universiti Teknologi Petronas, Bandar Seri Iskandar 32610, Perak, Malaysia or
| | - Pascaline Pré
- GEnie des Procédés Environnement-Agroalimentaire (GEPEA) UMR-CNRS 6144, Department of Energy Systems and Environment, IMT Atlantique, 44300 Nantes, France;
| |
Collapse
|
3
|
Liu X, Zhao D, Wang J. Challenges and Opportunities in Preserving Key Structural Features of 3D-Printed Metal/Covalent Organic Framework. NANO-MICRO LETTERS 2024; 16:157. [PMID: 38512503 PMCID: PMC10957829 DOI: 10.1007/s40820-024-01373-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/01/2024] [Indexed: 03/23/2024]
Abstract
Metal-organic framework (MOF) and covalent organic framework (COF) are a huge group of advanced porous materials exhibiting attractive and tunable microstructural features, such as large surface area, tunable pore size, and functional surfaces, which have significant values in various application areas. The emerging 3D printing technology further provides MOF and COFs (M/COFs) with higher designability of their macrostructure and demonstrates large achievements in their performance by shaping them into advanced 3D monoliths. However, the currently available 3D printing M/COFs strategy faces a major challenge of severe destruction of M/COFs' microstructural features, both during and after 3D printing. It is envisioned that preserving the microstructure of M/COFs in the 3D-printed monolith will bring a great improvement to the related applications. In this overview, the 3D-printed M/COFs are categorized into M/COF-mixed monoliths and M/COF-covered monoliths. Their differences in the properties, applications, and current research states are discussed. The up-to-date advancements in paste/scaffold composition and printing/covering methods to preserve the superior M/COF microstructure during 3D printing are further discussed for the two types of 3D-printed M/COF. Throughout the analysis of the current states of 3D-printed M/COFs, the expected future research direction to achieve a highly preserved microstructure in the 3D monolith is proposed.
Collapse
Affiliation(s)
- Ximeng Liu
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - John Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore.
- National University of Singapore (Chongqing) Research Institute, Chongqing, 401123, People's Republic of China.
| |
Collapse
|
4
|
Perera SD, Johnson RM, Pawle R, Elliott J, Tran TM, Gonzalez J, Huffstetler J, Ayers LC, Ganesh V, Senarathna MC, Cortés-Guzmán KP, Dube S, Springfield S, Hancock LF, Lund BR, Smaldone RA. Hierarchically Structured Metal-Organic Framework Polymer Composites for Chemical Warfare Agent Degradation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10795-10804. [PMID: 38377544 DOI: 10.1021/acsami.3c19446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Metal-organic frameworks (MOFs) have captured the imagination of researchers for their highly tunable properties and many potential applications, including as catalysts for a variety of transformations. Even though MOFs possess significant potential, the challenges associated with processing of these crystalline powders into usable form factors while retaining their functional properties limit their end use applications. Herein, we introduce a new approach to construct MOF-polymer composites via 3D photoprinting to overcome these limitations. We designed photoresin composite formulations that use polymerization-induced phase separation to cause the MOF catalysts to migrate to the surface of the printed material, where they are accessible to substrates such as chemical warfare agents. Using our approach, MOF-polymer composites can be fabricated into nearly any shape or architecture while retaining both the excellent catalytic activity at 10 wt % loading of the MOF components and the flexible, elastomeric mechanical properties of a polymer.
Collapse
Affiliation(s)
- Sachini D Perera
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Rebecca M Johnson
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Robert Pawle
- Akita Innovations LLC, 267 Boston Rd., Suite 11, North Billerica, Massachusetts 01862, United States
| | - John Elliott
- Akita Innovations LLC, 267 Boston Rd., Suite 11, North Billerica, Massachusetts 01862, United States
| | - Tien M Tran
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Jasmine Gonzalez
- Adaptive3D, 1122 Alma Road, Richardson, Texas 75081, United States
| | | | - Lyndsay C Ayers
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Vijayalakshmi Ganesh
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Milinda C Senarathna
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Karen P Cortés-Guzmán
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Soumik Dube
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Samantha Springfield
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Lawrence F Hancock
- Akita Innovations LLC, 267 Boston Rd., Suite 11, North Billerica, Massachusetts 01862, United States
| | - Benjamin R Lund
- Adaptive3D, 1122 Alma Road, Richardson, Texas 75081, United States
| | - Ronald A Smaldone
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| |
Collapse
|
5
|
Szynkiewicz D, Ulenberg S, Georgiev P, Hejna A, Mikolaszek B, Bączek T, Baron GV, Denayer JFM, Desmet G, Belka M. Development of a 3D-Printable, Porous, and Chemically Active Material Filled with Silica Particles and its Application to the Fabrication of a Microextraction Device. Anal Chem 2023. [PMID: 37490645 DOI: 10.1021/acs.analchem.3c01263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
We report on the first successful attempt to produce a silica/polymer composite with retained C18 silica sorptive properties that can be reliably printed using three-dimensional (3D) FDM printing. A 3D printer provides an exceptional tool for producing complex objects in an easy and inexpensive manner and satisfying the current custom demand of research. Fused deposition modeling (FDM) is the most popular 3D-printing technique based on the extrusion of a thermoplastic material. The lack of appropriate materials limits the development of advanced applications involving directly 3D-printed devices with intrinsic chemical activity. Progress in sample preparation, especially for complex sample matrices and when mass spectrometry is favorable, remains a vital research field. Silica particles, for example, which are commonly used for extraction, cannot be directly extruded and are not readily workable in a powder form. The availability of composite materials containing a thermoplastic polymer matrix and dispersed silica particles would accelerate research in this area. This paper describes how to prepare a polypropylene (PP)/acrylonitrile-butadiene-styrene (ABS)/C18-functionalized silica composite that can be processed by FDM 3D printing. We present a method for producing the filament as well as a procedure to remove ABS by acetone rinsing (to activate the material). The result is an activated 3D-printed object with a porous structure that allows access to silica particles while maintaining macroscopic size and shape. The 3D-printed device is intended for use in a solid-phase microextraction (SPME) procedure. The proposed composite's effectiveness is demonstrated for the microextraction of glimepiride, imipramine, and carbamazepine. The complex honeycomb geometry of the sorbent has shown to be superior to the simple tubular sorbent, which proves the benefits of 3D printing. The 3D-printed sorbent's shape and microextraction parameters were fine-tuned to provide satisfactory recoveries (33-47%) and high precision (2-6%), especially for carbamazepine microextraction.
Collapse
Affiliation(s)
- Dagmara Szynkiewicz
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, 80-416 Gdańsk, Poland
| | - Szymon Ulenberg
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, 80-416 Gdańsk, Poland
| | - Paweł Georgiev
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, 80-416 Gdańsk, Poland
| | - Aleksander Hejna
- Institute of Materials Technology, Poznan University of Technology, Piotrowo 3, 61-138 Poznań, Poland
| | - Barbara Mikolaszek
- Department of Pharmaceutical Technology, Medical University of Gdańsk, J. Hallera 107, 80-416 Gdańsk, Poland
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, 80-416 Gdańsk, Poland
| | - Gino V Baron
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Joeri F M Denayer
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Gert Desmet
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Mariusz Belka
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, 80-416 Gdańsk, Poland
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
6
|
Chen Q, Tian E, Wang Y, Mo J, Xu G, Zhu M. Recent Progress and Perspectives of Direct Ink Writing Applications for Mass Transfer Enhancement in Gas-Phase Adsorption and Catalysis. SMALL METHODS 2023; 7:e2201302. [PMID: 36871146 DOI: 10.1002/smtd.202201302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/11/2023] [Indexed: 06/09/2023]
Abstract
Conventional adsorbents and catalysts shaped by granulation or extrusion have high pressure drop and poor flexibility for chemical, energy, and environmental processes. Direct ink writing (DIW), a kind of 3D printing, has evolved into a crucial technique for manufacturing scalable configurations of adsorbents and catalysts with satisfactory programmable automation, highly optional materials, and reliable construction. Particularly, DIW can generate specific morphologies required for excellent mass transfer kinetics, which is essential in gas-phase adsorption and catalysis. Here, DIW methodologies for mass transfer enhancement in gas-phase adsorption and catalysis, covering the raw materials, fabrication process, auxiliary optimization methods, and practical applications are comprehensively summarized. The prospects and challenges of DIW methodology in realizing good mass transfer kinetics are discussed. Ideal components with a gradient porosity, multi-material structure, and hierarchical morphology are proposed for future investigations.
Collapse
Affiliation(s)
- Qiwei Chen
- Department of Building Science, School of Architecture, Tsinghua University, Beijing, 100084, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, 100084, China
| | - Enze Tian
- Songshan Lake Materials Laboratory, Dongguan, 523808, China
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yan Wang
- Department of Building Science, School of Architecture, Tsinghua University, Beijing, 100084, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, 100084, China
| | - Jinhan Mo
- Department of Building Science, School of Architecture, Tsinghua University, Beijing, 100084, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, 100084, China
- Key Laboratory of Eco Planning & Green Building, Ministry of Education (Tsinghua University), Beijing, 100084, China
| | - Guiyin Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
7
|
Golubchikov D, Evdokimov P, Zuev D, Filippov Y, Shatalova T, Putlayev V. Three-Dimensional-Printed Molds from Water-Soluble Sulfate Ceramics for Biocomposite Formation through Low-Pressure Injection Molding. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3077. [PMID: 37109912 PMCID: PMC10145792 DOI: 10.3390/ma16083077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/01/2023] [Accepted: 04/10/2023] [Indexed: 06/19/2023]
Abstract
Powder mixtures of MgSO4 with 5-20 mol.% Na2SO4 or K2SO4 were used as precursors for making water-soluble ceramic molds to create thermoplastic polymer/calcium phosphate composites by low pressure injection molding. To increase the strength of the ceramic molds, 5 wt.% of tetragonal ZrO2 (Y2O3-stabilized) was added to the precursor powders. A uniform distribution of ZrO2 particles was obtained. The average grain size for Na-containing ceramics ranged from 3.5 ± 0.8 µm for MgSO4/Na2SO4 = 91/9% to 4.8 ± 1.1 µm for MgSO4/Na2SO4 = 83/17%. For K-containing ceramics, the values were 3.5 ± 0.8 µm for all of the samples. The addition of ZrO2 made a significant contribution to the strength of ceramics: for the MgSO4/Na2SO4 = 83/17% sample, the compressive strength increased by 49% (up to 6.7 ± 1.3 MPa), and for the stronger MgSO4/K2SO4 = 83/17% by 39% (up to 8.4 ± 0.6 MPa). The average dissolution time of the ceramic molds in water did not exceed 25 min.
Collapse
Affiliation(s)
- Daniil Golubchikov
- Department of Materials Science, Lomonosov Moscow State University, Building, 73, Leninskie Gory, 1, 119991 Moscow, Russia; (D.Z.); (T.S.); (V.P.)
- Department of Chemistry, Lomonosov Moscow State University, Building, 3, Leninskie Gory, 1, 119991 Moscow, Russia; (P.E.); (Y.F.)
| | - Pavel Evdokimov
- Department of Chemistry, Lomonosov Moscow State University, Building, 3, Leninskie Gory, 1, 119991 Moscow, Russia; (P.E.); (Y.F.)
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii Prosp., 31, 119071 Moscow, Russia
| | - Dmitry Zuev
- Department of Materials Science, Lomonosov Moscow State University, Building, 73, Leninskie Gory, 1, 119991 Moscow, Russia; (D.Z.); (T.S.); (V.P.)
| | - Yaroslav Filippov
- Department of Chemistry, Lomonosov Moscow State University, Building, 3, Leninskie Gory, 1, 119991 Moscow, Russia; (P.E.); (Y.F.)
- Research Institute of Mechanics, Lomonosov Moscow State University, Michurinsky, 1, 119192 Moscow, Russia
| | - Tatiana Shatalova
- Department of Materials Science, Lomonosov Moscow State University, Building, 73, Leninskie Gory, 1, 119991 Moscow, Russia; (D.Z.); (T.S.); (V.P.)
- Department of Chemistry, Lomonosov Moscow State University, Building, 3, Leninskie Gory, 1, 119991 Moscow, Russia; (P.E.); (Y.F.)
| | - Valery Putlayev
- Department of Materials Science, Lomonosov Moscow State University, Building, 73, Leninskie Gory, 1, 119991 Moscow, Russia; (D.Z.); (T.S.); (V.P.)
- Department of Chemistry, Lomonosov Moscow State University, Building, 3, Leninskie Gory, 1, 119991 Moscow, Russia; (P.E.); (Y.F.)
| |
Collapse
|
8
|
Abdelhamid HN, Sultan S, Mathew AP. 3D printing of cellulose/leaf-like zeolitic imidazolate frameworks (CelloZIF-L) for adsorption of carbon dioxide (CO 2) and heavy metal ions. Dalton Trans 2023; 52:2988-2998. [PMID: 36779352 DOI: 10.1039/d2dt04168e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Metal-organic frameworks (MOFs) have advanced several technologies. However, it is difficult to market MOFs without processing them into a commercialized structure, causing an unnecessary delay in the material's use. Herein, three-dimensional (3D) printing of cellulose/leaf-like zeolitic imidazolate frameworks (ZIF-L), denoted as CelloZIF-L, is reported via direct ink writing (DIW, robocasting). Formulating CelloZIF-L into 3D objects can dramatically affect the material's properties and, consequently, its adsorption efficiency. The 3D printing process of CelloZIF-L is simple and can be applied via direct printing into a solution of calcium chloride. The synthesis procedure enables the formation of CelloZIF-L with a ZIF content of 84%. 3D printing enables the integration of macroscopic assembly with microscopic properties, i.e., the formation of the hierarchical structure of CelloZIF-L with different shapes, such as cubes and filaments, with 84% loading of ZIF-L. The materials adsorb carbon dioxide (CO2) and heavy metals. 3D CelloZIF-L exhibited a CO2 adsorption capacity of 0.64-1.15 mmol g-1 at 1 bar (0 °C). The materials showed Cu2+ adsorption capacities of 389.8 ± 14-554.8 ± 15 mg g-1. They displayed selectivities of 86.8%, 6.7%, 2.4%, 0.93%, 0.61%, and 0.19% toward Fe3+, Al3+, Co2+, Cu2+, Na+, and Ca2+, respectively. The simple 3D printing procedure and the high adsorption efficiencies reveal the promising potential of our materials for industrial applications.
Collapse
Affiliation(s)
- Hani Nasser Abdelhamid
- Division of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16 C, Stockholm, SE-10691, Sweden. .,Advanced Multifunctional Materials Laboratory, Department of Chemistry, Faculty of Science, Assiut University, Assiut, 71515, Egypt.,Nanotechnology Research Centre (NTRC), The British University in Egypt (BUE), El-Shorouk City, Suez Desert Road, P.O. Box 43, Cairo 11837, Egypt
| | - Sahar Sultan
- Division of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16 C, Stockholm, SE-10691, Sweden.
| | - Aji P Mathew
- Division of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16 C, Stockholm, SE-10691, Sweden.
| |
Collapse
|
9
|
Åhlén M, Cheung O, Xu C. Low-concentration CO 2 capture using metal-organic frameworks - current status and future perspectives. Dalton Trans 2023; 52:1841-1856. [PMID: 36723043 DOI: 10.1039/d2dt04088c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The ever-increasing atmospheric CO2 level is considered to be the major cause of climate change. Although the move away from fossil fuel-based energy generation to sustainable energy sources would significantly reduce the release of CO2 into the atmosphere, it will most probably take time to be fully implemented on a global scale. On the other hand, capturing CO2 from emission sources or directly from the atmosphere are robust approaches that can reduce the atmospheric CO2 concentration in a relatively short time. Here, we provide a perspective on the recent development of metal-organic framework (MOF)-based solid sorbents that have been investigated for application in CO2 capture from low-concentration (<10 000 ppm) CO2 sources. We summarized the different sorbent engineering approaches adopted by researchers, both from the sorbent development and processing viewpoints. We also discuss the immediate challenges of using MOF-based CO2 sorbents for low-concentration CO2 capture. MOF-based materials, with tuneable pore properties and tailorable surface chemistry, and ease of handling, certainly deserve continued development into low-cost, efficient CO2 sorbents for low-concentration CO2 capture.
Collapse
Affiliation(s)
- Michelle Åhlén
- Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Uppsala University, Ångström Laboratory, SE-751 03 Uppsala, Box 35, Sweden.
| | - Ocean Cheung
- Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Uppsala University, Ångström Laboratory, SE-751 03 Uppsala, Box 35, Sweden.
| | - Chao Xu
- Division of Nanotechnology and Functional Materials, Department of Materials Science and Engineering, Uppsala University, Ångström Laboratory, SE-751 03 Uppsala, Box 35, Sweden.
| |
Collapse
|
10
|
Lan S, Xia X, Liu Z, Yang Y, Qian Q, Luo Y, Chen Q, Cao C, Xiao L. 3D printed cylindrical capsules as a Chlorella pyrenoidosa immobilization device for removal of lead ions contamination. Front Chem 2022; 10:987619. [PMID: 36531318 PMCID: PMC9748691 DOI: 10.3389/fchem.2022.987619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/16/2022] [Indexed: 12/01/2023] Open
Abstract
Immobilization is considered as a promising strategy toward the practical applications of powdered adsorbent. Herein, three dimensional (3D) printing cylindrical capsules with cross-linked PVA hydrogels membrane in encapsulate Chlorella pyrenoidosa (Cp) were utilized for removal of lead ions. The chemical compositions, hydrogels performance and morphologies of the membranes were determined by Fourier transformed infrared spectroscopy (FTIR), cross-linking degree, swelling degree, membrane flux and scanning electron microscopy (SEM). It is found that PVA cross-linking structure is successfully synthesized on the surface of capsule body and cap due to the presence of PVA in the filament. The lead ions adsorption capacity related to initial concentration of 50 mg/L in 48 h is reached 75.61%, revealing a good removal ability. The self-floating 3D printed capsules device also shows an excellent recovering property. After 7 runs of adsorption experiment, the lead ions adsorption ratio remains 78.56%, which will bring a broad prospect in wastewater treatment, chemical slow release along with sample preparation and separation.
Collapse
Affiliation(s)
- Shuzhen Lan
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou, China
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, China
| | - Xinshu Xia
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou, China
- College of Environment and Resources, Fujian Normal University, Fuzhou, China
| | - Zhen Liu
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou, China
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, China
| | - Yujin Yang
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou, China
- College of Environment and Resources, Fujian Normal University, Fuzhou, China
| | - Qingrong Qian
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou, China
- College of Environment and Resources, Fujian Normal University, Fuzhou, China
| | - Yongjin Luo
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou, China
- College of Environment and Resources, Fujian Normal University, Fuzhou, China
| | - Qinghua Chen
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou, China
- College of Environment and Resources, Fujian Normal University, Fuzhou, China
| | - Changlin Cao
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou, China
- College of Environment and Resources, Fujian Normal University, Fuzhou, China
| | - Liren Xiao
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou, China
- College of Chemistry and Materials, Fujian Normal University, Fuzhou, China
| |
Collapse
|
11
|
Zhang Y, Wan X, Xu X, Teng P, Wang S. Recent progress of tree frog toe pads inspired wet adhesive materials. BIOSURFACE AND BIOTRIBOLOGY 2022. [DOI: 10.1049/bsb2.12049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Yikai Zhang
- Key Laboratory of Bio‐inspired Materials and Interface Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Xizi Wan
- Key Laboratory of Bio‐inspired Materials and Interface Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing China
| | - Xuetao Xu
- Key Laboratory of Bio‐inspired Materials and Interface Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Peicheng Teng
- Key Laboratory of Bio‐inspired Materials and Interface Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Shutao Wang
- Key Laboratory of Bio‐inspired Materials and Interface Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
12
|
Multifunctional Flexible Ag-MOFs@CMFP Composite Paper for Fruit Preservation and Real-time Wireless Monitoring of Fruit Quality During Storage and Transportation. Food Chem 2022; 395:133614. [DOI: 10.1016/j.foodchem.2022.133614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/07/2022] [Accepted: 06/28/2022] [Indexed: 11/15/2022]
|
13
|
Fonseca J, Gong T. Fabrication of metal-organic framework architectures with macroscopic size: A review. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
14
|
Pal S, Su YZ, Chen YW, Yu CH, Kung CW, Yu SS. 3D Printing of Metal-Organic Framework-Based Ionogels: Wearable Sensors with Colorimetric and Mechanical Responses. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28247-28257. [PMID: 35604841 DOI: 10.1021/acsami.2c02690] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Soft ionotronics are emerging materials as wearable sensors for monitoring physiological signals, sensing environmental hazards, and bridging the human-machine interface. However, the next generation of wearable sensors requires multiple sensing capabilities, mechanical toughness, and 3D printability. In this study, a metal-organic framework (MOF) and three-dimensional (3D) printing were integrated for the synthesis of a tough MOF-based ionogel (MIG) for colorimetric and mechanical sensing. The ink for 3D printing contained deep eutectic solvents (DESs), cellulose nanocrystals (CNCs), MOF crystals, and acrylamide. After printing, further photopolymerization resulted in a second covalently cross-linked poly(acrylamide) network and solidification of MIG. As a porphyrinic Zr-based MOF, MOF-525 served as a functional filler to provide sharp color changes when exposed to acidic compounds. Notably, MOF-525 crystals also provided another design space to tune the printability and mechanical strength of MIG. In addition, the printed MIG exhibited high stability in the air because of the low volatility of DESs. Thereafter, wearable auxetic materials comprising MIG with negative Poisson's ratios were prepared by 3D printing for the detection of mechanical deformation. The resulting auxetic sensor exhibited high sensitivity via the change in resistance upon mechanical deformation and a conformal contact with skins to monitor various human body movements. These results demonstrate a facile strategy for the construction of multifunctional sensors and the shaping of MOF-based composite materials.
Collapse
Affiliation(s)
- Souvik Pal
- Department of Chemical Engineering, National Cheng Kung University, No. 1 University Road, Tainan City 70101, Taiwan
| | - You-Ze Su
- Department of Chemical Engineering, National Cheng Kung University, No. 1 University Road, Tainan City 70101, Taiwan
| | - Yu-Wen Chen
- Department of Engineering Science, National Cheng Kung University, No. 1 University Road, Tainan City 70101, Taiwan
| | - Chi-Hua Yu
- Department of Engineering Science, National Cheng Kung University, No. 1 University Road, Tainan City 70101, Taiwan
| | - Chung-Wei Kung
- Department of Chemical Engineering, National Cheng Kung University, No. 1 University Road, Tainan City 70101, Taiwan
| | - Sheng-Sheng Yu
- Department of Chemical Engineering, National Cheng Kung University, No. 1 University Road, Tainan City 70101, Taiwan
- Core Facility Center, National Cheng Kung University, No. 1 University Road, Tainan City 70101, Taiwan
- Program on Smart and Sustainable Manufacturing, Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, No. 1 University Road, Tainan City 70101, Taiwan
| |
Collapse
|
15
|
Grivet-Brancot A, Boffito M, Ciardelli G. Use of Polyesters in Fused Deposition Modeling for Biomedical Applications. Macromol Biosci 2022; 22:e2200039. [PMID: 35488769 DOI: 10.1002/mabi.202200039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/11/2022] [Indexed: 11/09/2022]
Abstract
In recent years, 3D printing techniques experienced a growing interest in several sectors, including the biomedical one. Their main advantage resides in the possibility to obtain complex and personalized structures in a cost-effective way impossible to achieve with traditional production methods. This is especially true for Fused Deposition Modeling (FDM), one of the most diffused 3D printing methods. The easy customization of the final products' geometry, composition and physico-chemical properties is particularly interesting for the increasingly personalized approach adopted in modern medicine. Thermoplastic polymers are the preferred choice for FDM applications, and a wide selection of biocompatible and biodegradable materials is available to this aim. Moreover, these polymers can also be easily modified before and after printing to better suit the body environment and the mechanical properties of biological tissues. This review focuses on the use of thermoplastic aliphatic polyesters for FDM applications in the biomedical field. In detail, the use of poly(ε-caprolactone), poly(lactic acid), poly(lactic-co-glycolic acid), poly(hydroxyalkanoate)s, thermo-plastic poly(ester urethane)s and their blends has been thoroughly surveyed, with particular attention to their main features, applicability and workability. The state-of-the-art is presented and current challenges in integrating the additive manufacturing technology in the medical practice are discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Arianna Grivet-Brancot
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, Italy.,Department of Surgical Sciences, Università di Torino, Corso Dogliotti 14, Torino, 10126, Italy
| | - Monica Boffito
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, Italy
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, Italy
| |
Collapse
|
16
|
Yang Y, Xia X, Cao C, Li W, Zeng L, Xiao L, Yan P, Huang B, Liu X, Qian Q, Chen Q. Efficient Removal of Organic Contaminants from Aqueous Solution by Highly Compressible Reusable Three-Dimensional Printing Sponges. 3D PRINTING AND ADDITIVE MANUFACTURING 2021; 8:349-357. [PMID: 36655010 PMCID: PMC9828625 DOI: 10.1089/3dp.2019.0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Adsorption is considered to be one of the most effective and economically viable technologies for removing contaminants from the environment. However, the disadvantages of its high-cost complicated process and difficulty in efficient recycling limit its practical application. Herein, a thermoplastic elastomer-polyvinyl alcohol composite (LAY-FOMM 60) sponge three-dimensional structure (3D printing sponge) was fabricated by the fused filament fabrication combined with water erosion technique. The size and shape of the resultant sponge were tailored, and the batch of adsorption/desorption experiments of Rhodamine B (RhB) onto the sponge was performed. The results show that the adsorption of RhB on the 3D printing sponge was mainly via physical adsorption, and pseudo-second-order and Langmuir models exhibited good correlation with the adsorption kinetic and isotherm data, respectively. Thermodynamic parameters suggest that the adsorption is an endothermic and spontaneous process. It is worth to note that the adsorption/desorption efficiency can be raised by compression. This results in high efficiency and low cost for adsorption/desorption process and benefit for regeneration of the adsorbent. The adsorption capacity was maintained over 85% of the initial capacity after being used for five cycles. The approach provides a simple strategy for manufacturing customizable porous adsorbent materials that meet various water treatment requirements.
Collapse
Affiliation(s)
- Yujin Yang
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, China
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou, China
- Fujian Key Laboratory of Pollution Control and Resource Reuse, Fujian Normal University, Fuzhou, China
| | - Xinshu Xia
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, China
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou, China
- Fujian Key Laboratory of Pollution Control and Resource Reuse, Fujian Normal University, Fuzhou, China
| | - Changlin Cao
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, China
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou, China
- Fujian Key Laboratory of Pollution Control and Resource Reuse, Fujian Normal University, Fuzhou, China
| | - Wei Li
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, China
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou, China
- Fujian Key Laboratory of Pollution Control and Resource Reuse, Fujian Normal University, Fuzhou, China
| | - Lingxing Zeng
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, China
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou, China
- Fujian Key Laboratory of Pollution Control and Resource Reuse, Fujian Normal University, Fuzhou, China
| | - Liren Xiao
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou, China
- Fujian Key Laboratory of Pollution Control and Resource Reuse, Fujian Normal University, Fuzhou, China
| | - Pinping Yan
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, China
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou, China
- Fujian Key Laboratory of Pollution Control and Resource Reuse, Fujian Normal University, Fuzhou, China
| | - Baoquan Huang
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, China
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou, China
- Fujian Key Laboratory of Pollution Control and Resource Reuse, Fujian Normal University, Fuzhou, China
| | - Xinping Liu
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, China
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou, China
- Fujian Key Laboratory of Pollution Control and Resource Reuse, Fujian Normal University, Fuzhou, China
| | - Qingrong Qian
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, China
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou, China
- Fujian Key Laboratory of Pollution Control and Resource Reuse, Fujian Normal University, Fuzhou, China
| | - Qinghua Chen
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, China
- Fujian Key Laboratory of Pollution Control and Resource Reuse, Fujian Normal University, Fuzhou, China
- Fuqing Branch, Fujian Normal University, Fuzhou, China
| |
Collapse
|
17
|
Abstract
Metal-organic frameworks (MOFs) have attracted great attention for their applications in chemical sensors mainly due to their high porosity resulting in high density of spatially accessible active sites, which can interact with the aimed analyte. Among various MOFs, frameworks constructed from group 4 metal-based (e.g., zirconium, titanium, hafnium, and cerium) MOFs, have become especially of interest for the sensors requiring the operations in aqueous media owing to their remarkable chemical stability in water. Research efforts have been made to utilize these group 4 metal-based MOFs in chemosensors such as luminescent sensors, colorimetric sensors, electrochemical sensors, and resistive sensors for a range of analytes since 2013. Though several studies in this subfield have been published especially over the past 3–5 years, some challenges and concerns are still there and sometimes they might be overlooked. In this review, we aim to highlight the recent progress in the use of group 4 metal-based MOFs in chemical sensors, and focus on the challenges, potential concerns, and opportunities in future studies regarding the developments of such chemically robust MOFs for sensing applications.
Collapse
|
18
|
Belka M, Bączek T. Additive manufacturing and related technologies – The source of chemically active materials in separation science. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Haase F, Hirschle P, Freund R, Furukawa S, Ji Z, Wuttke S. Beyond Frameworks: Structuring Reticular Materials across Nano-, Meso-, and Bulk Regimes. Angew Chem Int Ed Engl 2020; 59:22350-22370. [PMID: 32449245 PMCID: PMC7756821 DOI: 10.1002/anie.201914461] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 05/08/2020] [Indexed: 12/14/2022]
Abstract
Reticular materials are of high interest for diverse applications, ranging from catalysis and separation to gas storage and drug delivery. These open, extended frameworks can be tailored to the intended application through crystal-structure design. Implementing these materials in application settings, however, requires structuring beyond their lattices, to interface the functionality at the molecular level effectively with the macroscopic world. To overcome this barrier, efforts in expressing structural control across molecular, nano-, meso-, and bulk regimes is the essential next step. In this Review, we give an overview of recent advances in using self-assembly as well as externally controlled tools to manufacture reticular materials over all the length scales. We predict that major research advances in deploying these two approaches will facilitate the use of reticular materials in addressing major needs of society.
Collapse
Affiliation(s)
- Frederik Haase
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS)Kyoto University, Yoshida, Sakyo-kuKyoto606-8501Japan
| | - Patrick Hirschle
- Department of Chemistry and Center for NanoScience (CeNS)Ludwig-Maximilians-Universität MünchenButenandtstrasse 1181377MunichGermany
| | - Ralph Freund
- Department of Chemistry and Center for NanoScience (CeNS)Ludwig-Maximilians-Universität MünchenButenandtstrasse 1181377MunichGermany
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS)Kyoto University, Yoshida, Sakyo-kuKyoto606-8501Japan
- Department of Synthetic Chemistry and Biological ChemistryGraduate School of EngineeringKyoto University, Katsura, Nishikyo-kuKyoto615-8510Japan
| | - Zhe Ji
- Department of ChemistryStanford UniversityStanfordCalifornia94305-5012USA
| | - Stefan Wuttke
- Department of Chemistry and Center for NanoScience (CeNS)Ludwig-Maximilians-Universität MünchenButenandtstrasse 1181377MunichGermany
- BCMaterialsBasque Center for MaterialsUPV/EHU Science Park48940LeioaSpain
- IkerbasqueBasque Foundation for Science48013BilbaoSpain
| |
Collapse
|
20
|
Maldonado N, Amo-Ochoa P. New Promises and Opportunities in 3D Printable Inks Based on Coordination Compounds for the Creation of Objects with Multiple Applications. Chemistry 2020; 27:2887-2907. [PMID: 32894574 DOI: 10.1002/chem.202002259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/03/2020] [Indexed: 12/17/2022]
Abstract
This review focuses on the usefulness of coordination bonds to create 3D printable inks and shows how the union of chemistry and 3D technology contributes to new scientific advances, by allowing amorphous or polycrystalline solids to be transformed into objects with the desired shape for successful applications. The review clearly shows how there has been considerable increase in the manufacture of objects based on the combination of organic matrices and coordination compounds. These coordination compounds are usually homogeneously dispersed within the matrix, anchored onto a proper support or coating the printed object, without destroying their unique properties. Advances are so rapid that today it is already possible to 3D print objects made exclusively from coordination compounds without additives. The new printable inks are made mainly with nanoscale nonporous coordination polymers, metal-organic gels, or metal-organic frameworks. The highly dynamic coordination bond allows the creation of objects, which respond to stimuli, that can act as sensors and be used for drug delivery. In addition, the combination of metal-organic frameworks with 3D printing allows the adsorption or selective capacity of the object to be increased, relative to that of the original compound, which is useful in energy storage, gas separation, or water pollutant elimination. Furthermore, the presence of the metal ion can give them new properties, such as luminescence, that are useful for application in sensors or anticounterfeiting. Technological advances, the combination of various printing techniques, and the properties of coordination bonds lead to the creation of surprising, new, printable inks and objects with highly complex shapes that will close the gap between academia and industry for research into coordination compounds.
Collapse
Affiliation(s)
- Noelia Maldonado
- Department of Inorganic Chemistry, Autonomous University of Madrid, 28049, Madrid, Spain
| | - Pilar Amo-Ochoa
- Department of Inorganic Chemistry, Autonomous University of Madrid, 28049, Madrid, Spain.,Institute for Advanced Research in Chemistry (IADCHEM), Autonomous University of Madrid, 28049, Madrid, Spain
| |
Collapse
|
21
|
Arun Kumar S, Balasubramaniam B, Bhunia S, Jaiswal MK, Verma K, Prateek, Khademhosseini A, Gupta RK, Gaharwar AK. Two-dimensional metal organic frameworks for biomedical applications. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1674. [PMID: 33137846 DOI: 10.1002/wnan.1674] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022]
Abstract
Two-dimensional (2D) metal organic frameworks (MOFs), are an emerging class of layered nanomaterials with well-defined structure and modular composition. The unique pore structure, high flexibility, tunability, and ability to introduce desired functionality within the structural framework, have led to potential use of MOFs in biomedical applications. This article critically reviews the application of 2D MOFs for therapeutic delivery, tissue engineering, bioimaging, and biosensing. Further, discussion on the challenges and strategies in next generation of 2D MOFs are also included. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Shreedevi Arun Kumar
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
| | | | - Sukanya Bhunia
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
| | - Manish K Jaiswal
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
| | - Kartikey Verma
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Prateek
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, USA
| | - Raju Kumar Gupta
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Akhilesh K Gaharwar
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA.,Material Science and Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA.,Center for Remote Health Technologies and Systems, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
22
|
Huang J, Wu P. Controlled Assembly of Luminescent Lanthanide-Organic Frameworks via Post-Treatment of 3D-Printed Objects. NANO-MICRO LETTERS 2020; 13:15. [PMID: 34138212 PMCID: PMC8187549 DOI: 10.1007/s40820-020-00543-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/29/2020] [Indexed: 05/02/2023]
Abstract
Complex multiscale assemblies of metal-organic frameworks are essential in the construction of large-scale optical platforms but often restricted by their bulk nature and conventional techniques. The integration of nanomaterials and 3D printing technologies allows the fabrication of multiscale functional architectures. Our study reports a unique method of controlled 3D assembly purely relying on the post-printing treatment of printed constructs. By immersing a 3D-printed patterned construct consisting of organic ligand in a solution of lanthanide ions, in situ growth of lanthanide metal-organic frameworks (LnMOFs) can rapidly occur, resulting in macroscopic assemblies and tunable fluorescence properties. This phenomenon, caused by coordination and chelation of lanthanide ions, also renders a sub-millimeter resolution and high shape fidelity. As a proof of concept, a type of 3D assembled LnMOFs-based optical sensing platform has demonstrated the feasibility in response to small molecules such as acetone. It is anticipated that the facile printing and design approach developed in this work can be applied to fabricate bespoke multiscale architectures of functional materials with controlled assembly, bringing a realistic and economic prospect.
Collapse
Affiliation(s)
- Jiahui Huang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China
| | - Peiyi Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China.
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai, 201620, People's Republic of China.
| |
Collapse
|
23
|
Liu Z, Xia X, Li W, Xiao L, Sun X, Luo F, Chen Q, Qian Q. In Situ Growth of Ca 2+-Based Metal-Organic Framework on CaSiO 3/ABS/TPU 3D Skeleton for Methylene Blue Removal. MATERIALS 2020; 13:ma13194403. [PMID: 33020376 PMCID: PMC7578962 DOI: 10.3390/ma13194403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 11/16/2022]
Abstract
The work reports a novel strategy for combining polymers and metal–organic frameworks (MOFs) into composites for adsorption applications. Calcium silicate (CaSiO3) was introduced into acrylonitrile butadiene styrene/thermoplastic polyurethane (ABS/TPU) alloy, and the CaSiO3/ABS/TPU skeleton was fabricated by 3D printing technology. The Ca-MOF was directly loaded on the surface of acetone-etched 3D skeleton by in-situ growth method. The obtained 3D skeleton was characterized and the performance of methylene blue (MB) adsorption was determined. It is clear that Ca-MOF is successfully loaded on the surface of 3D skeleton due to the presence of CaSiO3. The MB adsorption ratios of the solutions with initial concentrations of 50, 100 and 200 mg/L at the equilibrium time (5 h) are 88%, 88% and 80%, respectively, revealing good MB adsorption performance of the 3D skeleton. The MB adsorption ratio remains 70% at six runs of adsorption–desorption experiment, indicating the excellent recovering property of the skeleton. The results show that the prepared CaSiO3/ABS/TPU 3D skeleton is a candidate adsorbent for printing and dyeing effluent treatment.
Collapse
Affiliation(s)
- Zhen Liu
- College of Chemistry and Materials, Fujian Normal University, Fuzhou 350007, China;
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China;
| | - Xinshu Xia
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350007, China; (X.S.); (F.L.); (Q.C.)
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China;
- Correspondence: (X.X.); (L.X.); (Q.Q.)
| | - Wei Li
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350007, China; (X.S.); (F.L.); (Q.C.)
| | - Liren Xiao
- College of Chemistry and Materials, Fujian Normal University, Fuzhou 350007, China;
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China;
- Correspondence: (X.X.); (L.X.); (Q.Q.)
| | - Xiaoli Sun
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350007, China; (X.S.); (F.L.); (Q.C.)
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China;
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China
| | - Fubin Luo
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350007, China; (X.S.); (F.L.); (Q.C.)
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China;
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China
| | - Qinghua Chen
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China;
| | - Qingrong Qian
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350007, China; (X.S.); (F.L.); (Q.C.)
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China;
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China
- Correspondence: (X.X.); (L.X.); (Q.Q.)
| |
Collapse
|
24
|
Haase F, Hirschle P, Freund R, Furukawa S, Ji Z, Wuttke S. Mehr als nur ein Netzwerk: Strukturierung retikulärer Materialien im Nano‐, Meso‐ und Volumenbereich. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Frederik Haase
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) Kyoto University, Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Patrick Hirschle
- Department of Chemistry and Center for NanoScience (CeNS) Ludwig-Maximilians-Universität München Butenandtstraße 11 81377 München Deutschland
| | - Ralph Freund
- Department of Chemistry and Center for NanoScience (CeNS) Ludwig-Maximilians-Universität München Butenandtstraße 11 81377 München Deutschland
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS) Kyoto University, Yoshida, Sakyo-ku Kyoto 606-8501 Japan
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering Kyoto University, Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Zhe Ji
- Department of Chemistry Stanford University Stanford Kalifornien 94305-5012 USA
| | - Stefan Wuttke
- Department of Chemistry and Center for NanoScience (CeNS) Ludwig-Maximilians-Universität München Butenandtstraße 11 81377 München Deutschland
- BCMaterials Basque Center for Materials UPV/EHU Science Park 48940 Leioa Spanien
- Ikerbasque Basque Foundation for Science 48013 Bilbao Spanien
| |
Collapse
|
25
|
Pellejero I, Almazán F, Lafuente M, Urbiztondo MA, Drobek M, Bechelany M, Julbe A, Gandía LM. Functionalization of 3D printed ABS filters with MOF for toxic gas removal. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Mohammed AK, Usgaonkar S, Kanheerampockil F, Karak S, Halder A, Tharkar M, Addicoat M, Ajithkumar TG, Banerjee R. Connecting Microscopic Structures, Mesoscale Assemblies, and Macroscopic Architectures in 3D-Printed Hierarchical Porous Covalent Organic Framework Foams. J Am Chem Soc 2020; 142:8252-8261. [DOI: 10.1021/jacs.0c00555] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Abdul Khayum Mohammed
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Saurabh Usgaonkar
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Fayis Kanheerampockil
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Suvendu Karak
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Arjun Halder
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Minakshi Tharkar
- Central NMR Facility and Physical/Material Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Matthew Addicoat
- School of Science and Technology, Nottingham Trent University, Clifton Lane, NG11 8NS Nottingham, United Kingdom
| | - Thalasseril G. Ajithkumar
- Central NMR Facility and Physical/Material Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Rahul Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| |
Collapse
|
27
|
Claessens B, Dubois N, Lefevere J, Mullens S, Cousin-Saint-Remi J, Denayer JFM. 3D-Printed ZIF-8 Monoliths for Biobutanol Recovery. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00453] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Benjamin Claessens
- Department of Chemical Engineering Vrije Universiteit Brussel, Elsene 1050, Belgium
| | - Nicolas Dubois
- Department of Chemical Engineering Vrije Universiteit Brussel, Elsene 1050, Belgium
| | - Jasper Lefevere
- Vlaams Instituut voor Technologische Ontwikkeling (VITO NV), Mol 2400, Belgium
| | - Steven Mullens
- Vlaams Instituut voor Technologische Ontwikkeling (VITO NV), Mol 2400, Belgium
| | | | - Joeri F. M. Denayer
- Department of Chemical Engineering Vrije Universiteit Brussel, Elsene 1050, Belgium
| |
Collapse
|
28
|
Dhainaut J, Bonneau M, Ueoka R, Kanamori K, Furukawa S. Formulation of Metal-Organic Framework Inks for the 3D Printing of Robust Microporous Solids toward High-Pressure Gas Storage and Separation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:10983-10992. [PMID: 32045200 DOI: 10.1021/acsami.9b22257] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The shaping of metal-organic frameworks (MOFs) has become increasingly studied over the past few years, because it represents a major bottleneck toward their further applications at a larger scale. MOF-based macroscale solids should present performances similar to those of their powder counterparts, along with adequate mechanical resistance. Three-dimensional printing is a promising technology as it allows the fast prototyping of materials at the macroscale level; however, the large amounts of added binders have a detrimental effect on the porous properties of the solids. Herein, a 3D printer was modified to prepare a variety of MOF-based solids with controlled morphologies from shear-thinning inks containing 2-hydroxyethyl cellulose. Four benchmark MOFs were tested for this purpose: HKUST-1, CPL-1, ZIF-8, and UiO-66-NH2. All solids are mechanically stable with up to 0.6 MPa of uniaxial compression and highly porous with BET specific surface areas lowered by 0 to -25%. Furthermore, these solids were applied to high-pressure hydrocarbon sorption (CH4, C2H4, and C2H6), for which they presented a consequent methane gravimetric uptake (UiO-66-NH2, ZIF-8, and HKUST-1) and a highly preferential adsorption of ethylene over ethane (CPL-1).
Collapse
Affiliation(s)
- Jérémy Dhainaut
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mickaële Bonneau
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ryota Ueoka
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kazuyoshi Kanamori
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 606-8510, Japan
| |
Collapse
|
29
|
Hock S, Rose M. 3D‐Structured Monoliths of Nanoporous Polymers by Additive Manufacturing. CHEM-ING-TECH 2020. [DOI: 10.1002/cite.201900149] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sebastian Hock
- Technische Universität Darmstadt Ernst-Berl-Institut für Technische und Makromolekulare Chemie Alarich-Weiss-Straße 8 64287 Darmstadt Germany
| | - Marcus Rose
- Technische Universität Darmstadt Ernst-Berl-Institut für Technische und Makromolekulare Chemie Alarich-Weiss-Straße 8 64287 Darmstadt Germany
| |
Collapse
|
30
|
Using Supercritical CO2 in the Preparation of Metal-Organic Frameworks: Investigating Effects on Crystallisation. CRYSTALS 2019. [DOI: 10.3390/cryst10010017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this report, we explore the use of supercritical CO2 (scCO2) in the synthesis of well-known metal-organic frameworks (MOFs) including Zn-MOF-74 and UiO-66, as well as on the preparation of [Cu24(OH-mBDC)24]n metal-organic polyhedra (MOPs) and two new MOF structures {[Zn2(L1)(DPE)]∙4H2O}n and {[Zn3(L1)3(4,4′-azopy)]∙7.5H2O}n, where BTC = benzene-1,3,5-tricarboxylate, BDC = benzene-1,4-dicarboxylate, L1 = 4-carboxy-phenylene-methyleneamino-4-benzoate, DPE = 1,2-di(4-pyridyl)ethylene, 4.4′-azopy = 4,4′- azopyridine, and compare the results versus traditional solvothermal preparations at low temperatures (i.e., 40 °C). The objective of the work was to see if the same or different products would result from the scCO2 route versus the solvothermal method. We were interested to see which method produced the highest yield, the cleanest product and what types of morphology resulted. While there was no evidence of additional meso- or macroporosity in these MOFs/MOPs nor any significant improvements in product yields through the addition of scCO2 to these systems, it was shown that the use of scCO2 can have an effect on crystallinity, crystal size and morphology.
Collapse
|
31
|
Zhao X, Tekinalp H, Meng X, Ker D, Benson B, Pu Y, Ragauskas AJ, Wang Y, Li K, Webb E, Gardner DJ, Anderson J, Ozcan S. Poplar as Biofiber Reinforcement in Composites for Large-Scale 3D Printing. ACS APPLIED BIO MATERIALS 2019; 2:4557-4570. [DOI: 10.1021/acsabm.9b00675] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xianhui Zhao
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Halil Tekinalp
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
- Department of Mechanical, Aerospace, Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Xianzhi Meng
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Darby Ker
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Bowie Benson
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Yunqiao Pu
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Arthur J. Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Yu Wang
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Kai Li
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Erin Webb
- Environmental Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Douglas J. Gardner
- Advanced Structures and Composites Center, University of Maine, 35 Flagstaff Road, Orono, Maine 04469, United States
| | - James Anderson
- Advanced Structures and Composites Center, University of Maine, 35 Flagstaff Road, Orono, Maine 04469, United States
| | - Soydan Ozcan
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
- Department of Mechanical, Aerospace, Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
32
|
|
33
|
Maya F, Paull B. Recent strategies to enhance the performance of polymer monoliths for analytical separations. J Sep Sci 2019; 42:1564-1576. [DOI: 10.1002/jssc.201801126] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/21/2019] [Accepted: 02/13/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Fernando Maya
- Australian Centre for Research on Separation Science (ACROSS)School of Natural Sciences‐ChemistryUniversity of Tasmania Hobart TAS Australia
| | - Brett Paull
- Australian Centre for Research on Separation Science (ACROSS)School of Natural Sciences‐ChemistryUniversity of Tasmania Hobart TAS Australia
| |
Collapse
|
34
|
Young AJ, Guillet-Nicolas R, Marshall ES, Kleitz F, Goodhand AJ, Glanville LBL, Reithofer MR, Chin JM. Direct ink writing of catalytically active UiO-66 polymer composites. Chem Commun (Camb) 2019; 55:2190-2193. [PMID: 30702096 DOI: 10.1039/c8cc10018g] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-organic frameworks (MOFs) hold significant potential for use in gas storage, sensing and catalysis. To uncover this potential, MOF processing must develop in line with MOF materials. Here, direct ink writing-based 3D printing of UiO-66 MOF composites and their thermal treatment give mechanically stable yet highly porous composites effective for the catalytic breakdown of methyl-paraoxon, a simulant of highly toxic organophosphate nerve agents.
Collapse
Affiliation(s)
- Adam J Young
- Faculty of Science and Engineering, Chemistry, University of Hull, Cottingham Road, Kingston upon Hull, HU6 7RX, UK.
| | | | | | | | | | | | | | | |
Collapse
|