1
|
Dagdag O, Kim H. Progress in the Field of Cyclophosphazenes: Preparation, Properties, and Applications. Polymers (Basel) 2023; 16:122. [PMID: 38201787 PMCID: PMC10780494 DOI: 10.3390/polym16010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 01/12/2024] Open
Abstract
This review article provides a comprehensive overview of recent advancements in the realm of cyclophosphazenes, encompassing their preparation methodologies, distinctive properties, and diverse applications. The synthesis approaches are explored, highlighting advancements in the preparation of these cyclic compounds. The discussion extends to the distinctive properties exhibited by cyclophosphazenes, including thermal stability characteristics, and other relevant features. Furthermore, we examine the broad spectrum of applications for cyclophosphazenes in various fields, such as coatings, adhesives, composites, extractants, metal complexes, organometallic chemistry, medicine, and inorganic chemistry. This review aims to offer insights into the evolving landscape of cyclophosphazenes and their ever-expanding roles in contemporary scientific and technological arenas. Future possibilities are emphasized, and significant research data shortages are identified.
Collapse
Affiliation(s)
| | - Hansang Kim
- Department of Mechanical Engineering, Gachon University, Seongnam 13120, Republic of Korea;
| |
Collapse
|
2
|
Yudaev P, Konstantinova A, Volkov V, Chistyakov E. Hexakis-2-(β-carboxyethenylphenoxy)cyclotriphosphazene: Synthesis, Properties, Modeling Structure. Molecules 2023; 28:6571. [PMID: 37764347 PMCID: PMC10534807 DOI: 10.3390/molecules28186571] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/29/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Condensation of hexakis-2-(formylphenoxy)cyclotriphosphazene with malonic acid yielded hexakis-2-(β-carboxyethenylphenoxy)cyclotriphosphazene (2-CEPP), whose structure was confirmed by 31P, 1H, 13C NMR spectroscopy and MALDI-TOF mass spectrometry. A quantum-chemical calculation for the 2-CEPP molecule using the ab initio methods in the 6-311G** basis set and the DFT-PBE0/6-311g** method was performed with geometry optimization of all parameters by the standard gradient method. The acid strength of 2-CEPP was theoretically estimated. Using the small-angle X-ray scattering method, it was found that 2-CEPP is an amorphous substance, which, when heated, can transform into a crystalline state. However, when heated at 370 °C, 2-CEPP undergoes decarboxylation and polymerization to form an insoluble heat-resistant product. The occurrence of decarboxylation and polymerization reactions in the formed styrene fragments was confirmed by thermal (differential-scanning calorimetry) and spectral (solid-state 13C NMR spectroscopy) analysis.
Collapse
Affiliation(s)
- Pavel Yudaev
- Mendeleev University of Chemical Technology of Russia, Miusskaya sq., 9, 125047 Moscow, Russia
| | - Anastasia Konstantinova
- Mendeleev University of Chemical Technology of Russia, Miusskaya sq., 9, 125047 Moscow, Russia
| | - Vladimir Volkov
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, Leninsky Prospect, 59, 119333 Moscow, Russia
| | - Evgeniy Chistyakov
- Mendeleev University of Chemical Technology of Russia, Miusskaya sq., 9, 125047 Moscow, Russia
| |
Collapse
|
3
|
Tagad HD, Brito J, Marin A, Buckley C, Wang H, Sun J, Sukhishvili SA, Wang H, Andrianov AK. 4-Methylumbelliferone-Functionalized Polyphosphazene and Its Assembly into Biocompatible Fluorinated Nanocoatings with Selective Antiproliferative Activity. Biomacromolecules 2023; 24:2278-2290. [PMID: 37071718 DOI: 10.1021/acs.biomac.3c00153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Advanced multifunctional biomaterials are increasingly relying on clinically dictated patterns of selectivity against various biological targets. Integration of these frequently conflicting features into a single material surface may be best achieved by combining various complementary methodologies. Herein, a drug with a broad spectrum of activity, i.e., 4-methylumbelliferone (4-MU), is synthetically multimerized into water-soluble anionic macromolecules with the polyphosphazene backbone. The polymer structure, composition, and solution behavior are studied by 1H and 31P NMR spectroscopy, size-exclusion chromatography, dynamic light scattering, and UV and fluorescence spectrophotometry. To take advantage of the clinically proven hemocompatibility of fluorophosphazene surfaces, the drug-bearing macromolecule was then nanoassembled onto the surface of selected substrates in an aqueous solution with fluorinated polyphosphazene of the opposite charge using the layer-by-layer (LbL) technique. Nanostructured 4-MU-functionalized fluoro-coatings exhibited a strong antiproliferative effect on vascular smooth muscle cells (VSMCs) and fibroblasts with no cytotoxicity against endothelial cells. This selectivity pattern potentially provides the opportunity for highly desirable fast tissue healing while preventing the overgrowth of VSMCs and fibrosis. Taken together with the established in vitro hemocompatibility and anticoagulant activity, 4-MU-functionalized fluoro-coatings demonstrate potential for applications as restenosis-resistant coronary stents and artificial joints.
Collapse
Affiliation(s)
- Harichandra D Tagad
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States
| | - Jordan Brito
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Alexander Marin
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States
| | - Christian Buckley
- Department of Biomedical Engineering, Department of Chemistry and Chemical Biology, Center for Healthcare Innovation, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Haoyu Wang
- Department of Biomedical Engineering, Department of Chemistry and Chemical Biology, Center for Healthcare Innovation, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Jingyu Sun
- Department of Biomedical Engineering, Department of Chemistry and Chemical Biology, Center for Healthcare Innovation, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Svetlana A Sukhishvili
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Hongjun Wang
- Department of Biomedical Engineering, Department of Chemistry and Chemical Biology, Center for Healthcare Innovation, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Alexander K Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States
| |
Collapse
|
4
|
Brito J, Andrianov AK, Sukhishvili SA. Factors Controlling Degradation of Biologically Relevant Synthetic Polymers in Solution and Solid State. ACS APPLIED BIO MATERIALS 2022; 5:5057-5076. [PMID: 36206552 DOI: 10.1021/acsabm.2c00694] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The field of biodegradable synthetic polymers, which is central for regenerative engineering and drug delivery applications, encompasses a multitude of hydrolytically sensitive macromolecular structures and diverse processing approaches. The ideal degradation behavior for a specific life science application must comply with a set of requirements, which include a clinically relevant kinetic profile, adequate biocompatibility, benign degradation products, and controlled structural evolution. Although significant advances have been made in tailoring materials characteristics to satisfy these requirements, the impacts of autocatalytic reactions and microenvironments are often overlooked resulting in uncontrollable and unpredictable outcomes. Therefore, roles of surface versus bulk erosion, in situ microenvironment, and autocatalytic mechanisms should be understood to enable rational design of degradable systems. In an attempt to individually evaluate the physical state and form factors influencing autocatalytic hydrolysis of degradable polymers, this Review follows a hierarchical analysis that starts with hydrolytic degradation of water-soluble polymers before building up to 2D-like materials, such as ultrathin coatings and capsules, and then to solid-state degradation. We argue that chemical reactivity largely governs solution degradation while diffusivity and geometry control the degradation of bulk materials, with thin "2D" materials remaining largely unexplored. Following this classification, this Review explores techniques to analyze degradation in vitro and in vivo and summarizes recent advances toward understanding degradation behavior for traditional and innovative polymer systems. Finally, we highlight challenges encountered in analytical methodology and standardization of results and provide perspective on the future trends in the development of biodegradable polymers.
Collapse
Affiliation(s)
- Jordan Brito
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas77843, United States
| | - Alexander K Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland20850, United States
| | - Svetlana A Sukhishvili
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas77843, United States
| |
Collapse
|
5
|
Recent Trends in the Development of Polyphosphazenes for Bio-applications. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022. [DOI: 10.1007/s40883-022-00278-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
6
|
Brito J, Asawa K, Marin A, Andrianov AK, Choi CH, Sukhishvili SA. Hierarchically Structured, All-Aqueous-Coated Hydrophobic Surfaces with pH-Selective Droplet Transfer Capability. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26225-26237. [PMID: 35611942 DOI: 10.1021/acsami.2c04499] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Often inspired by nature, techniques for precise droplet manipulation have found applications in microfluidics, microreactors, and water harvesting. However, a widely applicable strategy for surface modification combining simultaneous hydrophobicity and pH-sensitivity has not yet been achieved by employing environmentally friendly assembly conditions. The introduction of pH-responsive groups to an otherwise fluorinated polyphosphazene (PPZ) unlocks pH-selective droplet capture and transfer. Here, an all-aqueous layer-by-layer (LbL) deposition of polyelectrolytes is used to create unique hydrophobic coatings, endowing surfaces with the ability to sense environmental pH. The high hydrophobicity of these coatings (ultimately reaching a contact angle >120° on flat surfaces) is enabled by the formation of hydrophobic nanoscale domains and controllable by the degree of fluorination of PPZs, polyamine-binding partners, deposition pH, and coating thickness. Inspired by the hierarchical structure of rose petals, these versatile coatings reach a contact angle >150° when deposited on structured surfaces while introducing a tunable adhesivity that enables precise droplet manipulation. The films exhibited a strongly pronounced parahydrophobic rose petal behavior characterized through the contact angle hysteresis. Depositing as few as five bilayers (∼25 nm) on microstructured rather than smooth substrates resulted in superhydrophobicity with water contact angles >150° and the attenuation of the contact angle hysteresis, enabling highly controlled transfer of aqueous droplets. The pH-selective droplet transfer was achieved between surfaces with either the same microstructure and LbL film building blocks, which were assembled at different pH, or between surfaces with different microstructures coated with identical films. The demonstrated capability of these hydrophobic LbL films to endow surfaces with controlled hydrophobicity through adsorption from aqueous solutions and control the adhesion and transfer of water droplets between surfaces can be used in droplet-based microfluidics applications and water collection/harvesting.
Collapse
Affiliation(s)
- Jordan Brito
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Kaustubh Asawa
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Alexander Marin
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States
| | - Alexander K Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States
| | - Chang-Hwan Choi
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Svetlana A Sukhishvili
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
7
|
Marin A, Brito J, Sukhishvili SA, Andrianov AK. Cationic Fluoropolyphosphazenes: Synthesis and Assembly with Heparin as a Pathway to Hemocompatible Nanocoatings. ACS APPLIED BIO MATERIALS 2022; 5:313-321. [PMID: 35014813 DOI: 10.1021/acsabm.1c01099] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of state-of-the-art blood-contacting devices can be advanced through integrating hemocompatibility, durability, and anticoagulant functionalities within engineered nanoscale coatings. To enable all-aqueous assembly of nanocoatings combining omniphobic fluorinated features with the potent anticoagulant activity of hydrophilic heparin, two fluoropolymers containing cationic functionalities were synthesized─poly[(trifluoroethoxy)(dimethylaminopropyloxy)phosphazene], PFAP-O, and poly[(trifluoroethoxy)(dimethylaminopropylamino)phosphazene], PFAP-A. Despite a relatively high content of fluorinated pendant groups─approximately 50% (mol) in each─both polymers displayed solubility in aqueous solutions and were able to spontaneously form stable supramolecular complexes with heparin, as determined by dynamic light scattering and asymmetric flow field-flow fractionation methods. Heparin-containing coatings were then assembled by layer-by-layer deposition in aqueous solutions. Nanoassembled coatings were evaluated for potential thrombogenicity in three important categories of in vitro tests─coagulation by thrombin generation, platelet retention, and hemolysis. In all assays, heparin-containing fluoro-coatings consistently displayed superior performance compared to untreated titanium surfaces or fluoro-coatings assembled using poly(acrylic acid) in the absence of heparin. Short-term stability studies revealed the noneluting nature of these noncovalently assembled coatings.
Collapse
Affiliation(s)
- Alexander Marin
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20853, United States
| | - Jordan Brito
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77845, United States
| | - Svetlana A Sukhishvili
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77845, United States
| | - Alexander K Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20853, United States
| |
Collapse
|
8
|
Zhang C, Yan K, Fu C, Peng H, Hawker CJ, Whittaker AK. Biological Utility of Fluorinated Compounds: from Materials Design to Molecular Imaging, Therapeutics and Environmental Remediation. Chem Rev 2022; 122:167-208. [PMID: 34609131 DOI: 10.1021/acs.chemrev.1c00632] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The applications of fluorinated molecules in bioengineering and nanotechnology are expanding rapidly with the controlled introduction of fluorine being broadly studied due to the unique properties of C-F bonds. This review will focus on the design and utility of C-F containing materials in imaging, therapeutics, and environmental applications with a central theme being the importance of controlling fluorine-fluorine interactions and understanding how such interactions impact biological behavior. Low natural abundance of fluorine is shown to provide sensitivity and background advantages for imaging and detection of a variety of diseases with 19F magnetic resonance imaging, 18F positron emission tomography and ultrasound discussed as illustrative examples. The presence of C-F bonds can also be used to tailor membrane permeability and pharmacokinetic properties of drugs and delivery agents for enhanced cell uptake and therapeutics. A key message of this review is that while the promise of C-F containing materials is significant, a subset of highly fluorinated compounds such as per- and polyfluoroalkyl substances (PFAS), have been identified as posing a potential risk to human health. The unique properties of the C-F bond and the significant potential for fluorine-fluorine interactions in PFAS structures necessitate the development of new strategies for facile and efficient environmental removal and remediation. Recent progress in the development of fluorine-containing compounds as molecular imaging and therapeutic agents will be reviewed and their design features contrasted with environmental and health risks for PFAS systems. Finally, present challenges and future directions in the exploitation of the biological aspects of fluorinated systems will be described.
Collapse
Affiliation(s)
- Cheng Zhang
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Kai Yan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hui Peng
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Craig J Hawker
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
9
|
Valencia SM, Zacharia A, Marin A, Matthews RL, Wu CK, Myers B, Sanders C, Difilippantonio S, Kirnbauer R, Roden RB, Pinto LA, Shoemaker RH, Andrianov AK, Marshall JD. Improvement of RG1-VLP vaccine performance in BALB/c mice by substitution of alhydrogel with the next generation polyphosphazene adjuvant PCEP. Hum Vaccin Immunother 2021; 17:2748-2761. [PMID: 33573433 PMCID: PMC8475605 DOI: 10.1080/21645515.2021.1875763] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/09/2021] [Indexed: 10/22/2022] Open
Abstract
Current human papillomavirus (HPV) vaccines provide substantial protection against the most common HPV types responsible for oral and anogenital cancers, but many circulating cancer-causing types remain for which vaccine coverage is lacking. In addition, all current HPV vaccines rely on aluminum salt-based adjuvant formulations that function through unclear mechanisms with few substitutes available. In an effort to expand the toolbox of available adjuvants suitable for HPV vaccines, we compared the immunogenicity of the RG1-VLP (virus-like particle) vaccine in BALB/c mice when formulated with either the aluminum hydroxide adjuvant Alhydrogel or the novel polyphosphazene macromolecular adjuvant poly[di (carboxylatoethylphenoxy) phosphazene] (PCEP). PCEP-formulated RG1-VLPs routinely outperformed VLP/Alhydrogel in several measurements of VLP-specific humoral immunity, including consistent improvements in the magnitude of antibody (Ab) responses to both HPV16-L1 and the L2 RG1 epitope as well as neutralizing titers to HPV16 and cross-neutralization of pseudovirion (PsV) types HPV18 and HPV39. Dose-sparing studies indicated that RG1-VLPs could be reduced in dose by 75% and the presence of PCEP ensured activity comparable to a full VLP dose adjuvanted by Alhydrogel. In addition, levels of HPV16-L1 and -L2-specific Abs were achieved after two vaccinations with PCEP as adjuvant that were equivalent to or greater than levels achieved with three vaccinations with Alhydrogel alone, indicating that the presence of PCEP resulted in accelerated immune responses that could allow for a decreased dose schedule. Given the extensive clinical track record of polyphosphazenes, these data suggest that substitution of alum-based adjuvants with PCEP for the RG1-VLP vaccine could lead to rapid seropositivity requiring fewer boosts, the dose-sparing of commercial VLP-based vaccines, and the establishment of longer-lasting humoral responses to HPV.
Collapse
Affiliation(s)
- Sarah M. Valencia
- Cancer ImmunoPrevention Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Athina Zacharia
- Cancer ImmunoPrevention Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Alexander Marin
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA
| | - Rebecca L. Matthews
- Cancer ImmunoPrevention Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Chia-Kuei Wu
- Cancer ImmunoPrevention Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Breana Myers
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Chelsea Sanders
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Simone Difilippantonio
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Reinhard Kirnbauer
- Laboratory of Viral Oncology (LVO), Department of Dermatology, Medical University of Vienna, Austria, EU
| | - Richard B. Roden
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Ligia A. Pinto
- HPV Immunology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Robert H. Shoemaker
- Chemopreventive Agent Development Group, Division of Cancer Prevention, NCI, Bethesda, MD, USA
| | - Alexander K. Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA
| | - Jason D. Marshall
- Cancer ImmunoPrevention Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| |
Collapse
|
10
|
Zhang M, Wang G, Li F, He Z, Zhang J, Chen J, Wang R. High conductivity membrane containing polyphosphazene derivatives for vanadium redox flow battery. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
11
|
Aliakseyeu A, Albright V, Yarbrough D, Hernandez S, Zhou Q, Ankner JF, Sukhishvili SA. Selective hydrogen bonding controls temperature response of layer-by-layer upper critical solution temperature micellar assemblies. SOFT MATTER 2021; 17:2181-2190. [PMID: 33458733 DOI: 10.1039/d0sm01997f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This work establishes a correlation between the selectivity of hydrogen-bonding interactions and the functionality of micelle-containing layer-by-layer (LbL) assemblies. Specifically, we explore LbL films formed by assembly of poly(methacrylic acid) (PMAA) and upper critical solution temperature block copolymer micelles (UCSTMs) composed of poly(acrylamide-co-acrylonitrile) P(AAm-co-AN) cores and polyvinylpyrrolidone (PVP) coronae. UCSTMs had a hydrated diameter of ∼380 nm with a transition temperature between 45 and 50 °C, regardless of solution pH. Importantly, micelles were able to hydrogen-bond with PMAA, with the critical interaction pH being temperature dependent. To better understand the thermodynamic nature of these interactions, in depth studies using isothermal titration calorimetry (ITC) were conducted. ITC reveals opposite signs of enthalpies for binding of PMAA with micellar coronae vs. with the cores. Moreover, ITC indicates that pH directs the interactions of PMAA with micelles, selectively enabling binding with the micellar corona at pH 4 or with both the corona and the core at pH 3. We then explore UCSTM/PMAA LbL assemblies and show that the two distinct modes of PMAA interaction with the micelles (i.e. whether or not PMAA binds with the core) had significant effects on the film composition, structure, and functionality. Consistent with PMAA hydrogen bonding with the P(AAm-co-AN) micellar cores, a significantly higher fraction of PMAA was found within the films assembled at pH 3 compared to pH 4 by both spectroscopic ellipsometry and neutron reflectometry. Selective interaction of PMAA with PVP coronae of the assembled micelles, achieved by the emergence of partial ionization of PMAA at pH 4 was critical for preserving film functionality demonstrated as temperature-controlled swelling and release of a model small molecule, pyrene. The work done here can be applied to a multitude of assembled polymer systems in order to predict suppression/retention of their stimuli-responsive behavior.
Collapse
Affiliation(s)
- Aliaksei Aliakseyeu
- Department of Materials Science & Engineering, Texas A&M University, TX 77843, USA.
| | - Victoria Albright
- Department of Materials Science & Engineering, Texas A&M University, TX 77843, USA.
| | - Danielle Yarbrough
- Department of Materials Science & Engineering, Texas A&M University, TX 77843, USA.
| | | | - Qing Zhou
- Department of Materials Science & Engineering, Texas A&M University, TX 77843, USA.
| | - John F Ankner
- Spallation Neutron Source, Oak Ridge National Laboratory, 37831, TN, USA
| | | |
Collapse
|
12
|
Weir MD, Kaner P, Marin A, Andrianov AK. Ionic Fluoropolyphosphazenes as Potential Adhesive Agents for Dental Restoration Applications. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021. [DOI: 10.1007/s40883-020-00192-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Albright V, Penarete-Acosta D, Stack M, Zheng J, Marin A, Hlushko H, Wang H, Jayaraman A, Andrianov AK, Sukhishvili SA. Polyphosphazenes enable durable, hemocompatible, highly efficient antibacterial coatings. Biomaterials 2020; 268:120586. [PMID: 33310537 DOI: 10.1016/j.biomaterials.2020.120586] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 02/06/2023]
Abstract
Biocompatible antibacterial coatings are highly desirable to prevent bacterial colonization on a wide range of medical devices from hip implants to skin grafts. Traditional polyelectrolytes are unable to directly form coatings with cationic antibiotics at neutral pH and suffer from high degrees of antibiotic release upon exposure to physiological concentrations of salt. Here, novel inorganic-organic hybrid polymer coatings based on direct layer-by-layer assembly of anionic polyphosphazenes (PPzs) of various degrees of fluorination with cationic antibiotics (polymyxin B, colistin, gentamicin, and neomycin) are reported. The coatings displayed low levels of antibiotic release upon exposure to salt and pH-triggered response of controlled doses of antibiotics. Importantly, coatings remained highly surface active against Escherichia coli and Staphylococcus aureus, even after 30 days of pre-exposure to physiological conditions (bacteria-free) or after repeated bacterial challenge. Moreover, coatings displayed low (<1%) hemolytic activity for both rabbit and porcine blood. Coatings deposited on either hard (Si wafers) or soft (electrospun fiber matrices) materials were non-toxic towards fibroblasts (NIH/3T3) and displayed controllable fibroblast adhesion via PPz fluorination degree. Finally, coatings showed excellent antibacterial activity in ex vivo pig skin studies. Taken together, these results suggest a new avenue to form highly tunable, biocompatible polymer coatings for medical device surfaces.
Collapse
Affiliation(s)
- Victoria Albright
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX, USA
| | | | - Mary Stack
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Jeremy Zheng
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Alexander Marin
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA
| | - Hanna Hlushko
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX, USA
| | - Hongjun Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, USA; Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Arul Jayaraman
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA; Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Alexander K Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA
| | - Svetlana A Sukhishvili
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
14
|
Onder A, Ozay H. Synthesis and characterization of biodegradable and antioxidant phosphazene-tannic acid nanospheres and their utilization as drug carrier material. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111723. [PMID: 33545874 DOI: 10.1016/j.msec.2020.111723] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/21/2022]
Abstract
In this study, hexachlorocyclotriphosphazene (HCCP) and tannic acid (TA) were used at different stoichiometric ratios to synthesize cyclomatrix-type polymeric materials with different surface features and dimensions. Using different reactive ratios, the structure and surface functional groups of the synthesized polymeric particles were explained using Fourier-Transform Infrared Spectroscopic (FTIR), Scanning Electron Microscope (SEM), Energy-dispersive X-ray spectroscopy (EDX), X-ray Photoelectron Spectroscopy (XPS) and Thermogravimetric (TG) analysis techniques. With morphologically fully spherical structure and mean 234.82 ± 49.37 nm dimensions, Phz-TA (4:1) nanospheres were researched for in vitro biodegradability, antioxidant features, and usability as a drug release system. In vitro biodegradability of Phz-TA (4:1) nanospheres was investigated at pH = 7.0 and pH = 1.2. Determined to degrade in 8-10 h at these pH values, nanospheres were used for releasing of Rhodamine 6G as a model drug. Due to the rich phenolic structure of the contained tannic acid units, nanospheres were determined to simultaneously have antioxidant features. Thus, this study determined that Phz-TA nanospheres with in vitro biodegradability and antioxidant features are promising polymeric materials for use as a potential drug-carrier in the future.
Collapse
Affiliation(s)
- Alper Onder
- School of Graduate Studies, Department of Chemistry, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Hava Ozay
- Laboratory of Inorganic Materials, Department of Chemistry, Faculty of Science and Arts, Çanakkale Onsekiz Mart University, Çanakkale, Turkey.
| |
Collapse
|
15
|
Yuan W, Weng GM, Lipton J, Li CM, Van Tassel PR, Taylor AD. Weak polyelectrolyte-based multilayers via layer-by-layer assembly: Approaches, properties, and applications. Adv Colloid Interface Sci 2020; 282:102200. [PMID: 32585489 DOI: 10.1016/j.cis.2020.102200] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 06/03/2020] [Accepted: 06/11/2020] [Indexed: 10/24/2022]
Abstract
Layer-by-layer (LbL) assembly is a nanoscale technique with great versatility, simplicity and molecular-level processing of various nanoscopic materials. Weak polyelectrolytes have been used as major building blocks for LbL assembly providing a fundamental and versatile tool to study the underlying mechanisms and practical applications of LbL assembly due to its pH-responsive charge density and molecular conformation. Because of high-density uncompensated charges and high-chain mobility, weak polyelectrolyte exponential multilayer growth is considered one of the fastest developing areas for organized molecular films. In this article, we systematically review the current status and developments of weak polyelectrolyte-based multilayers including all-weak-polyelectrolyte multilayers, weak polyelectrolytes/other components (e.g. strong polyelectrolytes, neutral polymers, and nanoparticles) multilayers, and exponentially grown weak polyelectrolyte multilayers. Several key aspects of weak polyelectrolytes are highlighted including the pH-controllable properties, the responsiveness to environmental pH, and synergetic functions obtained from weak polyelectrolyte/other component multilayers. Throughout this review, useful applications of weak polyelectrolyte-based multilayers in drug delivery, tunable biointerfaces, nanoreactors for synthesis of nanostructures, solid state electrolytes, membrane separation, and sensors are highlighted, and promising future directions in the area of weak polyelectrolyte-based multilayer assembly such as fabrication of multi-responsive materials, adoption of unique building blocks, investigation of internal molecular-level structure and mechanism of exponentially grown multilayers, and exploration of novel biomedical and energy applications are proposed.
Collapse
|
16
|
Strasser P, Teasdale I. Main-Chain Phosphorus-Containing Polymers for Therapeutic Applications. Molecules 2020; 25:E1716. [PMID: 32276516 PMCID: PMC7181247 DOI: 10.3390/molecules25071716] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 02/07/2023] Open
Abstract
Polymers in which phosphorus is an integral part of the main chain, including polyphosphazenes and polyphosphoesters, have been widely investigated in recent years for their potential in a number of therapeutic applications. Phosphorus, as the central feature of these polymers, endears the chemical functionalization, and in some cases (bio)degradability, to facilitate their use in such therapeutic formulations. Recent advances in the synthetic polymer chemistry have allowed for controlled synthesis methods in order to prepare the complex macromolecular structures required, alongside the control and reproducibility desired for such medical applications. While the main polymer families described herein, polyphosphazenes and polyphosphoesters and their analogues, as well as phosphorus-based dendrimers, have hitherto predominantly been investigated in isolation from one another, this review aims to highlight and bring together some of this research. In doing so, the focus is placed on the essential, and often mutual, design features and structure-property relationships that allow the preparation of such functional materials. The first part of the review details the relevant features of phosphorus-containing polymers in respect to their use in therapeutic applications, while the second part highlights some recent and innovative applications, offering insights into the most state-of-the-art research on phosphorus-based polymers in a therapeutic context.
Collapse
Affiliation(s)
- Paul Strasser
- Institute of Polymer Chemistry, Johannes Kepler University Linz (JKU), Altenberger Straße 69, A-4040 Linz, Austria
| | - Ian Teasdale
- Institute of Polymer Chemistry, Johannes Kepler University Linz (JKU), Altenberger Straße 69, A-4040 Linz, Austria
| |
Collapse
|
17
|
Andrianov AK, Marin A, Deng J, Fuerst TR. Protein-loaded soluble and nanoparticulate formulations of ionic polyphosphazenes and their interactions on molecular and cellular levels. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110179. [PMID: 31753403 PMCID: PMC6903416 DOI: 10.1016/j.msec.2019.110179] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/09/2019] [Accepted: 09/08/2019] [Indexed: 11/21/2022]
Abstract
Nanoparticulate and water-soluble formulations of ionic polyphosphazenes and protein cargo - lysozyme (LYZ) were prepared by their self-assembly in aqueous solutions at near physiological pH (pH 7.4) in the presence and absence of an ionic cross-linker - spermine tetrahydrochloride. Efficiency of LYZ encapsulation, physico-chemical characteristics of formulations, and the effect of reaction parameters were investigated using asymmetric flow field flow fractionation (AF4) and dynamic light scattering (DLS) methods. The effect of both polymer formulations on encapsulated LYZ was evaluated using soluble oligosaccharide substrate, whereas their ability to present the protein to cellular surfaces was assessed by measuring enzymatic activity of encapsulated LYZ against Micrococcus lysodeikticus cells. It was found that both soluble and cross-linked polymer matrices reduce lysis of bacterial cells by LYZ, whereas activity of encapsulated protein against oligosaccharide substrate remained practically unchanged indicating no adverse effect of polyphosphazene on protein integrity. Moreover, nanoparticulate formulations display distinctly different behavior in cellular assays when compared to their soluble counterparts. LYZ encapsulated in polyphosphazene nanoparticles shows approximately 2.5-fold higher activity in its ability to lyse cells as compared with water-soluble LYZ-PCPP formulations. A new approach to PEGylation of polyphosphazene nanoparticles was also developed. The method utilizes a new ionic polyphosphazene derivative, which contains graft (polyethylene glycol) chains. PEGylation allows for an improved control over the size of nanoparticles and broader modulation of their cross-linking density, while still permitting for protein presentation to cellular substrates.
Collapse
Affiliation(s)
- Alexander K Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Dr., Rockville, MD 20850, United States.
| | - Alexander Marin
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Dr., Rockville, MD 20850, United States
| | - Joseph Deng
- Department of Biology, College of Computer, Mathematical, and Natural Sciences, 1210 Biology - Psychology Building, 4094 Campus Drive, College Park, MD 20742, United States
| | - Thomas R Fuerst
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Dr., Rockville, MD 20850, United States; Department of Cell Biology and Molecular Genetics, 1109 Microbiology Building, University of Maryland, College Park, MD 20742, United States
| |
Collapse
|
18
|
Allcock HR. The Background and Scope of Polyphosphazenes as Biomedical Materials. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019. [DOI: 10.1007/s40883-019-00128-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
Albright V, Marin A, Kaner P, Sukhishvili SA, Andrianov AK. New Family of Water-Soluble Sulfo–Fluoro Polyphosphazenes and Their Assembly within Hemocompatible Nanocoatings. ACS APPLIED BIO MATERIALS 2019; 2:3897-3906. [DOI: 10.1021/acsabm.9b00485] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Victoria Albright
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Alexander Marin
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, Maryland 20850, United States
| | - Papatya Kaner
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, Maryland 20850, United States
| | - Svetlana A. Sukhishvili
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Alexander K. Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, 9600 Gudelsky Drive, Rockville, Maryland 20850, United States
| |
Collapse
|
20
|
Saveleva MS, Eftekhari K, Abalymov A, Douglas TEL, Volodkin D, Parakhonskiy BV, Skirtach AG. Hierarchy of Hybrid Materials-The Place of Inorganics- in-Organics in it, Their Composition and Applications. Front Chem 2019; 7:179. [PMID: 31019908 PMCID: PMC6459030 DOI: 10.3389/fchem.2019.00179] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/07/2019] [Indexed: 12/21/2022] Open
Abstract
Hybrid materials, or hybrids incorporating both organic and inorganic constituents, are emerging as a very potent and promising class of materials due to the diverse, but complementary nature of the properties inherent of these different classes of materials. The complementarity leads to a perfect synergy of properties of desired material and eventually an end-product. The diversity of resultant properties and materials used in the construction of hybrids, leads to a very broad range of application areas generated by engaging very different research communities. We provide here a general classification of hybrid materials, wherein organics-in-inorganics (inorganic materials modified by organic moieties) are distinguished from inorganics-in-organics (organic materials or matrices modified by inorganic constituents). In the former area, the surface functionalization of colloids is distinguished as a stand-alone sub-area. The latter area-functionalization of organic materials by inorganic additives-is the focus of the current review. Inorganic constituents, often in the form of small particles or structures, are made of minerals, clays, semiconductors, metals, carbons, and ceramics. They are shown to be incorporated into organic matrices, which can be distinguished as two classes: chemical and biological. Chemical organic matrices include coatings, vehicles and capsules assembled into: hydrogels, layer-by-layer assembly, polymer brushes, block co-polymers and other assemblies. Biological organic matrices encompass bio-molecules (lipids, polysaccharides, proteins and enzymes, and nucleic acids) as well as higher level organisms: cells, bacteria, and microorganisms. In addition to providing details of the above classification and analysis of the composition of hybrids, we also highlight some antagonistic yin-&-yang properties of organic and inorganic materials, review applications and provide an outlook to emerging trends.
Collapse
Affiliation(s)
- Mariia S. Saveleva
- Nano-BioTechnology Group, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Remote Controlled Theranostic Systems Lab, Educational Research Institute of Nanostructures and Biosystems, Saratov State University, Saratov, Russia
| | - Karaneh Eftekhari
- Nano-BioTechnology Group, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Anatolii Abalymov
- Remote Controlled Theranostic Systems Lab, Educational Research Institute of Nanostructures and Biosystems, Saratov State University, Saratov, Russia
| | - Timothy E. L. Douglas
- Engineering Department and Materials Science Institute (MSI), Lancaster University, Lancaster, United Kingdom
| | - Dmitry Volodkin
- School of Science & Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Bogdan V. Parakhonskiy
- Nano-BioTechnology Group, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Andre G. Skirtach
- Nano-BioTechnology Group, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
21
|
Zappi D, Coria-Oriundo LL, Piccinini E, Gramajo M, von Bilderling C, Pietrasanta LI, Azzaroni O, Battaglini F. The effect of ionic strength and phosphate ions on the construction of redox polyelectrolyte–enzyme self-assemblies. Phys Chem Chem Phys 2019; 21:22947-22954. [DOI: 10.1039/c9cp04037d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The type and concentration of ions present in a solution containing an electroactive polyelectrolyte shape its configuration, adsorption, and electrochemical response.
Collapse
Affiliation(s)
- Daniele Zappi
- INQUIMAE (CONICET)
- Departamento de Química Inorgánica
- Analítica y Química Física
- Facultad de Ciencias Exactas y Naturales
- Universidad de Buenos Aires
| | - Lucy L. Coria-Oriundo
- INQUIMAE (CONICET)
- Departamento de Química Inorgánica
- Analítica y Química Física
- Facultad de Ciencias Exactas y Naturales
- Universidad de Buenos Aires
| | - Esteban Piccinini
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA)
- (UNLP, CONICET)
- 1900 La Plata
- Argentina
| | - Marcos Gramajo
- INQUIMAE (CONICET)
- Departamento de Química Inorgánica
- Analítica y Química Física
- Facultad de Ciencias Exactas y Naturales
- Universidad de Buenos Aires
| | - Catalina von Bilderling
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA)
- (UNLP, CONICET)
- 1900 La Plata
- Argentina
- Departamento de Física
| | - Lía I. Pietrasanta
- Departamento de Física
- Facultad de Ciencias Exactas y Naturales
- Universidad de Buenos Aires
- C1428EHA Buenos Aires
- Argentina
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA)
- (UNLP, CONICET)
- 1900 La Plata
- Argentina
| | - Fernando Battaglini
- INQUIMAE (CONICET)
- Departamento de Química Inorgánica
- Analítica y Química Física
- Facultad de Ciencias Exactas y Naturales
- Universidad de Buenos Aires
| |
Collapse
|