1
|
Zhang H, Zhu W, Pan W, Wan X, Li N, Tang B. Recent advances in spatio-temporally controllable systems for management of glioma. Asian J Pharm Sci 2024; 19:100954. [PMID: 39483717 PMCID: PMC11525460 DOI: 10.1016/j.ajps.2024.100954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 11/03/2024] Open
Abstract
Malignant glioma remains one of the most aggressive intracranial tumors with devastating clinical outcomes despite the great advances in conventional treatment approaches, including surgery and chemotherapy. Spatio-temporally controllable approaches to glioma are now being actively investigated due to the preponderance, including spatio-temporal adjustability, minimally invasive, repetitive properties, etc. External stimuli can be readily controlled by adjusting the site and density of stimuli to exert the cytotoxic on glioma tissue and avoid undesired injury to normal tissues. It is worth noting that the removability of external stimuli allows for on-demand treatment, which effectively reduces the occurrence of side effects. In this review, we highlight recent advancements in drug delivery systems for spatio-temporally controllable treatments of glioma, focusing on the mechanisms and design principles of sensitizers utilized in these controllable therapies. Moreover, the potential challenges regarding spatio-temporally controllable therapy for glioma are also described, aiming to provide insights into future advancements in this field and their potential clinical applications.
Collapse
Affiliation(s)
- Huiwen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Wanqi Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Xiuyan Wan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
- Laoshan Laboratory, Qingdao 266237, China
| |
Collapse
|
2
|
Guo W, Ji M, Li Y, Qian M, Qin Y, Li W, Nie H, Lv W, Jiang G, Huang R, Lin C, Li H, Huang R. Iron ions-sequestrable and antioxidative carbon dot-based nano-formulation with nitric oxide release for Parkinson's disease treatment. Biomaterials 2024; 309:122622. [PMID: 38797119 DOI: 10.1016/j.biomaterials.2024.122622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
Nondestructive penetration of the blood-brain barrier (BBB) to specifically prevent iron deposition and the generation of reactive oxygen species (ROS) shows great potential for treating Parkinson's disease (PD). However, effective agents with distinct mechanisms of action remain scarce. Herein, a N-doping carbon dot (CD) emitting red light was prepared, which can sacrifice ROS and produce nitric oxide (NO) owing to its surface N-involved groups conjugated to the sp2-hybrided π-system. Meanwhile, CD can chelate iron ions, thus depressing the catalytic Fe cycle and *OH detaching to inhibit the Fenton reaction. By modifying lactoferrin (Lf) via polyethylene glycol (PEG), the resulting CD-PEG-Lf (CPL) can nondestructively cross the BBB, targeting the dopaminergic neurons via both NO-mediated reversible BBB opening and Lf receptor-mediated transportation. Accordingly, it can serve as an antioxidant, reducing oxidative stress via its unique iron chelation, free radical sacrificing, and synergy with iron reflux prevention originating from Lf. Thus, it can significantly reduce brain inflammation and improve the behavioral performance of PD mice. Additionally, CPL can image the PD via its red fluorescence. Finally, this platform can be metabolized out of the brain through cerebrospinal fluid circulation without causing obvious side effects, promising a robust treatment for PD.
Collapse
Affiliation(s)
- Wei Guo
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education), Huashan Hospital, Fudan University, Shanghai, 201203, China
| | - Min Ji
- Shanghai Yangpu District Mental Health Center, Shanghai, 200093, China
| | - Yingjie Li
- Shanghai Yangpu District Mental Health Center, Shanghai, 200093, China
| | - Min Qian
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education), Huashan Hospital, Fudan University, Shanghai, 201203, China
| | - Yanhui Qin
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education), Huashan Hospital, Fudan University, Shanghai, 201203, China
| | - Wenshuai Li
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education), Huashan Hospital, Fudan University, Shanghai, 201203, China
| | - Huifang Nie
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education), Huashan Hospital, Fudan University, Shanghai, 201203, China
| | - Wenxin Lv
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201600, China
| | - Guangwei Jiang
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education), Huashan Hospital, Fudan University, Shanghai, 201203, China
| | - Rong Huang
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education), Huashan Hospital, Fudan University, Shanghai, 201203, China
| | - Chenteng Lin
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education), Huashan Hospital, Fudan University, Shanghai, 201203, China
| | - Hongyuan Li
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education), Huashan Hospital, Fudan University, Shanghai, 201203, China
| | - Rongqin Huang
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education), Huashan Hospital, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
3
|
Wu D, Chen M, Zheng N, Lu Y, Wang X, Jiang C, Xu H. The efficacy and safety of pH-responsive and photothermal-sensitive multifunctional nanoparticles loaded with cryptotanshinone for the treatment of gastric cancer. Mol Carcinog 2024. [PMID: 39185663 DOI: 10.1002/mc.23814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/01/2024] [Accepted: 08/09/2024] [Indexed: 08/27/2024]
Abstract
A multifunctional polydopamine/mesoporous silica nanoparticles loaded cryptotanshinone (PDA/MSN@CTS) was synthesized and subjected to investigating its physicochemical properties and anti-gastric cancer (GC) effects. Utilizing network pharmacology and molecular docking techniques, CTS was identified as our final research target. The structural morphology and physicochemical properties of PDA/MSN@CTS were examined. Near-infrared (NIR) laser was employed to evaluate the photothermal properties of the PDA/MSN@CTS, along with pH-responsive and NIR-triggered release assessments. In vitro experiments evaluated the impact of PDA/MSN@CTS on the malignant behavior of AGS gastric cells. A subcutaneous tumor model was further established to evaluate the in vivo safety of PDA/MSN@CTS. Furthermore, the in vivo photothermal efficacy of PDA/MSN@CTS, in addition to its combined effect with photothermal therapy (PTT), was investigated. Uniform and stable PDA/MSN@CTS had been successfully synthesized and demonstrated efficient release under tumor environment and NIR irradiation. Upon increasing NIR laser conditions, in vivo cytotoxicity, apoptosis rate, reactive oxygen species scavenging ability, and suppression of migration and invasion of AGS cells by PDA/MSN@CTS were significantly enhanced. In vivo assessments revealed excellent blood compatibility and biosafety of PDA/MSN@CTS, alongside robust tumor tissue targeting. Combining nanoparticles with PTT facilitated the anti-GC effects of PDA/MSN@CTS. Compared to free drugs, PDA/MSN@CTS exhibits higher selectivity towards cancer cells, demonstrating effective anticancer activity and biocompatibility both in vitro and in vivo. Furthermore, our nanomaterial possesses excellent photothermal properties, and under NIR conditions, PDA/MSN@CTS exhibits synergistic therapeutic effects.
Collapse
Affiliation(s)
- Dan Wu
- Department of Gastrointestinal Surgery, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - MingHang Chen
- College of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Nan Zheng
- College of Pharmacy, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Ying Lu
- College of Pharmacy, Zhejiang Chinese Medicine University, Hangzhou, China
| | - Xiang Wang
- College of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Chuan Jiang
- Department of Gastrointestinal Surgery, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - HongTao Xu
- Department of Gastrointestinal Surgery, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| |
Collapse
|
4
|
Chen Z, Gezginer I, Zhou Q, Tang L, Deán-Ben XL, Razansky D. Multimodal optoacoustic imaging: methods and contrast materials. Chem Soc Rev 2024; 53:6068-6099. [PMID: 38738633 PMCID: PMC11181994 DOI: 10.1039/d3cs00565h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Indexed: 05/14/2024]
Abstract
Optoacoustic (OA) imaging offers powerful capabilities for interrogating biological tissues with rich optical absorption contrast while maintaining high spatial resolution for deep tissue observations. The spectrally distinct absorption of visible and near-infrared photons by endogenous tissue chromophores facilitates extraction of diverse anatomic, functional, molecular, and metabolic information from living tissues across various scales, from organelles and cells to whole organs and organisms. The primarily blood-related contrast and limited penetration depth of OA imaging have fostered the development of multimodal approaches to fully exploit the unique advantages and complementarity of the method. We review the recent hybridization efforts, including multimodal combinations of OA with ultrasound, fluorescence, optical coherence tomography, Raman scattering microscopy and magnetic resonance imaging as well as ionizing methods, such as X-ray computed tomography, single-photon-emission computed tomography and positron emission tomography. Considering that most molecules absorb light across a broad range of the electromagnetic spectrum, the OA interrogations can be extended to a large number of exogenously administered small molecules, particulate agents, and genetically encoded labels. This unique property further makes contrast moieties used in other imaging modalities amenable for OA sensing.
Collapse
Affiliation(s)
- Zhenyue Chen
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland.
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Irmak Gezginer
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland.
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Quanyu Zhou
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland.
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Lin Tang
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland.
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Xosé Luís Deán-Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland.
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Daniel Razansky
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland.
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| |
Collapse
|
5
|
Ghaznavi H, Afzalipour R, Khoei S, Sargazi S, Shirvalilou S, Sheervalilou R. New insights into targeted therapy of glioblastoma using smart nanoparticles. Cancer Cell Int 2024; 24:160. [PMID: 38715021 PMCID: PMC11077767 DOI: 10.1186/s12935-024-03331-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/18/2024] [Indexed: 05/12/2024] Open
Abstract
In recent times, the intersection of nanotechnology and biomedical research has given rise to nanobiomedicine, a captivating realm that holds immense promise for revolutionizing diagnostic and therapeutic approaches in the field of cancer. This innovative fusion of biology, medicine, and nanotechnology aims to create diagnostic and therapeutic agents with enhanced safety and efficacy, particularly in the realm of theranostics for various malignancies. Diverse inorganic, organic, and hybrid organic-inorganic nanoparticles, each possessing unique properties, have been introduced into this domain. This review seeks to highlight the latest strides in targeted glioblastoma therapy by focusing on the application of inorganic smart nanoparticles. Beyond exploring the general role of nanotechnology in medical applications, this review delves into groundbreaking strategies for glioblastoma treatment, showcasing the potential of smart nanoparticles through in vitro studies, in vivo investigations, and ongoing clinical trials.
Collapse
Affiliation(s)
- Habib Ghaznavi
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Reza Afzalipour
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
- Department of Radiology, Faculty of Para-Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Samideh Khoei
- Finetech in Medicine Research Center, Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Sakine Shirvalilou
- Finetech in Medicine Research Center, Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Roghayeh Sheervalilou
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| |
Collapse
|
6
|
Yu Y, Feng T, Qiu H, Gu Y, Chen Q, Zuo C, Ma H. Simultaneous photoacoustic and ultrasound imaging: A review. ULTRASONICS 2024; 139:107277. [PMID: 38460216 DOI: 10.1016/j.ultras.2024.107277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/09/2024] [Accepted: 02/26/2024] [Indexed: 03/11/2024]
Abstract
Photoacoustic imaging (PAI) is an emerging biomedical imaging technique that combines the advantages of optical and ultrasound imaging, enabling the generation of images with both optical resolution and acoustic penetration depth. By leveraging similar signal acquisition and processing methods, the integration of photoacoustic and ultrasound imaging has introduced a novel hybrid imaging modality suitable for clinical applications. Photoacoustic-ultrasound imaging allows for non-invasive, high-resolution, and deep-penetrating imaging, providing a wealth of image information. In recent years, with the deepening research and the expanding biomedical application scenarios of photoacoustic-ultrasound bimodal systems, the immense potential of photoacoustic-ultrasound bimodal imaging in basic research and clinical applications has been demonstrated, with some research achievements already commercialized. In this review, we introduce the principles, technical advantages, and biomedical applications of photoacoustic-ultrasound bimodal imaging techniques, specifically focusing on tomographic, microscopic, and endoscopic imaging modalities. Furthermore, we discuss the future directions of photoacoustic-ultrasound bimodal imaging technology.
Collapse
Affiliation(s)
- Yinshi Yu
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China; Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210019, China; Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China
| | - Ting Feng
- Academy for Engineering & Technology, Fudan University, Shanghai 200433,China.
| | - Haixia Qiu
- First Medical Center of PLA General Hospital, Beijing, China
| | - Ying Gu
- First Medical Center of PLA General Hospital, Beijing, China
| | - Qian Chen
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China; Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210019, China; Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China
| | - Chao Zuo
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China; Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210019, China; Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China.
| | - Haigang Ma
- Smart Computational Imaging Laboratory (SCILab), School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China; Smart Computational Imaging Research Institute (SCIRI) of Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210019, China; Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing, Jiangsu Province 210094, China.
| |
Collapse
|
7
|
Hu D, Xia M, Wu L, Liu H, Chen Z, Xu H, He C, Wen J, Xu X. Challenges and advances for glioma therapy based on inorganic nanoparticles. Mater Today Bio 2023; 20:100673. [PMID: 37441136 PMCID: PMC10333687 DOI: 10.1016/j.mtbio.2023.100673] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 07/15/2023] Open
Abstract
Glioma is one of the most serious central nervous system diseases, with high mortality and poor prognosis. Despite the continuous development of existing treatment methods, the median survival time of glioma patients is still only 15 months. The main treatment difficulties are the invasive growth of glioma and the obstruction of the blood-brain barrier (BBB) to drugs. With rapid advancements in nanotechnology, inorganic nanoparticles (INPs) have shown favourable application prospects in the diagnosis and treatment of glioma. Due to their extraordinary intrinsic features, INPs can be easily fabricated, while doping with other elements and surface modification by biological ligands can be used to enhance BBB penetration, targeted delivery and biocompatibility. Guided glioma theranostics with INPs can improve and enhance the efficacy of traditional methods such as chemotherapy, radiotherapy and gene therapy. New strategies, such as immunotherapy, photothermal and photodynamic therapy, magnetic hyperthermia therapy, and multifunctional inorganic nanoplatforms, have also been facilitated by INPs. This review emphasizes the current state of research and clinical applications of INPs, including glioma targeting and BBB penetration enhancement methods, in vivo and in vitro biocompatibility, and diagnostic and treatment strategies. As such, it provides insights for the development of novel glioma treatment strategies.
Collapse
Affiliation(s)
- Die Hu
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Miao Xia
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Linxuan Wu
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Hanmeng Liu
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Zhigang Chen
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Hefeng Xu
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Chuan He
- Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Jian Wen
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Xiaoqian Xu
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, China
| |
Collapse
|
8
|
Cao XM, Li LH, Liang HZ, Li JD, Chen ZJ, Luo L, Lu YN, Zhong YX, Shen YD, Lei HT, Wang H, Xu ZL. Dual-modular immunosensor for bongkrekic acid detection using specific monoclonal antibody. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131634. [PMID: 37201281 DOI: 10.1016/j.jhazmat.2023.131634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
Bongkrekic acid (BA) is a mitochondrial toxin that causes high mortality but is often mistakenly categorized as other food poisonings. The immunoassay of BA is still challenging since the specific antibody is unavailable. In this work, a monoclonal antibody specific to BA was first generated and a dual-modular immunosensor for on-site and laboratory detection was established. The antibody showed good affinity (Kd=0.33 μM) and sensitivity (IC50 =17.9 ng/mL in ELISA) with negligible cross-reactivity with common mycotoxins. In dual-modular conditions, fluorescence assay (FA) was conducted based on the inner filter effect of carbon dots (CDs) and oxidized 3,3',5,5'-tetramethylbenzidine (TMB), while the colorimetric assay (CA) was conducted using TMB2+-mediated rapid surface etching of gold nanostars (Au NSs). The proposed immunosensor showed good sensitivity and reproducibility to BA in food samples, with a limit of detection lower than 10 ng/mL and recovery ranging from 80.0% to 103.6%, which was in good consistence with that of standard LC-MS/MS. Overall, the proposed immunosensor is an ideal tool for screening BA contaminants in food with good sensitivity and high effectivity.
Collapse
Affiliation(s)
- Xue-Ming Cao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Li-Hua Li
- Future Technology Institute, South China Normal University, 510631, China
| | - Hong-Zhi Liang
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Jia-Dong Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Zi-Jian Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China
| | - Lin Luo
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Yi-Na Lu
- Shantou Customs District, Shantou 515041, China
| | - Yu-Xin Zhong
- Guangzhou Institute of Food Inspection, Guangzhou 510410, China
| | - Yu-Dong Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Hong-Tao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China.
| |
Collapse
|
9
|
Zhu H, Li B, Yu Chan C, Low Qian Ling B, Tor J, Yi Oh X, Jiang W, Ye E, Li Z, Jun Loh X. Advances in Single-component inorganic nanostructures for photoacoustic imaging guided photothermal therapy. Adv Drug Deliv Rev 2023; 192:114644. [PMID: 36493906 DOI: 10.1016/j.addr.2022.114644] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/02/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Phototheranostic based on photothermal therapy (PTT) and photoacoustic imaging (PAI), as one of avant-garde medical techniques, have sparked growing attention because it allows noninvasive, deeply penetrative, and highly selective and effective therapy. Among a variety of phototheranostic nanoagents, single-component inorganic nanostructures are found to be novel and attractive PAI and PTT combined nanotheranostic agents and received tremendous attention, which not only exhibit structural controllability, high tunability in physiochemical properties, size-dependent optical properties, high reproducibility, simple composition, easy functionalization, and simple synthesis process, but also can be endowed with multiple therapeutic and imaging functions, realizing the superior therapy result along with bringing less foreign materials into body, reducing systemic side effects and improving the bioavailability. In this review, according to their synthetic components, conventional single-component inorganic nanostructures are divided into metallic nanostructures, metal dichalcogenides, metal oxides, carbon based nanostructures, upconversion nanoparticles (UCNPs), metal organic frameworks (MOFs), MXenes, graphdiyne and other nanostructures. On the basis of this category, their detailed applications in PAI guide PTT of tumor treatment are systematically reviewed, including synthesis strategies, corresponding performances, and cancer diagnosis and therapeutic efficacy. Before these, the factors to influence on photothermal effect and the principle of in vivo PAI are briefly presented. Finally, we also comprehensively and thoroughly discussed the limitation, potential barriers, future perspectives for research and clinical translation of this single-component inorganic nanoagent in biomedical therapeutics.
Collapse
Affiliation(s)
- Houjuan Zhu
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Bofan Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore; Institute of Sustainability for Chemicals, Energy and Environment (ISCE2) A*STAR (Agency for Science, Technology and Research) Singapore 138634, Singapore
| | - Chui Yu Chan
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Beverly Low Qian Ling
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Jiaqian Tor
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Xin Yi Oh
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Wenbin Jiang
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Enyi Ye
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore; Institute of Sustainability for Chemicals, Energy and Environment (ISCE2) A*STAR (Agency for Science, Technology and Research) Singapore 138634, Singapore.
| | - Zibiao Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore; Institute of Sustainability for Chemicals, Energy and Environment (ISCE2) A*STAR (Agency for Science, Technology and Research) Singapore 138634, Singapore.
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore.
| |
Collapse
|
10
|
Engineering and surface modification of carbon quantum dots for cancer bioimaging. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
11
|
Glioma diagnosis and therapy: Current challenges and nanomaterial-based solutions. J Control Release 2022; 352:338-370. [PMID: 36206948 DOI: 10.1016/j.jconrel.2022.09.065] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
Abstract
Glioma is often referred to as one of the most dreadful central nervous system (CNS)-specific tumors with rapidly-proliferating cancerous glial cells, accounting for nearly half of the brain tumors at an annual incidence rate of 30-80 per a million population. Although glioma treatment remains a significant challenge for researchers and clinicians, the rapid development of nanomedicine provides tremendous opportunities for long-term glioma therapy. However, several obstacles impede the development of novel therapeutics, such as the very tight blood-brain barrier (BBB), undesirable hypoxia, and complex tumor microenvironment (TME). Several efforts have been dedicated to exploring various nanoformulations for improving BBB permeation and precise tumor ablation to address these challenges. Initially, this article briefly introduces glioma classification and various pathogenic factors. Further, currently available therapeutic approaches are illustrated in detail, including traditional chemotherapy, radiotherapy, and surgical practices. Then, different innovative treatment strategies, such as tumor-treating fields, gene therapy, immunotherapy, and phototherapy, are emphasized. In conclusion, we summarize the article with interesting perspectives, providing suggestions for future glioma diagnosis and therapy improvement.
Collapse
|
12
|
Wang L, Shi Y, Jiang J, Li C, Zhang H, Zhang X, Jiang T, Wang L, Wang Y, Feng L. Micro-Nanocarriers Based Drug Delivery Technology for Blood-Brain Barrier Crossing and Brain Tumor Targeting Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203678. [PMID: 36103614 DOI: 10.1002/smll.202203678] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The greatest obstacle to using drugs to treat brain tumors is the blood-brain barrier (BBB), making it difficult for conventional drug molecules to enter the brain. Therefore, how to safely and effectively penetrate the BBB to achieve targeted drug delivery to brain tumors has been a challenging research problem. With the intensive research in micro- and nanotechnology in recent years, nano drug-targeted delivery technologies have shown great potential to overcome this challenge, such as inorganic nanocarriers, organic polymer-carriers, liposomes, and biobased carriers, which can be designed in different sizes, shapes, and surface functional groups to enhance their ability to penetrate the BBB and targeted drug delivery for brain tumors. In this review, the composition and overcoming patterns of the BBB are detailed, and then the hot research topics of drug delivery carriers for brain tumors in recent years are summarized, and their mechanisms of action on the BBB and the factors affecting drug delivery are described in detail, and the effectiveness of targeted therapy for brain tumors is evaluated. Finally, the challenges and dilemmas in developing brain tumor drug delivery systems are discussed, which will be promising in the future for targeted drug delivery to brain tumors based on micro-nanocarriers technology.
Collapse
Affiliation(s)
- Luyao Wang
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Youyuan Shi
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Jingzhen Jiang
- Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Chan Li
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Hengrui Zhang
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Xinhui Zhang
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
| | - Tao Jiang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Liang Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Yinyan Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Lin Feng
- School of Mechanical Engineering & Automation, Beihang University, Beijing, 100191, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
13
|
Bhartiya P, Chawla R, Dutta PK. Folate receptor targeted chitosan and polydopamine coated mesoporous silica nanoparticles for photothermal therapy and drug delivery. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2022.2135443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Prabha Bhartiya
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Allahabad, Uttar Pradesh, India
| | - Ruchi Chawla
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Allahabad, Uttar Pradesh, India
| | - Pradip Kumar Dutta
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Allahabad, Uttar Pradesh, India
| |
Collapse
|
14
|
Ruiz-Molina D, Mao X, Alfonso-Triguero P, Lorenzo J, Bruna J, Yuste VJ, Candiota AP, Novio F. Advances in Preclinical/Clinical Glioblastoma Treatment: Can Nanoparticles Be of Help? Cancers (Basel) 2022; 14:4960. [PMID: 36230883 PMCID: PMC9563739 DOI: 10.3390/cancers14194960] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022] Open
Abstract
Glioblastoma multiforme (GB) is the most aggressive and frequent primary malignant tumor in the central nervous system (CNS), with unsatisfactory and challenging treatment nowadays. Current standard of care includes surgical resection followed by chemotherapy and radiotherapy. However, these treatments do not much improve the overall survival of GB patients, which is still below two years (the 5-year survival rate is below 7%). Despite various approaches having been followed to increase the release of anticancer drugs into the brain, few of them demonstrated a significant success, as the blood brain barrier (BBB) still restricts its uptake, thus limiting the therapeutic options. Therefore, enormous efforts are being devoted to the development of novel nanomedicines with the ability to cross the BBB and specifically target the cancer cells. In this context, the use of nanoparticles represents a promising non-invasive route, allowing to evade BBB and reducing systemic concentration of drugs and, hence, side effects. In this review, we revise with a critical view the different families of nanoparticles and approaches followed so far with this aim.
Collapse
Affiliation(s)
- Daniel Ruiz-Molina
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Xiaoman Mao
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Paula Alfonso-Triguero
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Julia Lorenzo
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Jordi Bruna
- Neuro-Oncology Unit, Bellvitge University Hospital-ICO (IDIBELL), Avinguda de la Gran Via de l’Hospitalet, 199-203, L’Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Victor J. Yuste
- Instituto de Neurociencias. Universitat Autònoma de Barcelona (UAB), Campus UAB, 08193 Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Campus UAB, 08193 Cerdanyola del Vallès, Spain
| | - Ana Paula Candiota
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Centro de Investigación Biomédica en Red: Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallès, Spain
| | - Fernando Novio
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Departament de Química, Universitat Autònoma de Barcelona (UAB), Campus UAB, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
15
|
Barzegar Behrooz A, Talaie Z, Syahir A. Nanotechnology-Based Combinatorial Anti-Glioblastoma Therapies: Moving from Terminal to Treatable. Pharmaceutics 2022; 14:pharmaceutics14081697. [PMID: 36015322 PMCID: PMC9415007 DOI: 10.3390/pharmaceutics14081697] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 12/02/2022] Open
Abstract
Aggressive glioblastoma (GBM) has no known treatment as a primary brain tumor. Since the cancer is so heterogeneous, an immunosuppressive tumor microenvironment (TME) exists, and the blood–brain barrier (BBB) prevents chemotherapeutic chemicals from reaching the central nervous system (CNS), therapeutic success for GBM has been restricted. Drug delivery based on nanocarriers and nanotechnology has the potential to be a handy tool in the continuing effort to combat the challenges of treating GBM. There are various new therapies being tested to extend survival time. Maximizing therapeutic effectiveness necessitates using many treatment modalities at once. In the fight against GBM, combination treatments outperform individual ones. Combination therapies may be enhanced by using nanotechnology-based delivery techniques. Nano-chemotherapy, nano-chemotherapy–radiation, nano-chemotherapy–phototherapy, and nano-chemotherapy–immunotherapy for GBM are the focus of the current review to shed light on the current status of innovative designs.
Collapse
Affiliation(s)
- Amir Barzegar Behrooz
- Nanobiotechnology Research Group, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Zahra Talaie
- School of Biology, Nour Danesh Institute of Higher Education, Isfahan 84156-83111, Iran
| | - Amir Syahir
- Nanobiotechnology Research Group, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang 43400, Malaysia
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence:
| |
Collapse
|
16
|
Han Y, Liu H, Fan M, Gao S, Fan D, Wang Z, Chang J, Zhang J, Ge K. Near-infrared-II photothermal ultra-small carbon dots promoting anticancer efficiency by enhancing tumor penetration. J Colloid Interface Sci 2022; 616:595-604. [DOI: 10.1016/j.jcis.2022.02.083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/05/2022] [Accepted: 02/19/2022] [Indexed: 12/31/2022]
|
17
|
Phan LMT, Cho S. Fluorescent Carbon Dot-Supported Imaging-Based Biomedicine: A Comprehensive Review. Bioinorg Chem Appl 2022; 2022:9303703. [PMID: 35440939 PMCID: PMC9013550 DOI: 10.1155/2022/9303703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/27/2021] [Accepted: 03/17/2022] [Indexed: 12/23/2022] Open
Abstract
Carbon dots (CDs) provide distinctive advantages of strong fluorescence, good photostability, high water solubility, and outstanding biocompatibility, and thus are widely exploited as potential imaging agents for in vitro and in vivo bioimaging. Imaging is absolutely necessary when discovering the structure and function of cells, detecting biomarkers in diagnosis, tracking the progress of ongoing disease, treating various tumors, and monitoring therapeutic efficacy, making it an important approach in modern biomedicine. Numerous investigations of CDs have been intensively studied for utilization in bioimaging-supported medical sciences. However, there is still no article highlighting the potential importance of CD-based bioimaging to support various biomedical applications. Herein, we summarize the development of CDs as fluorescence (FL) nanoprobes with different FL colors for potential bioimaging-based applications in living cells, tissue, and organisms, including the bioimaging of various cell types and targets, bioimaging-supported sensing of metal ions and biomolecules, and FL imaging-guided tumor therapy. Current CD-based microscopic techniques and their advantages are also highlighted. This review discusses the significance of advanced CD-supported imaging-based in vitro and in vivo investigations, suggests the potential of CD-based imaging for biomedicine, and encourages the effective selection and development of superior probes and platforms for further biomedical applications.
Collapse
Affiliation(s)
- Le Minh Tu Phan
- School of Medicine and Pharmacy, The University of Danang, Danang 550000, Vietnam
| | - Sungbo Cho
- Department of Electronic Engineering, Gachon University, Seongnam, Gyeonggi-do 13120, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
18
|
Hersh AM, Alomari S, Tyler BM. Crossing the Blood-Brain Barrier: Advances in Nanoparticle Technology for Drug Delivery in Neuro-Oncology. Int J Mol Sci 2022; 23:4153. [PMID: 35456971 PMCID: PMC9032478 DOI: 10.3390/ijms23084153] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 12/10/2022] Open
Abstract
The blood-brain barrier (BBB) constitutes a microvascular network responsible for excluding most drugs from the brain. Treatment of brain tumors is limited by the impermeability of the BBB and, consequently, survival outcomes for malignant brain tumors remain poor. Nanoparticles (NPs) represent a potential solution to improve drug transport to brain tumors, given their small size and capacity to target tumor cells. Here, we review the unique physical and chemical properties of NPs that aid in BBB transport and discuss mechanisms of NP transport across the BBB, including paracellular transport, carrier-mediated transport, and adsorptive- and receptor-mediated transcytosis. The major types of NPs investigated for treatment of brain tumors are detailed, including polymeric NPs, liposomes, solid lipid NPs, dendrimers, metals, quantum dots, and nanogels. In addition to their role in drug delivery, NPs can be used as imaging contrast agents and can be conjugated with imaging probes to assist in visualizing tumors, demarcating lesion boundaries and margins, and monitoring drug delivery and treatment response. Multifunctional NPs can be designed that are capable of targeting tumors for both imaging and therapeutic purposes. Finally, limitations of NPs for brain tumor treatment are discussed.
Collapse
Affiliation(s)
| | | | - Betty M. Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.M.H.); (S.A.)
| |
Collapse
|
19
|
Truskewycz A, Yin H, Halberg N, Lai DTH, Ball AS, Truong VK, Rybicka AM, Cole I. Carbon Dot Therapeutic Platforms: Administration, Distribution, Metabolism, Excretion, Toxicity, and Therapeutic Potential. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106342. [PMID: 35088534 DOI: 10.1002/smll.202106342] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Ultrasmall nanoparticles are often grouped under the broad umbrella term of "nanoparticles" when reported in the literature. However, for biomedical applications, their small sizes give them intimate interactions with biological species and endow them with unique functional physiochemical properties. Carbon quantum dots (CQDs) are an emerging class of ultrasmall nanoparticles which have demonstrated considerable biocompatibility and have been employed as potent theragnostic platforms. These particles find application for increasing drug solubility and targeting, along with facilitating the passage of drugs across impermeable membranes (i.e., blood brain barrier). Further functionality can be triggered by various environmental conditions or external stimuli (i.e., pH, temperature, near Infrared (NIR) light, ultrasound), and their intrinsic fluorescence is valuable for diagnostic applications. The focus of this review is to shed light on the therapeutic potential of CQDs and identify how they travel through the body, reach their site of action, administer therapeutic effect, and are excreted. Investigation into their toxicity and compatibility with larger nanoparticle carriers is also examined. The future of CQDs for theragnostic applications is promising due to their multifunctional attributes and documented biocompatibility. As nanomaterial platforms become more commonplace in clinical treatments, the commercialization of CQD therapeutics is anticipated.
Collapse
Affiliation(s)
- Adam Truskewycz
- School of Engineering, Advanced Manufacturing and Fabrication, RMIT University, Melbourne, Victoria, 3000, Australia
- Department of Biomedicine, University of Bergen, Bergen, 5020, Norway
| | - Hong Yin
- School of Engineering, Advanced Manufacturing and Fabrication, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Nils Halberg
- Department of Biomedicine, University of Bergen, Bergen, 5020, Norway
| | - Daniel T H Lai
- Institute of Health and Sport (IHES), Victoria University, Melbourne, Victoria, 3011, Australia
| | - Andrew S Ball
- ARC Training Centre for the Transformation of Australia Biosolids Resource, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Vi Khanh Truong
- School of Science, Engineering and Health, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Agata Marta Rybicka
- Oncovet Clinical Research, Parc Eurasante, 80 Rue du Dr Alexandre Yersin, Loos, F-59120, France
| | - Ivan Cole
- School of Engineering, Advanced Manufacturing and Fabrication, RMIT University, Melbourne, Victoria, 3000, Australia
| |
Collapse
|
20
|
Chan MH, Huang WT, Satpathy A, Su TY, Hsiao M, Liu RS. Progress and Viewpoints of Multifunctional Composite Nanomaterials for Glioblastoma Theranostics. Pharmaceutics 2022; 14:pharmaceutics14020456. [PMID: 35214188 PMCID: PMC8875488 DOI: 10.3390/pharmaceutics14020456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
The most common malignant tumor of the brain is glioblastoma multiforme (GBM) in adults. Many patients die shortly after diagnosis, and only 6% of patients survive more than 5 years. Moreover, the current average survival of malignant brain tumors is only about 15 months, and the recurrence rate within 2 years is almost 100%. Brain diseases are complicated to treat. The reason for this is that drugs are challenging to deliver to the brain because there is a blood–brain barrier (BBB) protection mechanism in the brain, which only allows water, oxygen, and blood sugar to enter the brain through blood vessels. Other chemicals cannot enter the brain due to their large size or are considered harmful substances. As a result, the efficacy of drugs for treating brain diseases is only about 30%, which cannot satisfy treatment expectations. Therefore, researchers have designed many types of nanoparticles and nanocomposites to fight against the most common malignant tumors in the brain, and they have been successful in animal experiments. This review will discuss the application of various nanocomposites in diagnosing and treating GBM. The topics include (1) the efficient and long-term tracking of brain images (magnetic resonance imaging, MRI, and near-infrared light (NIR)); (2) breaking through BBB for drug delivery; and (3) natural and chemical drugs equipped with nanomaterials. These multifunctional nanoparticles can overcome current difficulties and achieve progressive GBM treatment and diagnosis results.
Collapse
Affiliation(s)
- Ming-Hsien Chan
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (M.-H.C.); (W.-T.H.); (A.S.); (T.-Y.S.)
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Wen-Tse Huang
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (M.-H.C.); (W.-T.H.); (A.S.); (T.-Y.S.)
| | - Aishwarya Satpathy
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (M.-H.C.); (W.-T.H.); (A.S.); (T.-Y.S.)
| | - Ting-Yi Su
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (M.-H.C.); (W.-T.H.); (A.S.); (T.-Y.S.)
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (M.H.); (R.-S.L.)
| | - Ru-Shi Liu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (M.-H.C.); (W.-T.H.); (A.S.); (T.-Y.S.)
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Correspondence: (M.H.); (R.-S.L.)
| |
Collapse
|
21
|
Mauro N, Utzeri MA, Sciortino A, Messina F, Cannas M, Popescu R, Gerthsen D, Buscarino G, Cavallaro G, Giammona G. Decagram-Scale Synthesis of Multicolor Carbon Nanodots: Self-Tracking Nanoheaters with Inherent and Selective Anticancer Properties. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2551-2563. [PMID: 34985246 DOI: 10.1021/acsami.1c19599] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Carbon nanodots (CDs) are a new class of carbon-based nanoparticles endowed with photoluminescence, high specific surface area, and good photothermal conversion, which have spearheaded many breakthroughs in medicine, especially in drug delivery and cancer theranostics. However, the tight control of their structural, optical, and biological properties and the synthesis scale-up have been very difficult so far. Here, we report for the first time an efficient protocol for the one-step synthesis of decagram-scale quantities of N,S-doped CDs with a narrow size distribution, along with a single nanostructure multicolor emission, high near-infrared (NIR) photothermal conversion efficiency, and selective reactive oxygen species (ROS) production in cancer cells. This allows achieving targeted and multimodal cytotoxic effects (i.e., photothermal and oxidative stresses) in cancer cells by applying biocompatible NIR laser sources that can be remotely controlled under the guidance of fluorescence imaging. Hence, our findings open up a range of possibilities for real-world biomedical applications, among which is cancer theranostics. In this work, indocyanine green is used as a bidentate SOx donor which has the ability to tune surface groups and emission bands of CDs obtained by solvothermal decomposition of citric acid and urea in N,N-dimethylformamide. The co-doping implies various surface states providing transitions in the visible region, thus eliciting a tunable multicolor emission from blue to red and excellent photothermal efficiency in the NIR region useful in bioimaging applications and image-guided anticancer phototherapy. The fluorescence self-tracking capability of SOx-CDs reveals that they can enter cancer cells more quickly than healthy cell lines and undergo a different intracellular fate after cell internalization. This could explain why sulfur doping entails pro-oxidative activities by triggering more ROS generation in cancer cells when compared to healthy cell lines. We also find that oxidative stress can be locally enhanced under the effects of a NIR laser at moderate power density (2.5 W cm-2). Overall, these findings suggest that SOx-CDs are endowed with inherent drug-independent cytotoxic effects toward cancer cells, which would be selectively enhanced by external NIR light irradiation and helpful in precision anticancer approaches. Also, this work opens a debate on the role of CD surface engineering in determining nanotoxicity as a function of cell metabolism, thus allowing a rational design of next-generation nanomaterials with targeted anticancer properties.
Collapse
Affiliation(s)
- Nicolò Mauro
- Laboratory of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy
| | - Mara Andrea Utzeri
- Laboratory of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy
| | - Alice Sciortino
- Department of Physics and Chemistry (DiFC) "E. Segrè", University of Palermo, via Archirafi 36, 90123 Palermo, Italy
| | - Fabrizio Messina
- Department of Physics and Chemistry (DiFC) "E. Segrè", University of Palermo, via Archirafi 36, 90123 Palermo, Italy
- ATeNCenter, University of Palermo, Viale delle Scienze─Ed. 18/A, 90128 Palermo, Italy
| | - Marco Cannas
- Department of Physics and Chemistry (DiFC) "E. Segrè", University of Palermo, via Archirafi 36, 90123 Palermo, Italy
| | - Radian Popescu
- Laboratory for Electron Microscopy, Karlsruhe Institute of Technology|KIT, Finanzmanagement Kaiserstraße 12, D-76131 Karlsruhe, Germany
| | - Dagmar Gerthsen
- Laboratory for Electron Microscopy, Karlsruhe Institute of Technology|KIT, Finanzmanagement Kaiserstraße 12, D-76131 Karlsruhe, Germany
| | - Gianpiero Buscarino
- Department of Physics and Chemistry (DiFC) "E. Segrè", University of Palermo, via Archirafi 36, 90123 Palermo, Italy
- ATeNCenter, University of Palermo, Viale delle Scienze─Ed. 18/A, 90128 Palermo, Italy
| | - Gennara Cavallaro
- Laboratory of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy
- ATeNCenter, University of Palermo, Viale delle Scienze─Ed. 18/A, 90128 Palermo, Italy
| | - Gaetano Giammona
- Laboratory of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, via Archirafi 32, 90123 Palermo, Italy
| |
Collapse
|
22
|
Nehra M, Uthappa UT, Kumar V, Kumar R, Dixit C, Dilbaghi N, Mishra YK, Kumar S, Kaushik A. Nanobiotechnology-assisted therapies to manage brain cancer in personalized manner. J Control Release 2021; 338:224-243. [PMID: 34418523 DOI: 10.1016/j.jconrel.2021.08.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022]
Abstract
There are numerous investigated factors that limit brain cancer treatment efficacy such as ability of prescribed therapy to cross the blood-brain barrier (BBB), tumor specific delivery of a therapeutics, transport within brain interstitium, and resistance of tumor cells against therapies. Recent breakthroughs in the field of nano-biotechnology associated with developing multifunctional nano-theranostic emerged as an effective way to manage brain cancer in terms of higher efficacy and least possible adverse effects. Keeping challenges and state-of-art accomplishments into consideration, this review proposes a comprehensive, careful, and critical discussion focused on efficient nano-enabled platforms including nanocarriers for drug delivery across the BBB and nano-assisted therapies (e.g., nano-immunotherapy, nano-stem cell therapy, and nano-gene therapy) investigated for brain cancer treatment. Besides therapeutic efficacy point-of-view, efforts are being made to explore ways projected to tune such developed nano-therapeutic for treating patients in personalized manner via controlling size, drug loading, delivery, and retention. Personalized brain tumor management based on advanced nano-therapies can potentially lead to excellent therapeutic benefits based on unique genetic signatures in patients and their individual disease profile. Moreover, applicability of nano-systems as stimulants to manage the brain cancer growth factors has also been discussed in photodynamic therapy and radiotherapy. Overall, this review offers a comprehensive information on emerging opportunities in nanotechnology for advancing the brain cancer treatment.
Collapse
Affiliation(s)
- Monika Nehra
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India; Department of Mechanical Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh 160014, India
| | - U T Uthappa
- Department of Environment and Energy Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea; Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru 562112, Karnataka, India
| | - Virendra Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Rajesh Kumar
- Department of Mechanical Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh 160014, India
| | - Chandra Dixit
- Department of Chemistry, University of Connecticut, Storrs, CT, USA
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Yogendra Kumar Mishra
- Smart Materials, NanoSYD, Mads Clausen Institute, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark
| | - Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India.
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805-8531, United States.
| |
Collapse
|
23
|
Shi XF, Ji B, Kong Y, Guan Y, Ni R. Multimodal Contrast Agents for Optoacoustic Brain Imaging in Small Animals. Front Bioeng Biotechnol 2021; 9:746815. [PMID: 34650961 PMCID: PMC8505530 DOI: 10.3389/fbioe.2021.746815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022] Open
Abstract
Optoacoustic (photoacoustic) imaging has demonstrated versatile applications in biomedical research, visualizing the disease pathophysiology and monitoring the treatment effect in an animal model, as well as toward applications in the clinical setting. Given the complex disease mechanism, multimodal imaging provides important etiological insights with different molecular, structural, and functional readouts in vivo. Various multimodal optoacoustic molecular imaging approaches have been applied in preclinical brain imaging studies, including optoacoustic/fluorescence imaging, optoacoustic imaging/magnetic resonance imaging (MRI), optoacoustic imaging/MRI/Raman, optoacoustic imaging/positron emission tomography, and optoacoustic/computed tomography. There is a rapid development in molecular imaging contrast agents employing a multimodal imaging strategy for pathological targets involved in brain diseases. Many chemical dyes for optoacoustic imaging have fluorescence properties and have been applied in hybrid optoacoustic/fluorescence imaging. Nanoparticles are widely used as hybrid contrast agents for their capability to incorporate different imaging components, tunable spectrum, and photostability. In this review, we summarize contrast agents including chemical dyes and nanoparticles applied in multimodal optoacoustic brain imaging integrated with other modalities in small animals, and provide outlook for further research.
Collapse
Affiliation(s)
- Xue-feng Shi
- Department of Respiratory Medicine, Qinghai Provincial People’s Hospital, Xining, China
| | - Bin Ji
- Department of Radiopharmacy and Molecular Imaging, School of Pharmacy, Fudan University, Shanghai, China
| | - Yanyan Kong
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
24
|
Wang B, Song H, Qu X, Chang J, Yang B, Lu S. Carbon dots as a new class of nanomedicines: Opportunities and challenges. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214010] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
25
|
Theranostic Applications of Nanoparticle-Mediated Photoactivated Therapies. JOURNAL OF NANOTHERANOSTICS 2021. [DOI: 10.3390/jnt2030009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nanoparticle-mediated light-activated therapies, such as photodynamic therapy and photothermal therapy, are earnestly being viewed as efficient interventional strategies against several cancer types. Theranostics is a key hallmark of cancer nanomedicine since it allows diagnosis and therapy of both primary and metastatic cancer using a single nanoprobe. Advanced in vivo diagnostic imaging using theranostic nanoparticles not only provides precise information about the location of tumor/s but also outlines the narrow time window corresponding to the maximum tumor-specific drug accumulation. Such information plays a critical role in guiding light-activated therapies with high spatio-temporal accuracy. Furthermore, theranostics facilitates monitoring the progression of therapy in real time. Herein, we provide a general review of the application of theranostic nanoparticles for in vivo image-guided light-activated therapy in cancer. The imaging modalities considered here include fluorescence imaging, photoacoustic imaging, thermal imaging, magnetic resonance imaging, X-ray computed tomography, positron emission tomography, and single-photon emission computed tomography. The review concludes with a brief discussion about the broad scope of theranostic light-activated nanomedicine.
Collapse
|
26
|
Li B, Niu X, Xie M, Luo F, Huang X, You Z. Tumor-Targeting Multifunctional Nanoprobe for Enhanced Photothermal/Photodynamic Therapy of Liver Cancer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8064-8072. [PMID: 34189915 DOI: 10.1021/acs.langmuir.0c03578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Numerous researchers have committed to the development of combined therapy strategies for tumors, since their use in the treatment of tumors has more ideal therapeutic outcomes. In the study, we designed and prepared gold nanostars with CD147 modified on the surface and then efficiently loaded a photosensitive drug IR820 to construct a multifunctional nanoprobe. Due to the protection effect of gold, the nanoprobe has oxygen/heat energy generation capability and can also efficiently deliver the loaded drugs inside the tumor cells. Moreover, the nanoprobe has excellent photothermal/photodynamic therapeutic outcomes. The observation by photoacoustic real-time imaging validated the outstanding tumor-targeting characteristics of our nanoprobe. Finally, in the in vivo treatment experiment, the nanoprobe achieved ideal tumor-suppressive effects after the photothermal/photodynamic therapy. In summary, the findings of this experiment are useful in the development of new combined tumor therapy strategies based on nanomaterials.
Collapse
Affiliation(s)
- Bei Li
- Department of Biliary Surgery, West China Hospital of Sichuan University, No.37 Guoxue Lane, Wuhou District, Chengdu 610041, Sichuan, China
| | - Xiaoya Niu
- Department of Biliary Surgery, West China Hospital of Sichuan University, No.37 Guoxue Lane, Wuhou District, Chengdu 610041, Sichuan, China
| | - Maodi Xie
- West Chia-Washington Mitochondria and Metabolism Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Fan Luo
- Department of Biliary Surgery, West China Hospital of Sichuan University, No.37 Guoxue Lane, Wuhou District, Chengdu 610041, Sichuan, China
| | - Xiuyi Huang
- Department of Biliary Surgery, West China Hospital of Sichuan University, No.37 Guoxue Lane, Wuhou District, Chengdu 610041, Sichuan, China
| | - Zhen You
- Department of Biliary Surgery, West China Hospital of Sichuan University, No.37 Guoxue Lane, Wuhou District, Chengdu 610041, Sichuan, China
| |
Collapse
|
27
|
Bodea SV, Westmeyer GG. Photoacoustic Neuroimaging - Perspectives on a Maturing Imaging Technique and its Applications in Neuroscience. Front Neurosci 2021; 15:655247. [PMID: 34220420 PMCID: PMC8253050 DOI: 10.3389/fnins.2021.655247] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
A prominent goal of neuroscience is to improve our understanding of how brain structure and activity interact to produce perception, emotion, behavior, and cognition. The brain's network activity is inherently organized in distinct spatiotemporal patterns that span scales from nanometer-sized synapses to meter-long nerve fibers and millisecond intervals between electrical signals to decades of memory storage. There is currently no single imaging method that alone can provide all the relevant information, but intelligent combinations of complementary techniques can be effective. Here, we thus present the latest advances in biomedical and biological engineering on photoacoustic neuroimaging in the context of complementary imaging techniques. A particular focus is placed on recent advances in whole-brain photoacoustic imaging in rodent models and its influential role in bridging the gap between fluorescence microscopy and more non-invasive techniques such as magnetic resonance imaging (MRI). We consider current strategies to address persistent challenges, particularly in developing molecular contrast agents, and conclude with an overview of potential future directions for photoacoustic neuroimaging to provide deeper insights into healthy and pathological brain processes.
Collapse
Affiliation(s)
- Silviu-Vasile Bodea
- Department of Chemistry and School of Medicine, Technical University of Munich (TUM), Munich, Germany
- Institute for Synthetic Biomedicine, Helmholtz Center Munich, Munich, Germany
| | - Gil Gregor Westmeyer
- Department of Chemistry and School of Medicine, Technical University of Munich (TUM), Munich, Germany
- Institute for Synthetic Biomedicine, Helmholtz Center Munich, Munich, Germany
| |
Collapse
|
28
|
Kim TE, Jang HJ, Park SW, Wei J, Cho S, Park WI, Lee BR, Yang CD, Jung YK. Folic Acid Functionalized Carbon Dot/Polypyrrole Nanoparticles for Specific Bioimaging and Photothermal Therapy. ACS APPLIED BIO MATERIALS 2021; 4:3453-3461. [PMID: 35014429 DOI: 10.1021/acsabm.1c00018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polypyrrole nanoparticles (PPy-NPs) with excellent near-infrared absorption are commonly used as photothermal therapy (PTT) agents; however, PTT using PPy-NPs has a limitation in that it is difficult to maximize their therapeutic effect because of the lack of specific targeting. In this study, to overcome the difficulty of targeting, folic acid functionalized carbon dots (FA-CDs) with bright green fluorescence properties were combined with carboxylated PPy-NPs via the EDC/NHS coupling reaction to yield a PTT imaging agent. The synthesized FA-CD/PPy-NPs with excellent photostability performed folate receptor (FR) positive HeLa cancer cell imaging by green fluorescence signals of FA-CDs and exhibited high cell viability (above 90%) even at 500 μg/mL. The viability of HeLa cells incubated with 200 μg/mL FA-CD/PPy-NPs was dramatically decreased to 25.02 ± 1.85% by NIR laser irradiation, through photothermal therapeutic effects of FA-CD/PPy-NPs with high photothermal conversion efficiency (η = 40.80 ± 1.54%). The cancer cell death by FA-CD/PPy-NPs was confirmed by fluorescence imaging of FA-CDs as well as live/dead cell staining assay (calcein-AM/PI). These results demonstrate that the FA-CD/PPy-NPs can be utilized as multifunctional theranostic agents for specific bioimaging and treatment of FR-positive cancer cells.
Collapse
Affiliation(s)
- Tae Eun Kim
- School of Biomedical Engineering & Department of Nanoscience and Engineering, Inje University, Gimhae, 50834, Republic of Korea
| | - Hyeon Jeong Jang
- School of Biomedical Engineering & Department of Nanoscience and Engineering, Inje University, Gimhae, 50834, Republic of Korea
| | - Seok Won Park
- School of Biomedical Engineering & Department of Nanoscience and Engineering, Inje University, Gimhae, 50834, Republic of Korea
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China
| | - Shinuk Cho
- Department of Physics and EHSRC, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Woon Ik Park
- Department of Materials Science and Engineering, Pukyong National University, Pusan, 48513, Republic of Korea
| | - Bo Ram Lee
- Department of Physics, Pukyong National University, Busan, 48513, Republic of Korea
| | - Chang Duk Yang
- Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Yun Kyung Jung
- School of Biomedical Engineering & Department of Nanoscience and Engineering, Inje University, Gimhae, 50834, Republic of Korea
| |
Collapse
|
29
|
Metwally K, Bastiancich C, Correard F, Novell A, Fernandez S, Guillet B, Larrat B, Mensah S, Estève MA, Da Silva A. Development of a multi-functional preclinical device for the treatment of glioblastoma. BIOMEDICAL OPTICS EXPRESS 2021; 12:2264-2279. [PMID: 33996228 PMCID: PMC8086436 DOI: 10.1364/boe.419412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 05/18/2023]
Abstract
Glioblastoma multiforme (GBM) is one of the most common and aggressive malignant primary brain tumors in adults. The treatment of GBM is limited by the blood-brain barrier (BBB), which limits the diffusion of appropriate concentrations of therapeutic agents at the tumor site. Among experimental therapies, photo-thermal therapy (PTT) mediated by nanoparticles is a promising strategy. To propose a preclinical versatile research instrument for the development of new PTT for GBM, a multipurpose integrated preclinical device was developed. The setup is able to perform: i) BBB permeabilization by focused ultrasound sonication (FUS); ii) PTT with continuous wave laser; iii) in situ temperature monitoring with photo-acoustic (PA) measurements. In vivo preliminary subcutaneous and transcranial experiments were conducted on healthy or tumor-bearing mice. Transcranial FUS-induced BBB permeabilization was validated using single photon emission computed tomography (SPECT) imaging. PTT capacities were monitored by PA thermometry, and are illustrated through subcutaneous and transcranial in vivo experiments. The results show the therapeutic possibilities and ergonomy of such integrated device as a tool for the validation of future treatments.
Collapse
Affiliation(s)
- Khaled Metwally
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
- Aix Marseille Univ, CNRS, Centrale Marseille, LMA, Marseille, France
- Contributed equally to this work
| | - Chiara Bastiancich
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
- Contributed equally to this work
| | - Florian Correard
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
- APHM, Hôpital de la Timone, Service Pharmacie, Marseille, France
| | - Anthony Novell
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, Orsay, France
| | - Samantha Fernandez
- Aix-Marseille Univ, Centre Européen de Recherche en Imagerie Médicale (CERIMED), Marseille, France
| | - Benjamin Guillet
- Aix-Marseille Univ, Centre Européen de Recherche en Imagerie Médicale (CERIMED), Marseille, France
- Aix-Marseille Univ, INSERM, INRA, Center de Recherche en Cardiovasculaire et Nutrition (C2VN), Marseille, France
| | - Benoit Larrat
- Univ. Paris Saclay, CNRS, CEA, DRF/JOLIOT/NEUROSPIN/BAOBAB, Gif-sur-Yvette, France
| | - Serge Mensah
- Aix Marseille Univ, CNRS, Centrale Marseille, LMA, Marseille, France
| | - Marie-Anne Estève
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
- APHM, Hôpital de la Timone, Service Pharmacie, Marseille, France
| | - Anabela Da Silva
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| |
Collapse
|
30
|
Li K, Lu M, Xia X, Huang Y. Recent advances in photothermal and RNA interfering synergistic therapy. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Bastiancich C, Da Silva A, Estève MA. Photothermal Therapy for the Treatment of Glioblastoma: Potential and Preclinical Challenges. Front Oncol 2021; 10:610356. [PMID: 33520720 PMCID: PMC7845694 DOI: 10.3389/fonc.2020.610356] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/01/2020] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma (GBM) is a very aggressive primary malignant brain tumor and finding effective therapies is a pharmaceutical challenge and an unmet medical need. Photothermal therapy may be a promising strategy for the treatment of GBM, as it allows the destruction of the tumor using heat as a non-chemical treatment for disease bypassing the GBM heterogeneity limitations, conventional drug resistance mechanisms and side effects on peripheral healthy tissues. However, its development is hampered by the distinctive features of this tumor. Photoabsorbing agents such as nanoparticles need to reach the tumor site at therapeutic concentrations, crossing the blood-brain barrier upon systemic administration. Subsequently, a near infrared light irradiating the head must cross multiple barriers to reach the tumor site without causing any local damage. Its power intensity needs to be within the safety limit and its penetration depth should be sufficient to induce deep and localized hyperthermia and achieve tumor destruction. To properly monitor the therapy, imaging techniques that can accurately measure the increase in temperature within the brain must be used. In this review, we report and discuss recent advances in nanoparticle-mediated plasmonic photothermal therapy for GBM treatment and discuss the preclinical challenges commonly faced by researchers to develop and test such systems.
Collapse
Affiliation(s)
- Chiara Bastiancich
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Anabela Da Silva
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Marie-Anne Estève
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France.,APHM, Hôpital de la Timone, Service Pharmacie, Marseille, France
| |
Collapse
|
32
|
Liu W, Huang G, Su X, Li S, Wang Q, Zhao Y, Liu Y, Luo J, Li Y, Li C, Yuan D, Hong H, Chen X, Chen T. Zebrafish: A Promising Model for Evaluating the Toxicity of Carbon Dot-Based Nanomaterials. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49012-49020. [PMID: 33074666 DOI: 10.1021/acsami.0c17492] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Carbon dots (CDs) exhibit a wide range of desirable properties including excellent photoluminescence, photostability, and water solubility, making them ideally suitable for use in the context of drug delivery, bioimaging, and related biomedical applications. Before these CDs can be translated for use in humans, however, further research regarding their in vivo toxicity is required. Owing to their low cost, rapid growth, and significant homology to humans, zebrafish (Danio rerio) are commonly employed as in vivo model systems in the toxicity studies of nanomaterials. In the present report, our group employed a hydrothermal approach to synthesize CDs and then assessed their toxicity in zebrafish. The resultant CDs were roughly 2.4 nm spheroid particles that emitted strong blue fluorescence in response to the excitation at 365 nm. These CDs did not induce any evident embryonic toxicity or did cause any apparent teratogenic effects during hatching or development when dosed at 150 μg/mL. However, significant effects were observed in zebrafish embryos at CD concentrations >200 μg/mL, including pericardial and yolk sac edema, delayed growth, spinal cord flexure, and death. These high CD concentrations were further associated with the reduction in zebrafish larval locomotor activity and decreased dopamine levels, reduced frequencies of tyrosine hydroxylase-positive dopaminergic neurons, and multiple organ damage. Further studies will be required to fully understand the mechanistic basis for CD-mediated neurotoxicity, with such studies being essential to fully understand the translational potential of these unique nanomaterials.
Collapse
Affiliation(s)
- Wei Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Gang Huang
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Xiaoying Su
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 511400, China
| | - Siyi Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qun Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yuying Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yao Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jingshan Luo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Ye Li
- Department of Pharmacy, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Chuwen Li
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Dongsheng Yuan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Honghai Hong
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
33
|
Xu Y, Li P, Cheng D, Wu C, Lu Q, Yang W, Zhu X, Yin P, Liu M, Li H, Zhang Y. Group IV nanodots: synthesis, surface engineering and application in bioimaging and biotherapy. J Mater Chem B 2020; 8:10290-10308. [PMID: 33103712 DOI: 10.1039/d0tb01881c] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Group IV nanodots (NDs) mainly including carbon (C), silicon (Si), germanium (Ge) have aroused much attention as one type of important nanomaterials that are widely studied in optoelectronics, semiconductors, sensors and biomedicine-related fields owing to the low cost of synthesis, good stability, excellent biocompatibility, and some attractive newly emerged properties. In this review, the synthesis, surface engineering and application in bioimaging and biotherapy of group IV NDs are summarized and discussed. The recent progress in the rational synthesis and functionalization, specific therapy-related properties, together with in vivo and in vitro bioimaging are highlighted. Their new applications in biotherapy such as photothermal therapy (PTT) and photodynamic therapy (PDT) are illustrated with respect to C, Si and Ge NDs. The current challenges and future applications of these emerging materials in bioimaging and biotherapy are presented. This review provides readers with a distinct perspective of the group IV NDs nanomaterials for synthesis and surface engineering, and newly emerging properties related to applications in biomedicine.
Collapse
Affiliation(s)
- Yaxin Xu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Peipei Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Dan Cheng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Cuiyan Wu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Qiujun Lu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Weipeng Yang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Xiaohua Zhu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Peng Yin
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Meiling Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Haitao Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, Hunan, China.
| |
Collapse
|
34
|
Zeng W, Xu Y, Yang W, Liu K, Bian K, Zhang B. An Ultrasound-Excitable Aggregation-Induced Emission Dye for Enhanced Sonodynamic Therapy of Tumors. Adv Healthc Mater 2020; 9:e2000560. [PMID: 33448676 DOI: 10.1002/adhm.202000560] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/13/2020] [Indexed: 01/08/2023]
Abstract
Ultrasound (US)-triggered sonodynamic therapy (SDT) can significantly solve the problem of tissue penetrability of light of photodynamic therapy (PDT) that has long vexed physicians in clinics. However, there is a great shortage of sonosensitizers for SDT. Currently, several photosensitizers and their derivatives have been reported for SDT but these dyes are usually quenched when aggregated due to aggregation-caused quenching (ACQ) effect. In this work, aggregation-induced emission (AIE) dye (TTMN) assembled nanoparticles (S-AIE) are synthesized and employed as sonosensitizers for enhanced SDT due to the unique properties of the AIE dye and the deep tissue penetration of ultrasound. Results show that S-AIE can generate potent singlet oxygen (1O2) under US irradiation to induce cancer cells apoptosis and clearly inhibit tumor growth in vitro and in vivo. In particular, the intrinsic fluorescence of AIE dye can guide the procedure of SDT. To the best of current knowledge, this is the first demonstration of AIE dyes being used as sonosensitizers for SDT and importantly, this work could inspire other more efficient AIE dyes for being used as sonosensitizers for SDT of deep-seated tumors.
Collapse
Affiliation(s)
- Weiwei Zeng
- Department of Medical Ultrasound Shanghai Tenth People's Hospital Ultrasound Research and Education Institute Tongji University Cancer Center Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment Tongji University School of Medicine Shanghai 200072 China
| | - Yan Xu
- Department of Medical Ultrasound Shanghai Tenth People's Hospital Ultrasound Research and Education Institute Tongji University Cancer Center Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment Tongji University School of Medicine Shanghai 200072 China
| | - Weitao Yang
- Department of Medical Ultrasound Shanghai Tenth People's Hospital Ultrasound Research and Education Institute Tongji University Cancer Center Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment Tongji University School of Medicine Shanghai 200072 China
| | - Kai Liu
- Department of Medical Ultrasound Shanghai Tenth People's Hospital Ultrasound Research and Education Institute Tongji University Cancer Center Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment Tongji University School of Medicine Shanghai 200072 China
| | - Kexin Bian
- Department of Medical Ultrasound Shanghai Tenth People's Hospital Ultrasound Research and Education Institute Tongji University Cancer Center Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment Tongji University School of Medicine Shanghai 200072 China
| | - Bingbo Zhang
- Department of Medical Ultrasound Shanghai Tenth People's Hospital Ultrasound Research and Education Institute Tongji University Cancer Center Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment Tongji University School of Medicine Shanghai 200072 China
| |
Collapse
|
35
|
Kim TH, Raiz A, Unni AD, Murhekar S, Donose BC, Floetenmeyer M, Cock IE, Brown CL. Combating Antibiotic-Resistant Gram-Negative Bacteria Strains with Tetracycline-Conjugated Carbon Nanoparticles. ACTA ACUST UNITED AC 2020; 4:e2000074. [PMID: 32803868 DOI: 10.1002/adbi.202000074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/27/2020] [Indexed: 01/26/2023]
Abstract
Nontoxic carbon nanoparticle samples prepared by both bottom-up and top-down approaches do not inhibit Gram-negative bacterial growth, indicating excellent biocompatibilities. However, cell growth inhibitory efficacies increase considerably when the carbon nanoparticles are conjugated with the antibiotic tetracycline. In tetracycline-resistant bacteria, these efficacies can approach tenfold higher activities when compared to tetracycline alone. No structural abnormality such as membrane disruptions is evident in the tested bacterial strains; this is in contrast with other nanocarbon systems such as graphene oxides, carbon nanotubes, and amine-functionalized carbon nanoparticles which do exhibit membrane disruptions. In comparison, the tetracycline-conjugated carbon nanoparticles induce membrane perturbations (but not membrane disruptions), inhibiting bacterial efflux mechanisms. It is proposed that when tetracycline is conjugated to the surface of carbon nanoparticles, it functions to direct the nanoparticles to membrane-associated tetracycline efflux pumps, thereby blocking and subsequently inhibiting their function. The conjugation between biocompatible carbon nanoparticles and subtherapeutic but well-established antibiotic molecules may provide hybrid antibiotic assembly strategies resulting in effective multidrug efflux inhibition for combating antibiotic resistance.
Collapse
Affiliation(s)
- Tak H Kim
- Environmental Futures Research Institute, School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
| | - Asim Raiz
- School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
| | - Aradhana Devi Unni
- School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
| | - Shweta Murhekar
- School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
| | - Bogdan C Donose
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4067, Australia
| | - Matthias Floetenmeyer
- Centre for Microscopy and Microanalysis, The University of Queensland, St Lucia, QLD, 4067, Australia
| | - Ian E Cock
- Environmental Futures Research Institute, School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
| | - Christopher L Brown
- Environmental Futures Research Institute, School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
| |
Collapse
|
36
|
Zhang Y, Uthaman S, Song W, Eom KH, Jeon SH, Huh KM, Babu A, Park IK, Kim I. Multistimuli-Responsive Polymeric Vesicles for Accelerated Drug Release in Chemo-photothermal Therapy. ACS Biomater Sci Eng 2020; 6:5012-5023. [DOI: 10.1021/acsbiomaterials.0c00585] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Yu Zhang
- BK21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Busan 609-735, Republic of Korea
| | - Saji Uthaman
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Wenliang Song
- BK21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Busan 609-735, Republic of Korea
| | - Kuen Hee Eom
- BK21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Busan 609-735, Republic of Korea
| | - Su Hyeon Jeon
- BK21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Busan 609-735, Republic of Korea
| | - Kang Moo Huh
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Amal Babu
- Department of Biomedical Sciences, Chonnam National University Medical School, 160 Baekseo-ro, Gwangju 58128, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences, Chonnam National University Medical School, 160 Baekseo-ro, Gwangju 58128, Republic of Korea
| | - Il Kim
- BK21 PLUS Center for Advanced Chemical Technology, Department of Polymer Science and Engineering, Pusan National University, Busan 609-735, Republic of Korea
| |
Collapse
|
37
|
Skandalakis GP, Rivera DR, Rizea CD, Bouras A, Raj JGJ, Bozec D, Hadjipanayis CG. Hyperthermia treatment advances for brain tumors. Int J Hyperthermia 2020; 37:3-19. [PMID: 32672123 PMCID: PMC7756245 DOI: 10.1080/02656736.2020.1772512] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/15/2020] [Accepted: 05/16/2020] [Indexed: 02/06/2023] Open
Abstract
Hyperthermia therapy (HT) of cancer is a well-known treatment approach. With the advent of new technologies, HT approaches are now important for the treatment of brain tumors. We review current clinical applications of HT in neuro-oncology and ongoing preclinical research aiming to advance HT approaches to clinical practice. Laser interstitial thermal therapy (LITT) is currently the most widely utilized thermal ablation approach in clinical practice mainly for the treatment of recurrent or deep-seated tumors in the brain. Magnetic hyperthermia therapy (MHT), which relies on the use of magnetic nanoparticles (MNPs) and alternating magnetic fields (AMFs), is a new quite promising HT treatment approach for brain tumors. Initial MHT clinical studies in combination with fractionated radiation therapy (RT) in patients have been completed in Europe with encouraging results. Another combination treatment with HT that warrants further investigation is immunotherapy. HT approaches for brain tumors will continue to a play an important role in neuro-oncology.
Collapse
Affiliation(s)
- Georgios P. Skandalakis
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Daniel R. Rivera
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Caroline D. Rizea
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Alexandros Bouras
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Joe Gerald Jesu Raj
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Dominique Bozec
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Constantinos G. Hadjipanayis
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
38
|
Ashrafizadeh M, Mohammadinejad R, Kailasa SK, Ahmadi Z, Afshar EG, Pardakhty A. Carbon dots as versatile nanoarchitectures for the treatment of neurological disorders and their theranostic applications: A review. Adv Colloid Interface Sci 2020; 278:102123. [PMID: 32087367 DOI: 10.1016/j.cis.2020.102123] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 02/08/2020] [Accepted: 02/11/2020] [Indexed: 12/24/2022]
Abstract
The development of novel methods plays a fundamental role in early diagnosis and controlling of neurological disorders (NDs). Blood-brain barrier (BBB) is the most challenging barrier for the development of neuro drug delivery systems due to its inhibiting ability to enter drugs and agents into central nervous system (CNS). Carbon dots (CDs) have shown to be very promising and outstanding agents for various biomedical applications (bio imaging studies, treatment of NDs and brain tumors). They exhibit remarkable properties such as biocompatibility, small size (less than 10 nm, enabling penetration into BBB), tunable optical properties, photostability and simple synthetic procedures, allowing them to act as ideal candidates in various fields of science. Therefore, the objective of this review is to overview the recent studies on CDs for the development of neuro drug delivery systems to reach CNS via crossing of BBB. Primarily, this review briefly outlines the unique optical properties and toxicity of CDs. The development of novel neuro drug delivery systems for various neurological disorders using CDs as carriers is described. This review also covers the potential applications of CDs in brain tumors imaging and treatment of neurodegenerative diseases. Finally, the sensing applications and future prospects of CDs are summarized.
Collapse
|
39
|
Alphandéry E. Nano-Therapies for Glioblastoma Treatment. Cancers (Basel) 2020; 12:E242. [PMID: 31963825 PMCID: PMC7017259 DOI: 10.3390/cancers12010242] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/14/2019] [Accepted: 12/29/2019] [Indexed: 12/21/2022] Open
Abstract
Traditional anti-cancer treatments are inefficient against glioblastoma, which remains one of the deadliest and most aggressive cancers. Nano-drugs could help to improve this situation by enabling: (i) an increase of anti-glioblastoma multiforme (GBM) activity of chemo/gene therapeutic drugs, notably by an improved diffusion of these drugs through the blood brain barrier (BBB), (ii) the sensibilization of radio-resistant GBM tumor cells to radiotherapy, (iii) the removal by surgery of infiltrating GBM tumor cells, (iv) the restoration of an apoptotic mechanism of GBM cellular death, (v) the destruction of angiogenic blood vessels, (vi) the stimulation of anti-tumor immune cells, e.g., T cells, NK cells, and the neutralization of pro-tumoral immune cells, e.g., Treg cells, (vii) the local production of heat or radical oxygen species (ROS), and (viii) the controlled release/activation of anti-GBM drugs following the application of a stimulus. This review covers these different aspects.
Collapse
Affiliation(s)
- Edouard Alphandéry
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Sorbonne Université, Muséum National d’Histoire Naturelle, UMR CNRS 7590, IRD Place Jussieu, 75005 Paris, France; ; Tel.: +33-632-697-020
- Nanobacterie SARL, 36 boulevard Flandrin, 75116 Paris, France
- Institute of Anatomy, UZH University of Zurich, Institute of Anatomy, Winterthurerstr. 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
40
|
Qian M, Chen L, Du Y, Jiang H, Huo T, Yang Y, Guo W, Wang Y, Huang R. Biodegradable Mesoporous Silica Achieved via Carbon Nanodots-Incorporated Framework Swelling for Debris-Mediated Photothermal Synergistic Immunotherapy. NANO LETTERS 2019; 19:8409-8417. [PMID: 31682447 DOI: 10.1021/acs.nanolett.9b02448] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Incorporating carbon nanodots (CDs) into mesoporous silica framework for extensive biomedicine, especially for the desirable cancer immunotherapy, is considered to be an unexplored challenge. Herein, a hydrogen bond/electrostatic-assisted co-assembly strategy was smartly exploited to uniformly incorporate polymer-coated CDs into ordered framework of mesoporous silica nanoparticles (CD@MSNs). The obtained CD@MSN was not only biodegradable via the framework-incorporated CD-induced swelling but also capable of gathering dispersive CDs with enhanced photothermal effect and elevated targeting accumulation, which therefore can achieve photothermal imaging-guided photothermal therapy (PTT) in vitro and in vivo. Interestingly, benefiting from the biodegraded debris, it was found that CD@MSN-mediated PTT can synergistically achieve immune-mediated inhibition of tumor metastasis via stimulating the proliferation and activation of natural killer cells and macrophages with simultaneously up-regulating the secretion of corresponding cytokines (IFN-γ and Granzyme B). This work proposed an unusual synthesis of biodegradable mesoporous silica and provided an innovative insight into the biodegradable nanoparticles-associated anticancer immunity.
Collapse
Affiliation(s)
- Min Qian
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education , Fudan University , Shanghai 201203 , China
| | - Leilei Chen
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , China
| | - Yilin Du
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education , Fudan University , Shanghai 201203 , China
| | - Huiling Jiang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education , Fudan University , Shanghai 201203 , China
| | - Taotao Huo
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education , Fudan University , Shanghai 201203 , China
| | - Yafeng Yang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education , Fudan University , Shanghai 201203 , China
| | - Wei Guo
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education , Fudan University , Shanghai 201203 , China
| | - Yi Wang
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , China
| | - Rongqin Huang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education , Fudan University , Shanghai 201203 , China
| |
Collapse
|
41
|
Shao M, Chang C, Liu Z, Chen K, Zhou Y, Zheng G, Huang Z, Xu H, Xu P, Lu B. Polydopamine coated hollow mesoporous silica nanoparticles as pH-sensitive nanocarriers for overcoming multidrug resistance. Colloids Surf B Biointerfaces 2019; 183:110427. [DOI: 10.1016/j.colsurfb.2019.110427] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/31/2019] [Accepted: 08/05/2019] [Indexed: 01/13/2023]
|
42
|
Wu F, Sun B, Chu X, Zhang Q, She Z, Song S, Zhou N, Zhang J, Yi X, Wu D, Wang J. Hyaluronic Acid-Modified Porous Carbon-Coated Fe 3O 4 Nanoparticles for Magnetic Resonance Imaging-Guided Photothermal/Chemotherapy of Tumors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13135-13144. [PMID: 31510746 DOI: 10.1021/acs.langmuir.9b02300] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Chemotherapy is an effective method for treating cancer, clinically. However, side effects of drug and multidrug resistance restrict its application. In recent years, the combined treatment of chemotherapy and photothermal therapy (PTT) is becoming a promising method for treating cancer. PTT utilizes nanomaterials absorbing near-infrared light and producing heat to acquire advanced hyperthermia strategy for cancer treatment. Carbon nanomaterials with good biocompatibility, high surface area, and excellent photothermal properties are an excellent nanoplatform for drug delivery and PTT. Herein, porous carbon-coated magnetite nanoparticles (PCCMNs) were successfully synthesized by a one-pot solvothermal method. Magnetite, a contrast agent, can be used for magnetic resonance imaging. Hyaluronic acid was used to modify the PCCMNs to achieve targeted therapy. The obtained nanohybrid with a good photothermal effect can realize combined PTT/chemotherapy and will be a promising nanoplatform for high efficacy theranostics.
Collapse
Affiliation(s)
- Fan Wu
- College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , China
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Baohong Sun
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Xiaohong Chu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Qicheng Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Zhangcai She
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Saijie Song
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Ninglin Zhou
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Jun Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Xinyao Yi
- College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , China
| | - Daohong Wu
- College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , China
| | - Jianxiu Wang
- College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , China
| |
Collapse
|
43
|
Yan Y, Fu H, Wang J, Chen C, Wang Q, Duan Y, Hua J. A photo-stable and reversible pH-responsive nano-agent based on the NIR phenazine dye for photoacoustic imaging-guided photothermal therapy. Chem Commun (Camb) 2019; 55:10940-10943. [PMID: 31441920 DOI: 10.1039/c9cc05624f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Different from traditional "always on" photothermal therapy (PTT) agents, tumor microenvironment responsive agents showed more tumor specificity and lower photo-toxicity to normal tissues. Herein, a photo-stable and reversible pH responsive phenazine dye (PIOH) was synthesized and assembled with liposomes forming nanoparticles (PIOH-NPs), which exhibited a strong NIR absorption in a weak acid environment and were successfully utilized for photoacoustic (PA) imaging-guided photothermal therapy in mice.
Collapse
Affiliation(s)
- Yongchao Yan
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
44
|
Zanganeh S, Georgala P, Corbo C, Arabi L, Ho JQ, Javdani N, Sepand MR, Cruickshank K, Campesato LF, Weng C, Hemayat S, Andreou C, Alvim R, Hutter G, Rafat M, Mahmoudi M. Immunoengineering in glioblastoma imaging and therapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1575. [DOI: 10.1002/wnan.1575] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Steven Zanganeh
- Sloan Kettering Institute for Cancer Research New York New York
| | | | - Claudia Corbo
- School of Medicine and Surgery, Nanomedicine Center NANOMIB University of Milano‐Bicocca Milan Italy
| | - Leila Arabi
- Department of Pharmaceutical Nanotechnology School of Pharmacy, Mashhad University of Medical Sciences Mashhad Iran
| | - Jim Q. Ho
- Albert Einstein College of Medicine Bronx New York
| | - Najme Javdani
- Institute De Recherche Clinique De Montreal Montreal Quebec Canada
| | | | | | | | - Chien‐Huan Weng
- Sloan Kettering Institute for Cancer Research New York New York
| | | | - Chrysafis Andreou
- Department of Electrical and Computer Engineering University of Cyprus Nicosia Cyprus
| | - Ricardo Alvim
- Sloan Kettering Institute for Cancer Research New York New York
| | - Gregor Hutter
- School of Medicine and Surgery, Nanomedicine Center NANOMIB University of Milano‐Bicocca Milan Italy
| | - Marjan Rafat
- Department of Chemical and Biomolecular Engineering Vanderbilt University Nashville Tennessee
- Department of Biomedical Engineering Vanderbilt University Nashville Tennessee
- Department of Radiation Oncology Vanderbilt University Medical Center Nashville Tennessee
| | - Morteza Mahmoudi
- Precision Health Program Michigan State University East Lansing Michigan
| |
Collapse
|
45
|
Smith ES, Porterfield JE, Kannan RM. Leveraging the interplay of nanotechnology and neuroscience: Designing new avenues for treating central nervous system disorders. Adv Drug Deliv Rev 2019; 148:181-203. [PMID: 30844410 PMCID: PMC7043366 DOI: 10.1016/j.addr.2019.02.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 02/21/2019] [Accepted: 02/28/2019] [Indexed: 12/12/2022]
Abstract
Nanotechnology has the potential to open many novel diagnostic and treatment avenues for disorders of the central nervous system (CNS). In this review, we discuss recent developments in the applications of nanotechnology in CNS therapies, diagnosis and biology. Novel approaches for the diagnosis and treatment of neuroinflammation, brain dysfunction, psychiatric conditions, brain cancer, and nerve injury provide insights into the potential of nanomedicine. We also highlight nanotechnology-enabled neuroscience techniques such as electrophysiology and intracellular sampling to improve our understanding of the brain and its components. With nanotechnology integrally involved in the advancement of basic neuroscience and the development of novel treatments, combined diagnostic and therapeutic applications have begun to emerge. Nanotheranostics for the brain, able to achieve single-cell resolution, will hasten the rate in which we can diagnose, monitor, and treat diseases. Taken together, the recent advances highlighted in this review demonstrate the prospect for significant improvements to clinical diagnosis and treatment of a vast array of neurological diseases. However, it is apparent that a strong dialogue between the nanoscience and neuroscience communities will be critical for the development of successful nanotherapeutics that move to the clinic, benefit patients, and address unmet needs in CNS disorders.
Collapse
Affiliation(s)
- Elizabeth S Smith
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Joshua E Porterfield
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Rangaramanujam M Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, MD 21205, USA; Kennedy Krieger Institute, Johns Hopkins University for Cerebral Palsy Research Excellence, Baltimore, MD 21218, USA.
| |
Collapse
|
46
|
P,N Codoped carbon dots as an efficient "off-on" fluorescent probe for lipoic acid detection and its cellular dual-color imaging. Anal Bioanal Chem 2019; 411:3603-3612. [PMID: 31129691 DOI: 10.1007/s00216-019-01842-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/21/2019] [Accepted: 04/10/2019] [Indexed: 12/14/2022]
Abstract
A facile single hydrothermal method was developed to synthetize P,N codoped carbon dots (P,N/CDs), which show strong and stable fluorescence, good water solubility, low toxicity and good biocompatibility. Hence, a novel and efficient "off-on" P,N/CDs fluorescent probe was developed for the highly sensitive detection of lipoic acid (LA) for the first time. The fluorescence of the P,N/CDs was quenched by Cu2+ forming a P,N/CDs-Cu2+ complex, which acted as the "off" process, but Cu2+ could be removed by LA, due to stronger chelating between LA and Cu2+, forming a more stable complex, which recovered the fluorescence of the P,N/CDs, in order to achieve the "on" process. Under optimal conditions, the concentration of LA and the increased fluorescence intensity of the P,N/CDs-Cu2+ complex displayed a good linear relationship within the range of 0.05-28 μM, with a detection limit (S/N = 3) of 0.02 μM. The established "off-on" fluorescent probe was successfully applied to the analysis of LA in urine samples. The average recoveries were in the range of 98.3-101.5%, with a relative standard deviations of less than 3.1%. In addition, the P,N/CDs were also successfully applied to cellular dual-color imaging of live T24 cells. The results show that the P,N/CDs have great application potential in clinical diagnosis, bioassay and bioimaging. Graphical abstract.
Collapse
|
47
|
Chen B, Xie H, Wang S, Guo Z, Hu Y, Xie H. UV light‐tunable fluorescent inks and polymer hydrogel films based on carbon nanodots and lanthanide for enhancing anti‐counterfeiting. LUMINESCENCE 2019; 34:437-443. [DOI: 10.1002/bio.3636] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/24/2019] [Accepted: 03/31/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Bing Chen
- Faculty of Materials Science and Chemical Engineering, State Key Laboratory Base of Novel Functional Materials and Preparation ScienceNingbo University Ningbo People's Republic of China
| | - Houpeng Xie
- Faculty of Materials Science and Chemical Engineering, State Key Laboratory Base of Novel Functional Materials and Preparation ScienceNingbo University Ningbo People's Republic of China
| | - Sui Wang
- Faculty of Materials Science and Chemical Engineering, State Key Laboratory Base of Novel Functional Materials and Preparation ScienceNingbo University Ningbo People's Republic of China
| | - Zhiyong Guo
- Faculty of Materials Science and Chemical Engineering, State Key Laboratory Base of Novel Functional Materials and Preparation ScienceNingbo University Ningbo People's Republic of China
| | - Yufang Hu
- Faculty of Materials Science and Chemical Engineering, State Key Laboratory Base of Novel Functional Materials and Preparation ScienceNingbo University Ningbo People's Republic of China
| | - Hongzhen Xie
- Faculty of Materials Science and Chemical Engineering, State Key Laboratory Base of Novel Functional Materials and Preparation ScienceNingbo University Ningbo People's Republic of China
| |
Collapse
|
48
|
Adetunji Moses O, Khan MI, Fang Q, Qin L, Rehman ZU, Zhang Y, Deng Feng C, Ma Y, Tang X, Wu C, Adam ML, Huang D, Liu H, Song L. PVP intercalated metallic WSe 2 as NIR photothermal agents for efficient tumor ablation. NANOTECHNOLOGY 2019; 30:065102. [PMID: 30543196 DOI: 10.1088/1361-6528/aaf151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Transition metal dichalogenides (TMDCs) with unique layered structures hold promising potential as transducers for photothermal therapy. However, the low photothermal conversion efficiency and poor stability in some cases limit their practical applications. Herein, we demonstrate the fabrication of ultrathin homogeneous hybridized TMDC nanosheets and their use for highly efficient photothermal tumor ablation. In particular, the nanosheets were composed of metallic WSe2 intercalated with polyvinylpyrrolidone (PVP), which was facilely prepared through a solvothermal process from the mixture of selenourea crystals, WCl6 powder along with PVP polymeric nanogel. Our characterizations revealed that the obtained nanosheets exhibited excellent photothermal conversion efficiency, therapeutic demonstration with improved biocompatibility and physiological stability attributing to the combined merits of metallic phase of WSe2 and hydrophilic PVP insertion. Both the histological analysis of vital organs and in vitro/in vivo tests confirmed the nanosheets as actively effective and biologically safe in this phototherapeutic technique. Findings from this non-invasive experiment clearly emphasize the explorable therapeutic efficacy of the layered-based hybrid agents in future cancer treatment planning procedures.
Collapse
Affiliation(s)
- Oyawale Adetunji Moses
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wu X, Yang H, Yang W, Chen X, Gao J, Gong X, Wang H, Duan Y, Wei D, Chang J. Nanoparticle-based diagnostic and therapeutic systems for brain tumors. J Mater Chem B 2019; 7:4734-4750. [DOI: 10.1039/c9tb00860h] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Many theranostic nanoparticles have been tailored for high-efficiency diagnostic or therapeutic agents or applied as carriers and might provide new possibilities for brain tumor diagnosis and treatment.
Collapse
|
50
|
Liu Y, Liu J, Zhang J, Li X, Lin F, Zhou N, Yang B, Lu L. Noninvasive Brain Tumor Imaging Using Red Emissive Carbonized Polymer Dots across the Blood-Brain Barrier. ACS OMEGA 2018; 3:7888-7896. [PMID: 30087926 PMCID: PMC6072250 DOI: 10.1021/acsomega.8b01169] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 06/11/2018] [Indexed: 05/23/2023]
Abstract
Surgical resection is recognized as a mainstay in the therapy of malignant brain tumors. In clinical practice, however, surgeons face great challenges in identifying the tumor boundaries due to the infiltrating and heterogeneous nature of neoplastic tissues. Contrast-enhanced magnetic resonance imaging (MRI) is extensively used for defining the brain tumor in clinic. Disappointingly, the commercially available (MR) contrast agents show the transient circulation lifetime and poor blood-brain barrier (BBB) permeability, which seriously hamper their abilities in tumor visualization. In this work, red fluorescent carbonized polymer dots (CPDs) were systematically investigated with respect to their BBB-penetration ability. In summary, CPDs possess long excitation/emission wavelengths, low toxicity, high photostability, and excellent biocompatibility. CPDs exhibit high internalization in glioma cells in time- and dose-dependent procedures, and internalized CPDs locate mainly in endolysosomal structures. In vitro and in vivo studies confirmed the BBB permeability of CPDs, contributing to the early stage diagnosis of brain disorders and the noninvasive visualization of the brain tumor without compromised BBB. Furthermore, owing to the high tumor to normal tissue ratio of CPDs under ex vivo conditions, our nanoprobe holds the promise to guide brain-tumor resection by real-time fluorescence imaging during surgery.
Collapse
Affiliation(s)
- Yang Liu
- Department of Hand
Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Junjun Liu
- State Key
Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Jiayi Zhang
- Department of Hand
Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xiucun Li
- Department of Hand
Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Fangsiyu Lin
- Department of Hand
Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Nan Zhou
- Department of Orthopedics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Bai Yang
- State Key
Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Laijin Lu
- Department of Hand
Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|