1
|
Opoku‐Damoah Y, Zhang R, Ta HT, Xu ZP. Therapeutic gas-releasing nanomedicines with controlled release: Advances and perspectives. EXPLORATION (BEIJING, CHINA) 2022; 2:20210181. [PMID: 37325503 PMCID: PMC10190986 DOI: 10.1002/exp.20210181] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/15/2022] [Indexed: 06/16/2023]
Abstract
Nanoparticle-based drug delivery has become one of the most popular approaches for maximising drug therapeutic potentials. With the notable improvements, a greater challenge hinges on the formulation of gasotransmitters with unique challenges that are not met in liquid and solid active ingredients. Gas molecules upon release from formulations for therapeutic purposes have not really been discussed extensively. Herein, we take a critical look at four key gasotransmitters, that is, carbon monoxide (CO), nitric oxide (NO), hydrogen sulphide (H2S) and sulphur dioxide (SO2), their possible modification into prodrugs known as gas-releasing molecules (GRMs), and their release from GRMs. Different nanosystems and their mediatory roles for efficient shuttling, targeting and release of these therapeutic gases are also reviewed extensively. This review thoroughly looks at the diverse ways in which these GRM prodrugs in delivery nanosystems are designed to respond to intrinsic and extrinsic stimuli for sustained release. In this review, we seek to provide a succinct summary for the development of therapeutic gases into potent prodrugs that can be adapted in nanomedicine for potential clinical use.
Collapse
Affiliation(s)
- Yaw Opoku‐Damoah
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueenslandAustralia
| | - Run Zhang
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueenslandAustralia
| | - Hang T. Ta
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueenslandAustralia
- School of Environment and ScienceGriffith UniversityBrisbaneQueenslandAustralia
- Queensland Micro and Nanotechnology CentreGriffith UniversityBrisbaneQueenslandAustralia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
2
|
Kim Y, Laradji AM, Sharma S, Zhang W, Yadavalli NS, Xie J, Popik V, Minko S. Refining of Particulates at Stimuli‐Responsive Interfaces: Label‐Free Sorting and Isolation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yongwook Kim
- Nanostructured Materials Lab University of Georgia Athens GA 30602 USA
| | - Amine M. Laradji
- Nanostructured Materials Lab University of Georgia Athens GA 30602 USA
- Current address: Department of Ophthalmology and Visual Sciences Washington University School of Medicine St. Louis MO 63110 USA
| | - Shubham Sharma
- Department of Chemistry University of Georgia Athens GA 30602 USA
| | - Weizhong Zhang
- Department of Chemistry University of Georgia Athens GA 30602 USA
| | | | - Jin Xie
- Department of Chemistry University of Georgia Athens GA 30602 USA
| | - Vladimir Popik
- Department of Chemistry University of Georgia Athens GA 30602 USA
| | - Sergiy Minko
- Nanostructured Materials Lab University of Georgia Athens GA 30602 USA
| |
Collapse
|
3
|
Kim Y, Laradji AM, Sharma S, Zhang W, Yadavalli NS, Xie J, Popik V, Minko S. Refining of Particulates at Stimuli-Responsive Interfaces: Label-Free Sorting and Isolation. Angew Chem Int Ed Engl 2021; 61:e202110990. [PMID: 34841648 DOI: 10.1002/anie.202110990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Indexed: 11/07/2022]
Abstract
The mechanism of separation methods, for example, liquid chromatography, is realized through rapid multiple adsorption-desorption steps leading to the dynamic equilibrium state in a mixture of molecules with different partition coefficients. Sorting of colloidal particles, including protein complexes, cells, and viruses, is limited due to a high energy barrier, up to millions kT, required to detach particles from the interface, which is in dramatic contrast to a few kT for small molecules. Such a strong interaction renders particle adsorption quasi-irreversible. The dynamic adsorption-desorption equilibrium is approached very slowly, if ever attainable. This limitation is alleviated with a local oscillating repulsive mechanical force generated at the microstructured stimuli-responsive polymer interface to switch between adsorption and mechanical-force-facilitated desorption of the particles. Such a dynamic regime enables the separation of colloidal mixtures based on the particle-polymer interface affinity, and it could find use in research, diagnostics, and industrial-scale label-free sorting of highly asymmetric mixtures of colloids and cells.
Collapse
Affiliation(s)
- Yongwook Kim
- Nanostructured Materials Lab, University of Georgia, Athens, GA, 30602, USA
| | - Amine M Laradji
- Nanostructured Materials Lab, University of Georgia, Athens, GA, 30602, USA.,Current address: Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Shubham Sharma
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Weizhong Zhang
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | | | - Jin Xie
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Vladimir Popik
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Sergiy Minko
- Nanostructured Materials Lab, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
4
|
Zhang Y, Wang W, Guo H, Liu M, Zhu H, Sun H. Hyaluronic acid-functionalized redox responsive immunomagnetic nanocarrier for circulating tumor cell capture and release. NANOTECHNOLOGY 2021; 32:475102. [PMID: 33494073 DOI: 10.1088/1361-6528/abdf8c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Detection of circulating tumor cells (CTCs) in peripheral blood holds significant insights for cancer diagnosis, prognosis evaluation, and precision medicine. To efficiently capture and release CTCs with high viability, we reported the development of hyaluronic acid (HA)-functionalized redox responsive immunomagnetic nanocarrier (Fe3O4@SiO2-SS-HA). First, Fe3O4nanoparticles were prepared and modified with tetraethyl orthosilicate (TEOS), 3-mercaptopropyltrimethoxysilane (MPTMS) and 2,2'-dithiodipyridine (DDPy) to form the magnetic substrate (Fe3O4@SiO2-SSPy). Modified with targeted segment HA-functionalized L-cysteine ethyl ester hydrochloride (HA-Cys) via disulfide exchange reaction, the Fe3O4@SiO2-SS-HA was formed. The nanocarrier with prominent magnetic property, targeting ligand, and redox-sensitive disulfide linkages was able to specially capture MCF-7 cells with an efficiency of 92% and effectively release captured cells with an efficiency of 81.4%. Furthermore, the Fe3O4@SiO2-SS-HA could successfully be used for the capture of MCF-7 cells, and the captured cells could be diferntiated from the blood cells. Almost all of released tumor cells kept good viability and a robust proliferative capacity after being re-cultured. It is likely that the as-prepared nanocarrier will serve as a new weapon against CD44 receptor-overexpressed cancer cells.
Collapse
Affiliation(s)
- Yi Zhang
- School of Bioengineering and Food, Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, National '111' Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, People's Republic of China
| | - Wenjing Wang
- School of Bioengineering and Food, Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, National '111' Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, People's Republic of China
| | - Huiling Guo
- School of Bioengineering and Food, Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, National '111' Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, People's Republic of China
| | - Mingxing Liu
- School of Bioengineering and Food, Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, National '111' Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, People's Republic of China
| | - Hongda Zhu
- School of Bioengineering and Food, Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, National '111' Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, People's Republic of China
| | - Hongmei Sun
- School of Bioengineering and Food, Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, National '111' Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, People's Republic of China
| |
Collapse
|
5
|
Recent Development of Nanomaterials-Based Cytosensors for the Detection of Circulating Tumor Cells. BIOSENSORS-BASEL 2021; 11:bios11080281. [PMID: 34436082 PMCID: PMC8391755 DOI: 10.3390/bios11080281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022]
Abstract
The accurate analysis of circulating tumor cells (CTCs) holds great promise in early diagnosis and prognosis of cancers. However, the extremely low abundance of CTCs in peripheral blood samples limits the practical utility of the traditional methods for CTCs detection. Thus, novel and powerful strategies have been proposed for sensitive detection of CTCs. In particular, nanomaterials with exceptional physical and chemical properties have been used to fabricate cytosensors for amplifying the signal and enhancing the sensitivity. In this review, we summarize the recent development of nanomaterials-based optical and electrochemical analytical techniques for CTCs detection, including fluorescence, colorimetry, surface-enhanced Raman scattering, chemiluminescence, electrochemistry, electrochemiluminescence, photoelectrochemistry and so on.
Collapse
|
6
|
Opoku-Damoah Y, Zhang R, Ta HT, Xu ZP. Vitamin E-facilitated carbon monoxide pro-drug nanomedicine for efficient light-responsive combination cancer therapy. Biomater Sci 2021; 9:6086-6097. [PMID: 34346418 DOI: 10.1039/d1bm00941a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The quest to maximize therapeutic efficiency in cancer treatment requires innovative delivery nanoplatforms capable of employing different modules simultaneously. Combination therapy has proven to be one of the best anticancer strategies so far. Herein, we have developed a lipid-encapsulated nanoplatform that combines chemotherapy with photoresponsive gas therapy for colon cancer treatment. Carbon monoxide releasing molecules (CORMs) and vitamin E analogues (pure/pegylated α-tocopheryl succinate; α-TOS) were co-loaded into the lipid layer with core-shell upconversion nanoparticles (UCNPs), which converted 808 nm light to 360 nm photons to trigger CO release at the tumor site. This folic acid (FA)-targeting nanomedicine (Lipid/UCNP/CORM/α-TOS/FA: LUCTF) possessed a cancer-targeting ability and a light-triggered CO release ability for synergistic apoptosis of HCT116 cells via enhanced ROS generation and mitochondrial membrane breaking. In vivo data have confirmed the significantly enhanced therapeutic efficacy of LUCTF without any significant biosafety issues after intravenous administration. Thus, nanomedicine LUCTF represents a novel way for efficient cancer therapy via combining locally released CO and a compatible chemotherapeutic agent (e.g. α-TOS).
Collapse
Affiliation(s)
- Yaw Opoku-Damoah
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Hang T Ta
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia. and School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia and Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
7
|
Abstract
Stimulus-responsive polymers have been used in improving the efficacy of medical diagnostics through different approaches including enhancing the contrast in imaging techniques and promoting the molecular recognition in diagnostic assays. This review overviews the mechanisms of stimulus-responsive polymers in response to external stimuli including temperature, pH, ion, light, etc. The applications of responsive polymers in magnetic resonance imaging, capture and purification of biomolecules through protein-ligand recognition and lab-on-a-chip technology are discussed.
Collapse
Affiliation(s)
- Divambal Appavoo
- NanoScience Technology Center, Department of Materials Science and Engineering, Department of Chemistry, University of Central Florida, FL 32826, USA.
| | | | | |
Collapse
|
8
|
Kip Ç, Akbay E, Gökçal B, Savaş BO, Onur MA, Tuncel A. Colorimetric determination of tumor cells via peroxidase-like activity of a cell internalizable nanozyme: Hyaluronic acid attached-silica microspheres containing accessible magnetite nanoparticles. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Jiang H, Liang G, Dai M, Dong Y, Wu Y, Zhang L, Xi Q, Qi L. Preparation of doxorubicin-loaded collagen-PAPBA nanoparticles and their anticancer efficacy in ovarian cancer. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:880. [PMID: 32793724 DOI: 10.21037/atm-20-5028] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background The aims of this study were to prepare the collagen-poly (3-acrylamidophenylboronic acid) nanoparticles (collagen-PAPBA NPs) encapsulating doxorubicin (DOX) and research their anticancer efficacy in ovarian cancer. Methods Collagen-PAPBA NPs were prepared, and their morphology and stability morphology were observed by transmission electron microscopy (TEM) and dynamic light scattering system (DLS). Preparation of doxorubicin-loaded Collagen-PAPBA NPs (DOX-loaded NPs) were then prepared, and the drug-loading content, encapsulation efficiency, and in vitro drug-release profiles were calculated. The morphology of DOX-loaded NPs was also observed by DLS, in vitro cytotoxicity to A2780 cells was analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, in vitro antitumor activity on A2780 cells was observed by immunofluorescence, and in vivo antitumor activity was assessed using an experimental BALB/c mice tumor model. Results DOX-encapsulating collagen-PAPBA NPs were successfully prepared with mediation by biomolecule. The average hydrodynamic diameter of collagen-PAPBA NPs as measured by DLS was about 79 nm, with a homogeneous distribution of size. TEM revealed that nanoparticles were well-dispersed, spherical, and a roughly uniform 75 nm in size. Collagen-PAPBA NPs were quite stable in a wide range of pH and temperature conditions and associated with the concentration of glucose. DLS revealed that the average hydrodynamic diameter of DOX-loaded NPs was about 81.3 nm, with homogeneous distribution of size. TEM revealed that drug-loaded nanoparticles were spherical, well-dispersed, and gad a roughly uniform size of 79 nm. The proportion of DOX loaded into the nanoparticles was 10%, while the encapsulating efficiency was 97%. The result of the releasing test showed that the drug-loaded nanoparticles, as carriers for DOX, had a good sustained-release effect. The cell toxicity experiment showed that the blank NPs had no cytotoxicity to A2780 cells, and that the drug-loaded NPS had good a sustained-release function. They may thus have potential toxic-reducing side effects. Conclusions Under the same doses, the drug-loaded NP had a superior inhibitory effect to free DOX on the growth of human ovarian cancer.
Collapse
Affiliation(s)
- Haiyan Jiang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, China.,Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Guiwen Liang
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Min Dai
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yansong Dong
- School of Medicine, Nantong University, Nantong, China
| | - Yao Wu
- School of Medicine, Nantong University, Nantong, China
| | - Luzhong Zhang
- School of Medicine, Nantong University, Nantong, China
| | - Qinghua Xi
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, China
| | - Lei Qi
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, China.,Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
10
|
Recent advances in theranostic polymeric nanoparticles for cancer treatment: A review. Int J Pharm 2020; 582:119314. [PMID: 32283197 DOI: 10.1016/j.ijpharm.2020.119314] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/16/2022]
Abstract
Nanotheranostics is fast-growing pharmaceutical technology for simultaneously monitoring drug release and its distribution, and to evaluate the real time therapeutic efficacy through a single nanoscale for treatment and diagnosis of deadly disease such as cancers. In recent two decades, biodegradable polymers have been discovered as important carriers to accommodate therapeutic and medical imaging agents to facilitate construction of multi-modal formulations. In this review, we summarize various multifunctional polymeric nano-sized formulations such as polymer-based super paramagnetic nanoparticles, ultrasound-triggered polymeric nanoparticles, polymeric nanoparticles bearing radionuclides, and fluorescent polymeric nano-sized formulations for purpose of theranostics. The use of such multi-modal nano-sized formulations for near future clinical trials can assist clinicians to predict therapeutic properties (for instance, depending upon the quantity of drug accumulated at the cancerous site) and observed the progress of tumor growth in patients, thus improving tailored medicines.
Collapse
|
11
|
Siemer S, Wünsch D, Khamis A, Lu Q, Scherberich A, Filippi M, Krafft MP, Hagemann J, Weiss C, Ding GB, Stauber RH, Gribko A. Nano Meets Micro-Translational Nanotechnology in Medicine: Nano-Based Applications for Early Tumor Detection and Therapy. NANOMATERIALS 2020; 10:nano10020383. [PMID: 32098406 PMCID: PMC7075286 DOI: 10.3390/nano10020383] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/03/2020] [Accepted: 02/15/2020] [Indexed: 02/07/2023]
Abstract
Nanomaterials have great potential for the prevention and treatment of cancer. Circulating tumor cells (CTCs) are cancer cells of solid tumor origin entering the peripheral blood after detachment from a primary tumor. The occurrence and circulation of CTCs are accepted as a prerequisite for the formation of metastases, which is the major cause of cancer-associated deaths. Due to their clinical significance CTCs are intensively discussed to be used as liquid biopsy for early diagnosis and prognosis of cancer. However, there are substantial challenges for the clinical use of CTCs based on their extreme rarity and heterogeneous biology. Therefore, methods for effective isolation and detection of CTCs are urgently needed. With the rapid development of nanotechnology and its wide applications in the biomedical field, researchers have designed various nano-sized systems with the capability of CTCs detection, isolation, and CTCs-targeted cancer therapy. In the present review, we summarize the underlying mechanisms of CTC-associated tumor metastasis, and give detailed information about the unique properties of CTCs that can be harnessed for their effective analytical detection and enrichment. Furthermore, we want to give an overview of representative nano-systems for CTC isolation, and highlight recent achievements in microfluidics and lab-on-a-chip technologies. We also emphasize the recent advances in nano-based CTCs-targeted cancer therapy. We conclude by critically discussing recent CTC-based nano-systems with high therapeutic and diagnostic potential as well as their biocompatibility as a practical example of applied nanotechnology.
Collapse
Affiliation(s)
- Svenja Siemer
- Nanobiomedicine Department, University Medical Center Mainz/ENT, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Désirée Wünsch
- Nanobiomedicine Department, University Medical Center Mainz/ENT, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Aya Khamis
- Nanobiomedicine Department, University Medical Center Mainz/ENT, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Qiang Lu
- Nanobiomedicine Department, University Medical Center Mainz/ENT, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Arnaud Scherberich
- Laboratory of Tissue Engineering, Universitätspital Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland (M.F.)
| | - Miriam Filippi
- Laboratory of Tissue Engineering, Universitätspital Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland (M.F.)
| | - Marie Pierre Krafft
- Institut Charles Sadron (CNRS), University of Strasbourg, 23 rue du Loess, 67034 Strasbourg Cedex, France
| | - Jan Hagemann
- Nanobiomedicine Department, University Medical Center Mainz/ENT, Langenbeckstrasse 1, 55131 Mainz, Germany
| | - Carsten Weiss
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Postfach 3640, 76021 Karlsruhe, Germany
| | - Guo-Bin Ding
- Institute for Biotechnology, Shanxi University, No. 92 Wucheng Road, 030006 Taiyuan, China
| | - Roland H. Stauber
- Nanobiomedicine Department, University Medical Center Mainz/ENT, Langenbeckstrasse 1, 55131 Mainz, Germany
- Institute for Biotechnology, Shanxi University, No. 92 Wucheng Road, 030006 Taiyuan, China
- Correspondence: (R.H.S.); (A.G.); Tel.: +49-6131-176030 (A.G.)
| | - Alena Gribko
- Nanobiomedicine Department, University Medical Center Mainz/ENT, Langenbeckstrasse 1, 55131 Mainz, Germany
- Correspondence: (R.H.S.); (A.G.); Tel.: +49-6131-176030 (A.G.)
| |
Collapse
|
12
|
Afreen S, He Z, Xiao Y, Zhu JJ. Nanoscale metal-organic frameworks in detecting cancer biomarkers. J Mater Chem B 2020; 8:1338-1349. [PMID: 31999289 DOI: 10.1039/c9tb02579k] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Following the efficient performance of metal-organic frameworks (MOFs) as recognition elements in gas sensors, biosensors based on MOFs are now being investigated to capture and quantify potential cancer biomarkers, such as circulating tumor cells (CTCs), nucleic acids and proteins. The current status of MOF-based biosensors in the detection of early stages of cancer is in its infancy, although it has significantly emerged since the beginning of this decade. That said, salient research has been conducted in the past five years to utilize the distinctive porous crystalline structure of MOFs for highly sensitive and selective detection of cancer biomarkers. In this pursual, MOFs designed with bimetallic assembly, doped with magnetic nanoparticles, coated with polymers, and even conjugated with peptides or oligonucleotides have shown promising outcomes in detecting CTCs, nucleic acids and proteins. In particular, aptamer-conjugated MOFs are able to perform at a lower limit of detection down to the femtomolar, implying their efficacy for the point of care testing in clinical trials. In this way, aptasensors based on aptamer-conjugated MOFs present a newer sub-branch, to be coined as a MOFTA sensor in the current review. Considering the emerging progress and promising outcomes of MOFTA sensors as well as a variety of MOF-based techniques of detecting cancer biomarkers, this review will highlight their significant advances and related aspects in the recent five years on the context of detecting CTCs, nucleic acids and proteins for the early-stage detection of cancer.
Collapse
Affiliation(s)
- Sadia Afreen
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | | | | | | |
Collapse
|
13
|
Gribko A, Künzel J, Wünsch D, Lu Q, Nagel SM, Knauer SK, Stauber RH, Ding GB. Is small smarter? Nanomaterial-based detection and elimination of circulating tumor cells: current knowledge and perspectives. Int J Nanomedicine 2019; 14:4187-4209. [PMID: 31289440 PMCID: PMC6560927 DOI: 10.2147/ijn.s198319] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Circulating tumor cells (CTCs) are disseminated cancer cells. The occurrence and circulation of CTCs seem key for metastasis, still the major cause of cancer-associated deaths. As such, CTCs are investigated as predictive biomarkers. However, due to their rarity and heterogeneous biology, CTCs’ practical use has not made it into the clinical routine. Clearly, methods for the effective isolation and reliable detection of CTCs are urgently needed. With the development of nanotechnology, various nanosystems for CTC isolation and enrichment and CTC-targeted cancer therapy have been designed. Here, we summarize the relationship between CTCs and tumor metastasis, and describe CTCs’ unique properties hampering their effective enrichment. We comment on nanotechnology-based systems for CTC isolation and recent achievements in microfluidics and lab-on-a-chip technologies. We discuss recent advances in CTC-targeted cancer therapy exploiting the unique properties of nanomaterials. We conclude by introducing developments in CTC-directed nanosystems and other advanced technologies currently in (pre)clinical research.
Collapse
Affiliation(s)
- Alena Gribko
- Nanobiomedicine Department/ENT, University Medical Center Mainz, Mainz 55131, Germany, ;
| | - Julian Künzel
- Nanobiomedicine Department/ENT, University Medical Center Mainz, Mainz 55131, Germany, ;
| | - Désirée Wünsch
- Nanobiomedicine Department/ENT, University Medical Center Mainz, Mainz 55131, Germany, ;
| | - Qiang Lu
- Nanobiomedicine Department/ENT, University Medical Center Mainz, Mainz 55131, Germany, ;
| | - Sophie Madeleine Nagel
- Nanobiomedicine Department/ENT, University Medical Center Mainz, Mainz 55131, Germany, ;
| | - Shirley K Knauer
- Department of Molecular Biology II, Center for Medical Biotechnology (ZMB)/Center for Nanointegration (CENIDE), University Duisburg-Essen, Essen 45117, Germany
| | - Roland H Stauber
- Nanobiomedicine Department/ENT, University Medical Center Mainz, Mainz 55131, Germany, ;
| | - Guo-Bin Ding
- Nanobiomedicine Department/ENT, University Medical Center Mainz, Mainz 55131, Germany, ; .,Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, People's Republic of China,
| |
Collapse
|