1
|
Zhan M, Zhou D, Lei L, Zhu J, Khan MZH, Liu X, Ma F. Glycyrrhizic acid and glycyrrhetinic acid loaded cyclodextrin MOFs with enhanced antibacterial and anti-inflammatory effects for accelerating diabetic wound healing. Colloids Surf B Biointerfaces 2024; 245:114200. [PMID: 39236360 DOI: 10.1016/j.colsurfb.2024.114200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/31/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
A water stable cyclodextrin MOF (Cu-SD) was synthesized with γ-cyclodextrin derivative as organic ligand and Cu2+ as metal center to co-crystallizely load glycyrrhizic acid (GL) and glycyrrhetinic acid (GA). Cu-SD has a high drug loading capacity for GL (499.91 μg/mg) and GA (112.37 μg/mg), and the drug-loaded materials had a controlled release in different meadiums. In addition, Cu-SD and its drug loaded materials demonstrated better inhibiting α-glucosidase activity than the control drug acarbose. Furthermore, Cu-SD presented excellent antibacterial activity, and the antibacterial activity was significantly enhanced after GA and GL being encapsulated by Cu-SD. Moreover, both free and drug-loaded materials had good anti-inflammatory activities, and the anti-inflammatory effects of GL@Cu-SD and GA@Cu-SD were superior to those of their corresponding free drugs. Cu-SD, GL@Cu-SD and GA@Cu-SD demonstrated good biocompatibility and were applied to treat the wounds of diabetic rats. The experimental results showed that GL@Cu-SD and GA@Cu-SD had good promoting effects on the recovery of chronic diabetic wounds by suppressing wound inflammation.
Collapse
Affiliation(s)
- Mengke Zhan
- College of Chemistry and Molecular Sciences, Henan International Joint Laboratory of Medicinal Plants Utilization, Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, China
| | - Danyang Zhou
- College of Chemistry and Molecular Sciences, Henan International Joint Laboratory of Medicinal Plants Utilization, Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, China
| | - Lijing Lei
- College of Chemistry and Molecular Sciences, Henan International Joint Laboratory of Medicinal Plants Utilization, Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, China
| | - Jinhua Zhu
- College of Chemistry and Molecular Sciences, Henan International Joint Laboratory of Medicinal Plants Utilization, Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, China.
| | - Md Zaved H Khan
- Department of Chemical Engineering, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Xiuhua Liu
- College of Chemistry and Molecular Sciences, Henan International Joint Laboratory of Medicinal Plants Utilization, Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, China.
| | - Fanyi Ma
- College of Chemistry and Molecular Sciences, Henan International Joint Laboratory of Medicinal Plants Utilization, Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng 475004, China
| |
Collapse
|
2
|
Chen M, Hou Y, An R, Qi HJ, Zhou K. 4D Printing of Reprogrammable Liquid Crystal Elastomers with Synergistic Photochromism and Photoactuation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303969. [PMID: 37432879 DOI: 10.1002/adma.202303969] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/19/2023] [Accepted: 07/07/2023] [Indexed: 07/13/2023]
Abstract
4D printing of liquid crystal elastomers (LCEs) via direct ink writing has opened up great opportunities to create stimuli-responsive actuations for applications such as soft robotics. However, most 4D-printed LCEs are limited to thermal actuation and fixed shape morphing, posing a challenge for achieving multiple programmable functionalities and reprogrammability. Here, a 4D-printable photochromic titanium-based nanocrystal (TiNC)/LCE composite ink is developed, which enables the reprogrammable photochromism and photoactuation of a single 4D-printed architecture. The printed TiNC/LCE composite exhibits reversible color-switching between white and black in response to ultraviolet (UV) irradiation and oxygen exposure. Upon near-infrared (NIR) irradiation, the UV-irradiated region can undergo photothermal actuation, allowing for robust grasping and weightlifting. By precisely controlling the structural design and the light irradiation, the single 4D-printed TiNC/LCE object can be globally or locally programmed, erased, and reprogrammed to achieve desirable photocontrollable color patterns and 3D structure constructions, such as barcode patterns and origami- and kirigami-inspired structures. This work provides a novel concept for designing and engineering adaptive structures with unique and tunable multifunctionalities, which have potential applications in biomimetic soft robotics, smart construction engineering, camouflage, multilevel information storage, etc.
Collapse
Affiliation(s)
- Mei Chen
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yanbei Hou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Ran An
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - H Jerry Qi
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
3
|
Sun X, Yue L, Yu L, Forte CT, Armstrong CD, Zhou K, Demoly F, Zhao RR, Qi HJ. Machine learning-enabled forward prediction and inverse design of 4D-printed active plates. Nat Commun 2024; 15:5509. [PMID: 38951533 PMCID: PMC11217466 DOI: 10.1038/s41467-024-49775-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 06/13/2024] [Indexed: 07/03/2024] Open
Abstract
Shape transformations of active composites (ACs) depend on the spatial distribution of constituent materials. Voxel-level complex material distributions can be encoded by 3D printing, offering enormous freedom for possible shape-change 4D-printed ACs. However, efficiently designing the material distribution to achieve desired 3D shape changes is significantly challenging yet greatly needed. Here, we present an approach that combines machine learning (ML) with both gradient-descent (GD) and evolutionary algorithm (EA) to design AC plates with 3D shape changes. A residual network ML model is developed for the forward shape prediction. A global-subdomain design strategy with ML-GD and ML-EA is then used for the inverse material-distribution design. For a variety of numerically generated target shapes, both ML-GD and ML-EA demonstrate high efficiency. By further combining ML-EA with a normal distance-based loss function, optimized designs are achieved for multiple irregular target shapes. Our approach thus provides a highly efficient tool for the design of 4D-printed active composites.
Collapse
Affiliation(s)
- Xiaohao Sun
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Liang Yue
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Luxia Yu
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Connor T Forte
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Connor D Armstrong
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| | - Frédéric Demoly
- ICB UMR 6303 CNRS, Belfort-Montbeliard University of Technology, UTBM, Belfort, France
- Institut universitaire de France (IUF), Paris, France
| | - Ruike Renee Zhao
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - H Jerry Qi
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
4
|
Nain A, Chakraborty S, Jain N, Choudhury S, Chattopadhyay S, Chatterjee K, Debnath S. 4D hydrogels: fabrication strategies, stimulation mechanisms, and biomedical applications. Biomater Sci 2024; 12:3249-3272. [PMID: 38742277 DOI: 10.1039/d3bm02044d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Shape-morphing hydrogels have emerged as a promising biomaterial due to their ability to mimic the anisotropic tissue composition by creating a gradient in local swelling behavior. In this case, shape deformations occur due to the non-uniform distribution of internal stresses, asymmetrical swelling, and shrinking of different parts of the same hydrogel. Herein, we discuss the four-dimensional (4D) fabrication techniques (extrusion-based printing, dynamic light processing, and solvent casting) employed to prepare shape-shifting hydrogels. The important distinction between mono- and dual-component hydrogel systems, the capabilities of 3D constructs to undergo uni- and bi-directional shape changes, and the advantages of composite hydrogels compared to their pristine counterparts are presented. Subsequently, various types of actuators such as moisture, light, temperature, pH, and magnetic field and their role in achieving the desired and pre-determined shapes are discussed. These 4D gels have shown remarkable potential as programmable scaffolds for tissue regeneration and drug-delivery systems. Finally, we present futuristic insights into integrating piezoelectric biopolymers and sensors to harvest mechanical energy from motions during shape transformations to develop self-powered biodevices.
Collapse
Affiliation(s)
- Amit Nain
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| | - Srishti Chakraborty
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| | - Nipun Jain
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| | - Saswat Choudhury
- Department of Bioengineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Suravi Chattopadhyay
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
- Department of Bioengineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Souvik Debnath
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| |
Collapse
|
5
|
Singh K, Wychowaniec JK, Edwards-Gayle CJC, Reynaud EG, Rodriguez BJ, Brougham DF. Structure-dynamics correlations in composite PF127-PEG-based hydrogels; cohesive/hydrophobic interactions determine phase and rheology and identify the role of micelle concentration in controlling 3D extrusion printability. J Colloid Interface Sci 2024; 660:302-313. [PMID: 38244497 DOI: 10.1016/j.jcis.2023.12.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/22/2024]
Abstract
A library of composite polymer networks (CPNs) were formed by combining Pluronic F127, as the primary gelator, with a range of di-acrylate functionalised PEG polymers, which tune the rheological properties and provide UV crosslinkability. A coarse-grained sol-gel room temperature phase diagram was constructed for the CPN library, which identifies PEG-dependent disruption of micelles as leading to liquefication. Small angle X-ray scattering and rheological measurements provide detailed insight into; (i) micelle-micelle ordering; (ii) micelle-micelle disruption, and; (iii) acrylate-micelle disruption; with contributions that depend on composition, including weak PEG chain length and end group effects. The influence of composition on 3D extrusion printability through modulation of the cohesive/hydrophobic interactions was assessed. It was found that only micelle content provides consistent changes in printing fidelity, controlled largely by printing conditions (pressure and feed rate). Finally, the hydrogels were shown to be UV photo-crosslinkable, which further improves fidelity and structural integrity, and usefully reduces the mesh size. Our results provide a guide for design of 3D-printable CPN inks for future biomedical applications.
Collapse
Affiliation(s)
- Krutika Singh
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jacek K Wychowaniec
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland; AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland.
| | | | - Emmanuel G Reynaud
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Brian J Rodriguez
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland; School of Physics, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dermot F Brougham
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
6
|
Li H, Chng CB, Zheng H, Wu MS, Bartolo PJDS, Qi HJ, Tan YJ, Zhou K. Self-Healable and 4D Printable Hydrogel for Stretchable Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305702. [PMID: 38263891 PMCID: PMC10987146 DOI: 10.1002/advs.202305702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/21/2023] [Indexed: 01/25/2024]
Abstract
Materials with high stretchability and conductivity are used to fabricate stretchable electronics. Self-healing capability and four-dimensional (4D) printability are becoming increasingly important for these materials to facilitate their recovery from damage and endow them with stimuli-response properties. However, it remains challenging to design a single material that combines these four strengths. Here, a dually crosslinked hydrogel is developed by combining a covalently crosslinked acrylic acid (AAC) network and Fe3+ ions through dynamic and reversible ionically crosslinked coordination. The remarkable electrical sensitivity (a gauge factor of 3.93 under a strain of 1500%), superior stretchability (a fracture strain up to 1700%), self-healing ability (a healing efficiency of 88% and 97% for the mechanical and electrical properties, respectively), and 4D printability of the hydrogel are demonstrated by constructing a strain sensor, a two-dimensional touch panel, and shape-morphing structures with water-responsive behavior. The hydrogel demonstrates vast potential for applications in stretchable electronics.
Collapse
Affiliation(s)
- Huijun Li
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Chin Boon Chng
- Department of Mechanical Engineering, College of Design and EngineeringNational University of Singapore9 Engineering DriveSingapore117575Singapore
| | - Han Zheng
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Mao See Wu
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Paulo Jorge Da Silva Bartolo
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - H. Jerry Qi
- School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Yu Jun Tan
- Department of Mechanical Engineering, College of Design and EngineeringNational University of Singapore9 Engineering DriveSingapore117575Singapore
- Centre for Additive ManufacturingNational University of SingaporeSingapore117602Singapore
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| |
Collapse
|
7
|
Mandal A, Chatterjee K. 4D printing for biomedical applications. J Mater Chem B 2024; 12:2985-3005. [PMID: 38436200 DOI: 10.1039/d4tb00006d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
While three-dimensional (3D) printing excels at fabricating static constructs, it fails to emulate the dynamic behavior of native tissues or the temporal programmability desired for medical devices. Four-dimensional (4D) printing is an advanced additive manufacturing technology capable of fabricating constructs that can undergo pre-programmed changes in shape, property, or functionality when exposed to specific stimuli. In this Perspective, we summarize the advances in materials chemistry, 3D printing strategies, and post-printing methodologies that collectively facilitate the realization of temporal dynamics within 4D-printed soft materials (hydrogels, shape-memory polymers, liquid crystalline elastomers), ceramics, and metals. We also discuss and present insights about the diverse biomedical applications of 4D printing, including tissue engineering and regenerative medicine, drug delivery, in vitro models, and medical devices. Finally, we discuss the current challenges and emphasize the importance of an application-driven design approach to enable the clinical translation and widespread adoption of 4D printing.
Collapse
Affiliation(s)
- Arkodip Mandal
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India.
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India.
| |
Collapse
|
8
|
Leanza S, Wu S, Sun X, Qi HJ, Zhao RR. Active Materials for Functional Origami. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2302066. [PMID: 37120795 DOI: 10.1002/adma.202302066] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/13/2023] [Indexed: 06/19/2023]
Abstract
In recent decades, origami has been explored to aid in the design of engineering structures. These structures span multiple scales and have been demonstrated to be used toward various areas such as aerospace, metamaterial, biomedical, robotics, and architectural applications. Conventionally, origami or deployable structures have been actuated by hands, motors, or pneumatic actuators, which can result in heavy or bulky structures. On the other hand, active materials, which reconfigure in response to external stimulus, eliminate the need for external mechanical loads and bulky actuation systems. Thus, in recent years, active materials incorporated with deployable structures have shown promise for remote actuation of light weight, programmable origami. In this review, active materials such as shape memory polymers (SMPs) and alloys (SMAs), hydrogels, liquid crystal elastomers (LCEs), magnetic soft materials (MSMs), and covalent adaptable network (CAN) polymers, their actuation mechanisms, as well as how they have been utilized for active origami and where these structures are applicable is discussed. Additionally, the state-of-the-art fabrication methods to construct active origami are highlighted. The existing structural modeling strategies for origami, the constitutive models used to describe active materials, and the largest challenges and future directions for active origami research are summarized.
Collapse
Affiliation(s)
- Sophie Leanza
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Shuai Wu
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Xiaohao Sun
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - H Jerry Qi
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ruike Renee Zhao
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
9
|
Goodarzi Hosseinabadi H, Biswas A, Bhusal A, Yousefinejad A, Lall A, Zimmermann WH, Miri AK, Ionov L. 4D-Printable Photocrosslinkable Polyurethane-Based Inks for Tissue Scaffold and Actuator Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306387. [PMID: 37771189 PMCID: PMC10922657 DOI: 10.1002/smll.202306387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Indexed: 09/30/2023]
Abstract
4D printing recently emerges as an exciting evolution of conventional 3D printing, where a printed construct can quickly transform in response to a specific stimulus to switch between a temporary variable state and an original state. In this work, a photocrosslinkable polyethylene-glycol polyurethane ink is synthesized for light-assisted 4D printing of smart materials. The molecular weight distribution of the ink monomers is tunable by adjusting the copolymerization reaction time. Digital light processing (DLP) technique is used to program a differential swelling response in the printed constructs after humidity variation. Bioactive microparticles are embedded into the ink and the improvement of biocompatibility of the printed constructs is demonstrated for tissue engineering applications. Cell studies reveal above 90% viability in 1 week and ≈50% biodegradability after 4 weeks. Self-folding capillary scaffolds, dynamic grippers, and film actuators are made and activated in a humid environment. The approach offers a versatile platform for the fabrication of complex constructs. The ink can be used in tissue engineering and actuator applications, making the ink a promising avenue for future research.
Collapse
Affiliation(s)
- Hossein Goodarzi Hosseinabadi
- Faculty of Engineering Sciences, Department of Biofabrication, University of Bayreuth, Ludwig Thoma Str. 36A, 95447, Bayreuth, Germany
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- Institute for Organic and Biomolecular Chemistry, Department of Chemistry, University of Göttingen, 37077, Göttingen, Germany
| | - Arpan Biswas
- Faculty of Engineering Sciences, Department of Biofabrication, University of Bayreuth, Ludwig Thoma Str. 36A, 95447, Bayreuth, Germany
| | - Anant Bhusal
- Department of Mechanical Engineering, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ, 08028, USA
| | - Ali Yousefinejad
- Faculty of Engineering Sciences, Department of Biofabrication, University of Bayreuth, Ludwig Thoma Str. 36A, 95447, Bayreuth, Germany
| | - Aastha Lall
- Faculty of Engineering Sciences, Department of Biofabrication, University of Bayreuth, Ludwig Thoma Str. 36A, 95447, Bayreuth, Germany
| | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37099, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), 37099, Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Göttingen, Germany
| | - Amir K Miri
- Department of Mechanical Engineering, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ, 08028, USA
- Department of Biomedical Engineering, New Jersey Institute of Technology, 323 Dr. Martin Luther King Jr. Blvd., Newark, NJ, 07102, USA
- Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, 323 Dr. Martin Luther King Jr. Blvd, Newark, NJ, 07102, USA
| | - Leonid Ionov
- Faculty of Engineering Sciences, Department of Biofabrication, University of Bayreuth, Ludwig Thoma Str. 36A, 95447, Bayreuth, Germany
| |
Collapse
|
10
|
Cui Y, Li L, Liu C, Wang Y, Sun M, Jia B, Shen Z, Sheng X, Deng Y. Water-Responsive 3D Electronics for Smart Biological Interfaces. NANO LETTERS 2023; 23:11693-11701. [PMID: 38018768 DOI: 10.1021/acs.nanolett.3c03394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Three-dimensional (3D) electronic systems with their potential for enhanced functionalities often require complex fabrication processes. This paper presents a water-based, stimuli-responsive approach for creating self-assembled 3D electronic systems, particularly suited for biorelated applications. We utilize laser scribing to programmatically shape a water-responsive bilayer, resulting in smart 3D electronic substrates. Control over the deformation direction, actuation time, and surface curvature of rolling structures is achieved by adjusting laser-scribing parameters, as validated through experiments and numerical simulations. Additionally, self-locking structures maintain the integrity of the 3D systems. This methodology enables the implementation of spiral twining electrodes for electrophysiological signal monitoring in plants. Furthermore, the integration of self-rolling electrodes onto peripheral nerves in a rodent model allows for stimulation and recording of in vivo neural activities with excellent biocompatibility. These innovations provide viable paths to next-generation 3D biointegrated electronic systems for life science studies and medical applications.
Collapse
Affiliation(s)
- Yuanyuan Cui
- Research Institute for Frontier Science, Beihang University, Beijing 100191, China
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute of Beihang University, Hangzhou 310051, China
| | - Lizhu Li
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Changbo Liu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute of Beihang University, Hangzhou 310051, China
| | - Yuqi Wang
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Mengwei Sun
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Ben Jia
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Zhangming Shen
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Yuan Deng
- Research Institute for Frontier Science, Beihang University, Beijing 100191, China
- Key Laboratory of Intelligent Sensing Materials and Chip Integration Technology of Zhejiang Province, Hangzhou Innovation Institute of Beihang University, Hangzhou 310051, China
| |
Collapse
|
11
|
Gupta N, Kumar A, Vaddavalli PK, Mahapatra NR, Varshney A, Ghosh P. Efficient reduction of the scrolling of Descemet membrane endothelial keratoplasty grafts by engineering the medium. Acta Biomater 2023; 171:239-248. [PMID: 37739249 DOI: 10.1016/j.actbio.2023.09.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
The Descemet Membrane Endothelial Keratoplasty (DMEK) procedure for corneal transplantation is challenging due to the need to unscroll the donor graft within the recipient's eye. This process of unscrolling is complex, time-consuming, leads to a loss of endothelial cells and, most importantly, can negatively impact the graft's adhesion and integration with the host tissue after surgery. This problem is particularly evident when the graft is young. However, the physics behind this scrolling is not well understood, and therefore no sustainable solution is attained. Here, we propose that the concentration gradient of the medium used during transplant leads to a displacement gradient across the graft thickness, resulting in an out-of-plane folding or scrolling of the graft tissue. Using chitosan bilayer-based experimental models, it is experimentally demonstrated that this diffusion-coupled-deformation phenomenon can successfully explain why younger donor grafts tend to scroll tighter than older ones. Most importantly, we illustrate here through experiments that the medium can be engineered to reduce the scroll tightness and thus reduce the surgical inconveniences and improve post-transplant recovery. STATEMENT OF SIGNIFICANCE: This paper addresses a major issue that surgeons face while doing Descemet Membrane Endothelial Keratoplasty (DMEK) in unscrolling grafts during the graft insertion procedure. The currently used tapping method to unscroll the graft inside the patient's eye significantly reduces endothelial cell count, thus affecting its lifetime. Surprisingly, the physics behind graft scrolling is not well understood, so no sustainable solutions are proposed by the medical community. In this work, we present the underlying mechanism of DMEK graft scroll and illustrate experimentally the reason for scroll tightness through a chitosan bilayer based experiment model. Most importantly, we have successfully demonstrated that the preserving medium of the grafts can be engineered to reduce scroll tightness.
Collapse
Affiliation(s)
- Nidhi Gupta
- Department of Cornea Dr Shroff's Charity Eye Hospital, Delhi, India
| | - Amit Kumar
- Department of Biotechnology & Department of Applied Mechanics, IIT Madras, India
| | | | | | - Akhil Varshney
- Eicher-Shroff Center for Stem Cell Research, Dr Shroff's Charity Eye Hospital, Daryaganj, Delhi, India.
| | - Pijush Ghosh
- Department of Applied Mechanics and Biomedical Engineering; Center for Soft and Biological Matter, IIT Madras, India.
| |
Collapse
|
12
|
Bo R, Xu S, Yang Y, Zhang Y. Mechanically-Guided 3D Assembly for Architected Flexible Electronics. Chem Rev 2023; 123:11137-11189. [PMID: 37676059 PMCID: PMC10540141 DOI: 10.1021/acs.chemrev.3c00335] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Indexed: 09/08/2023]
Abstract
Architected flexible electronic devices with rationally designed 3D geometries have found essential applications in biology, medicine, therapeutics, sensing/imaging, energy, robotics, and daily healthcare. Mechanically-guided 3D assembly methods, exploiting mechanics principles of materials and structures to transform planar electronic devices fabricated using mature semiconductor techniques into 3D architected ones, are promising routes to such architected flexible electronic devices. Here, we comprehensively review mechanically-guided 3D assembly methods for architected flexible electronics. Mainstream methods of mechanically-guided 3D assembly are classified and discussed on the basis of their fundamental deformation modes (i.e., rolling, folding, curving, and buckling). Diverse 3D interconnects and device forms are then summarized, which correspond to the two key components of an architected flexible electronic device. Afterward, structure-induced functionalities are highlighted to provide guidelines for function-driven structural designs of flexible electronics, followed by a collective summary of their resulting applications. Finally, conclusions and outlooks are given, covering routes to achieve extreme deformations and dimensions, inverse design methods, and encapsulation strategies of architected 3D flexible electronics, as well as perspectives on future applications.
Collapse
Affiliation(s)
- Renheng Bo
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| | - Shiwei Xu
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| | - Youzhou Yang
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| | - Yihui Zhang
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| |
Collapse
|
13
|
Iadrat P, Jongthong J, Prasertsab A, Thanphrom S, Toewiwat N, Ittisanronnachai S, Wongnate T, Wattanakit C. Nanocrystalline BEA-CNT Composites with High Metal Dispersion Obtained via Inter-Zeolite Transformation for Antibacterial Application. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42854-42867. [PMID: 37652465 DOI: 10.1021/acsami.3c08467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The rational design of interface materials containing carbon nanotubes (CNTs) and zeolites (zeolite-CNTs) is a promising perspective in chemical and biochemical communities because they exhibit several outstanding properties such as tunable hydrophobicity-hydrophilicity at interfaces. In this contribution, we report the fabrication of Ag-incorporated nanocrystalline BEA-carbon nanotube (CNT) composites via the one-pot inter-zeolite transformation of the micron-sized FAU-CNT composite in the presence of a Ag precursor. By varying the crystallization time, the inter-zeolite transformation mechanism was explored. Indeed, this process involves an amorphous intermediate of aluminosilicate species with a significant change of the crystal morphology in the presence of CNTs in the synthesis gel. Interestingly, the redispersion of metal particles was observed after the inter-zeolite transformation process, resulting in the high dispersion of metal nanoparticles over BEA nanocrystals. Notably, it was revealed that the Ag sites were also stabilized in the presence of CNT interfaces, leading to the availability of highly active Ag+ ions. To illustrate the beneficial aspect of designer materials, the synthesized Ag-incorporated BEA-CNT composites exhibited high antibacterial activity againstEscherichia coli due to the synergistic effect of the active Ag+ species and appropriate hydrophobic and hydrophilic properties of the hybrid material interfaces. This first example opens up perspectives of the rational design of zeolite-CNT interfaces with high metal dispersion via the inter-zeolite transformation approach for biomedical applications.
Collapse
Affiliation(s)
- Ploychanok Iadrat
- School of Molecular Science and Engineering (MSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Jananya Jongthong
- School of Energy Science and Engineering (ESE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Anittha Prasertsab
- School of Energy Science and Engineering (ESE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Sukonlaphat Thanphrom
- School of Energy Science and Engineering (ESE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Neal Toewiwat
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Somlak Ittisanronnachai
- Frontier Research Center (FRC), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Chularat Wattanakit
- School of Energy Science and Engineering (ESE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| |
Collapse
|
14
|
Zheng Z, Han J, Demir SO, Wang H, Jiang W, Liu H, Sitti M. Electrodeposited Superhydrophilic-Superhydrophobic Composites for Untethered Multi-Stimuli-Responsive Soft Millirobots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302409. [PMID: 37288527 PMCID: PMC10427389 DOI: 10.1002/advs.202302409] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/16/2023] [Indexed: 06/09/2023]
Abstract
To navigate in complex and unstructured real-world environments, soft miniature robots need to possess multiple functions, including autonomous environmental sensing, self-adaptation, and multimodal locomotion. However, to achieve multifunctionality, artificial soft robots should respond to multiple stimuli, which can be achieved by multimaterial integration using facile and flexible fabrication methods. Here, a multimaterial integration strategy for fabricating soft millirobots that uses electrodeposition to integrate two inherently non-adherable materials, superhydrophilic hydrogels and superhydrophobic elastomers, together via gel roots is proposed. This approach enables the authors to electrodeposit sodium alginate hydrogel onto a laser-induced graphene-coated elastomer, which can then be laser cut into various shapes to function as multi-stimuli-responsive soft robots (MSRs). Each MSR can respond to six different stimuli to autonomously transform their shapes, and mimic flowers, vines, mimosas, and flytraps. It is demonstrated that MSRs can climb slopes, switch locomotion modes, self-adapt between air-liquid environments, and transport cargo between different environments. This multimaterial integration strategy enables creating untethered soft millirobots that have multifunctionality, such as environmental sensing, self-propulsion, and self-adaptation, paving the way for their future operation in complex real-world environments.
Collapse
Affiliation(s)
- Zhiqiang Zheng
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Jie Han
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
- State Key Laboratory for Manufacturing Systems EngineeringXi'an Jiaotong UniversityXi'an710054China
- School of Mechanical EngineeringXi'an Jiaotong UniversityXi'an710054China
| | - Sinan Ozgun Demir
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
| | - Huaping Wang
- Intelligent Robotics InstituteSchool of Mechatronical EngineeringBeijing Institute of TechnologyBeijing100081China
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology)Ministry of EducationBeijing100081China
| | - Weitao Jiang
- State Key Laboratory for Manufacturing Systems EngineeringXi'an Jiaotong UniversityXi'an710054China
- School of Mechanical EngineeringXi'an Jiaotong UniversityXi'an710054China
| | - Hongzhong Liu
- State Key Laboratory for Manufacturing Systems EngineeringXi'an Jiaotong UniversityXi'an710054China
- School of Mechanical EngineeringXi'an Jiaotong UniversityXi'an710054China
| | - Metin Sitti
- Physical Intelligence DepartmentMax Planck Institute for Intelligent Systems70569StuttgartGermany
- Institute for Biomedical EngineeringETH ZurichZurich8092Switzerland
- School of Medicine and College of EngineeringKoç UniversityIstanbul34450Turkey
| |
Collapse
|
15
|
He X, Cheng J, Sun Z, Ye H, Liu Q, Zhang B, Ge Q. A volatile microemulsion method of preparing water-soluble photo-absorbers for 3D printing of high-resolution, high-water-content hydrogel structures. SOFT MATTER 2023; 19:3700-3710. [PMID: 37183429 DOI: 10.1039/d2sm01709a] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Digital light processing (DLP)-based three-dimensional (3D) printing is an ideal tool to manufacture hydrogel structures in complex 3D forms. Using DLP to print hydrogel structures with high resolution requires the addition of water-soluble photo-absorbers to absorb excess light and confine photopolymerization to the desired area. However, the current photo-absorbers for hydrogel printing are neither efficient to absorb the excess light nor water-soluble. Herein, we report a volatile microemulsion template method that converts a wide range of commercial non-water-soluble photo-absorbers including Sudan orange G, quercetin, and many others to water-soluble nanoparticles with solubility above 1.0 g mL-1. After using these water-soluble photo-absorber nanoparticles, the highest lateral and vertical resolutions of printing high-water-content (70-80 wt%) hydrogels can be improved to 5 μm and 20 μm, respectively. Moreover, the quercetin nanoparticle can be easily washed out so that we achieve colorless and transparent printed hydrogel structures with excellent mechanical deformability and biocompatibility as well as thermally controllable variations on transparency and actuation. The proposed methods pave a new efficient way to develop water-soluble photo-absorbers, which helps to greatly improve the printing resolution of the high-water-content hydrogel structure and would be beneficial to extend the application scope of hydrogels.
Collapse
Affiliation(s)
- Xiangnan He
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, 518055, China.
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jianxiang Cheng
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, 518055, China.
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zechu Sun
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, 518055, China.
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Haitao Ye
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, 518055, China.
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qingjiang Liu
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, 518055, China.
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Biao Zhang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Qi Ge
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Southern University of Science and Technology, Shenzhen, 518055, China.
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
16
|
Bagheri A. Application of RAFT in 3D Printing: Where Are the Future Opportunities? Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Ali Bagheri
- School of Science and Technology, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
17
|
Additive manufacturing technologies with emphasis on stereolithography 3D printing in pharmaceutical and medical applications: A review. Int J Pharm X 2023; 5:100159. [PMID: 36632068 PMCID: PMC9827389 DOI: 10.1016/j.ijpx.2023.100159] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/04/2023] Open
Abstract
Three-dimensional (3D) printing or Additive Manufacturing (AM) technology is an innovative tool with great potential and diverse applications in various fields. As 3D printing has been burgeoning in recent times, a tremendous transformation can be envisaged in medical care, especially the manufacturing procedures leading to personalized medicine. Stereolithography (SLA), a vat-photopolymerization technique, that uses a laser beam, is known for its ability to fabricate complex 3D structures ranging from micron-size needles to life-size organs, because of its high resolution, precision, accuracy, and speed. This review presents a glimpse of varied 3D printing techniques, mainly expounding SLA in terms of the materials used, the orientation of printing, and the working mechanisms. The previous works that focused on developing pharmaceutical dosage forms, drug-eluting devices, and tissue scaffolds are presented in this paper, followed by the challenges associated with SLA from an industrial and regulatory perspective. Due to its excellent advantages, this technology could transform the conventional "one dose fits all" concept to bring digitalized patient-centric medication into reality.
Collapse
|
18
|
Application of 4D printing and AI to cardiovascular devices. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
19
|
Shi X, Bobrin VA, Yao Y, Zhang J, Corrigan N, Boyer C. Designing Nanostructured 3D Printed Materials by Controlling Macromolecular Architecture. Angew Chem Int Ed Engl 2022; 61:e202206272. [PMID: 35732587 PMCID: PMC9544629 DOI: 10.1002/anie.202206272] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Indexed: 11/23/2022]
Abstract
Nanostructured polymeric materials play important roles in many advanced applications, however, controlling the morphologies of polymeric thermosets remains a challenge. This work uses multi-arm macroCTAs to mediate polymerization-induced microphase separation (PIMS) and prepare nanostructured materials via photoinduced 3D printing. The characteristic length scale of microphase-separated domains is determined by the macroCTA arm length, while nanoscale morphologies are controlled by the macroCTA architecture. Specifically, using 2- and 4- arm macroCTAs provides materials with different morphologies compared to analogous monofunctional linear macroCTAs at similar compositions. The mechanical properties of these nanostructured thermosets can also be tuned while maintaining the desired morphologies. Using multi-arm macroCTAs can thus broaden the scope of accessible nanostructures for extended applications, including the fabrication of actuators and potential drug delivery devices.
Collapse
Affiliation(s)
- Xiaobing Shi
- Cluster for Advanced Macromolecular Design and Australian Centre for NanomedicineSchool of Chemical EngineeringUniversity of New South WalesSydneyNSW 2052Australia
| | - Valentin A. Bobrin
- Cluster for Advanced Macromolecular Design and Australian Centre for NanomedicineSchool of Chemical EngineeringUniversity of New South WalesSydneyNSW 2052Australia
| | - Yin Yao
- Electron Microscope UnitMark Wainwright Analytical CentreUniversity of New South WalesSydneyNSW 2052Australia
| | - Jin Zhang
- School of Mechanical and Manufacturing EngineeringUniversity of New South WalesSydneyNSW 2052Australia
| | - Nathaniel Corrigan
- Cluster for Advanced Macromolecular Design and Australian Centre for NanomedicineSchool of Chemical EngineeringUniversity of New South WalesSydneyNSW 2052Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design and Australian Centre for NanomedicineSchool of Chemical EngineeringUniversity of New South WalesSydneyNSW 2052Australia
| |
Collapse
|
20
|
Shi X, Bobrin VA, Yao Y, Zhang J, Corrigan N, Boyer CAJM. Designing Nanostructured 3D Printed Materials by Controlling Macromolecular Architecture. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaobing Shi
- UNSW: University of New South Wales Chemical Engineering 2031 Sydney AUSTRALIA
| | - Valentin A. Bobrin
- UNSW: University of New South Wales Chemical Engineering School of Chemical Engineering 2031 Sydney AUSTRALIA
| | - Yin Yao
- UNSW: University of New South Wales Mark Wainwright Analytical Centre 2031 Sydney AUSTRALIA
| | - Jin Zhang
- UNSW: University of New South Wales School of Mechanical and Manufacturing Engineering 2031 Sydney AUSTRALIA
| | - Nathaniel Corrigan
- UNSW: University of New South Wales School of Chemical Engineering UNSWSchool of Chemical Engineering 2031 Sydney AUSTRALIA
| | - Cyrille Andre Jean Marie Boyer
- University of New South Wales Chemical Engineering and Australian Centre for Nanomedicine and Centre for Advanced Macromolecular Design High streetApplied science building 2052 Sydney AUSTRALIA
| |
Collapse
|
21
|
Wu Y, Guo G, Wei Z, Qian J. Programming Soft Shape-Morphing Systems by Harnessing Strain Mismatch and Snap-Through Bistability: A Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2397. [PMID: 35407728 PMCID: PMC8999758 DOI: 10.3390/ma15072397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023]
Abstract
Multi-modal and controllable shape-morphing constitutes the cornerstone of the functionalization of soft actuators/robots. Involving heterogeneity through material layout is a widely used strategy to generate internal mismatches in active morphing structures. Once triggered by external stimuli, the entire structure undergoes cooperative deformation by minimizing the potential energy. However, the intrinsic limitation of soft materials emerges when it comes to applications such as soft actuators or load-bearing structures that require fast response and large output force. Many researchers have explored the use of the structural principle of snap-through bistability as the morphing mechanisms. Bistable or multi-stable mechanical systems possess more than one local energy minimum and are capable of resting in any of these equilibrium states without external forces. The snap-through motion could overcome energy barriers to switch among these stable or metastable states with dramatically distinct geometries. Attributed to the energy storage and release mechanism, such snap-through transition is quite highly efficient, accompanied by fast response speed, large displacement magnitude, high manipulation strength, and moderate driving force. For example, the shape-morphing timescale of conventional hydrogel systems is usually tens of minutes, while the activation time of hydrogel actuators using the elastic snapping instability strategy can be reduced to below 1 s. By rationally embedding stimuli-responsive inclusions to offer the required trigger energy, various controllable snap-through actuations could be achieved. This review summarizes the current shape-morphing programming strategies based on mismatch strain induced by material heterogeneity, with emphasis on how to leverage snap-through bistability to broaden the applications of the shape-morphing structures in soft robotics and mechanical metamaterials.
Collapse
Affiliation(s)
| | | | | | - Jin Qian
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China; (Y.W.); (G.G.); (Z.W.)
| |
Collapse
|
22
|
Meena RK, Rapaka SD, Pratoori R, Annabattula RK, Ghosh P. An embedded interface regulates the underwater actuation of solvent-responsive soft grippers. SOFT MATTER 2022; 18:372-381. [PMID: 34889930 DOI: 10.1039/d1sm01229k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, we report the role of an embedded interface between two polymer thin films in determining the overall folding and actuation characteristics of a bilayer system applied for gripping submerged objects. Along with the material properties and geometry of the individual films involved, the strength of the embedded interface governs the folding behaviour of the bilayer when exposed to a solvent. The concentration gradient developed across the film thickness when exposed to the solvent results in the deformation of the film. The evolution of concentration through the film thickness as a function of time is closely related to the interface strength. It affects various aspects of the deformation, such as the direction of folding, curvature attained, and actuation rate. In this work, we have varied the strength of the interface between solvent responsive chitosan and hydrophobic Poly(methyl-methacrylate) (PMMA) by treating the substrate (chitosan) with varying concentrations of silane before coating. Experimentally, the folding characteristics of the solvent responsive bilayer films have been investigated for four different interfacial strengths. A coupled diffusion-deformation model for the film and a cohesive zone model for the interface is developed to provide insights into the underlying mechanism behind the observations made. Finally, the application of the bilayer as a gripper for submerged objects for two different types of interfaces is demonstrated. Interestingly, in this approach, the medium where the object is immersed acts as a trigger for folding the grippers.
Collapse
Affiliation(s)
- Rajesh Kumar Meena
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Sri Datta Rapaka
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Raghunandan Pratoori
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India
| | - Ratna Kumar Annabattula
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India.
- Center for Responsive Soft Matter, Indian Institute of Technology Madras, Chennai 600036, India
| | - Pijush Ghosh
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India
- Center for Responsive Soft Matter, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
23
|
Patdiya J, Kandasubramanian B. Progress in 4D printing of stimuli responsive materials. POLYM-PLAST TECH MAT 2021. [DOI: 10.1080/25740881.2021.1934016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Jigar Patdiya
- Rapid Prototyping Laboratory, Department of Metallurgical and Materials Engineering,Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune India
| | - Balasubramanian Kandasubramanian
- Rapid Prototyping Laboratory, Department of Metallurgical and Materials Engineering,Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune India
| |
Collapse
|
24
|
Gao Y, Wei F, Chao Y, Yao L. Bioinspired soft microrobots actuated by magnetic field. Biomed Microdevices 2021; 23:52. [PMID: 34599405 DOI: 10.1007/s10544-021-00590-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2021] [Indexed: 12/16/2022]
Abstract
In contrast to traditional large-scale robots, which require complicated mechanical joints and material rigidity, microrobots made of soft materials have exhibited amazing features and great potential for extensive applications, such as minimally invasive surgery. However, microrobots are faced with energy supply and control issues due to the miniaturization. Magnetic field actuation emerges as an appropriate approach to tackle with these issues. This review summarizes the latest progress of biomimetic soft microrobots actuated by magnetic field. Starting with an overview of the soft material and magnetic material adopted in the magnetic field actuated soft microrobots, the various fabrication methods and design structures of soft microrobots are summarized. Subsequently, practical and potential applications, such as targeted therapy, surgical operation, and the transportation of microscopic objects, in the fields of biomedicine and environmental remediation are presented. In the end, some current challenges, and the future development trends of magnetic soft microrobots are briefly discussed. This review is expected to offer a helpful guidance for the new researchers of biomimetic soft microrobots actuated by magnetic field.
Collapse
Affiliation(s)
- Yuwen Gao
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, China
| | - Fanan Wei
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, China.
| | - Yin Chao
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, China
| | - Ligang Yao
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, China
| |
Collapse
|
25
|
Zhang B, Li H, Cheng J, Ye H, Sakhaei AH, Yuan C, Rao P, Zhang YF, Chen Z, Wang R, He X, Liu J, Xiao R, Qu S, Ge Q. Mechanically Robust and UV-Curable Shape-Memory Polymers for Digital Light Processing Based 4D Printing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101298. [PMID: 33998721 DOI: 10.1002/adma.202101298] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/25/2021] [Indexed: 06/12/2023]
Abstract
4D printing is an emerging fabrication technology that enables 3D printed structures to change configuration over "time" in response to an environmental stimulus. Compared with other soft active materials used for 4D printing, shape-memory polymers (SMPs) have higher stiffness, and are compatible with various 3D printing technologies. Among them, ultraviolet (UV)-curable SMPs are compatible with Digital Light Processing (DLP)-based 3D printing to fabricate SMP-based structures with complex geometry and high-resolution. However, UV-curable SMPs have limitations in terms of mechanical performance, which significantly constrains their application ranges. Here, a mechanically robust and UV-curable SMP system is reported, which is highly deformable, fatigue resistant, and compatible with DLP-based 3D printing, to fabricate high-resolution (up to 2 µm), highly complex 3D structures that exhibit large shape change (up to 1240%) upon heating. More importantly, the developed SMP system exhibits excellent fatigue resistance and can be repeatedly loaded more than 10 000 times. The development of the mechanically robust and UV-curable SMPs significantly improves the mechanical performance of the SMP-based 4D printing structures, which allows them to be applied to engineering applications such as aerospace, smart furniture, and soft robots.
Collapse
Affiliation(s)
- Biao Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Honggeng Li
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jianxiang Cheng
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Haitao Ye
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Amir Hosein Sakhaei
- School of Engineering and Digital Arts, University of Kent, Canterbury, Kent, CT2 7NT, UK
| | - Chao Yuan
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ping Rao
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuan-Fang Zhang
- Digital Manufacturing and Design Centre, Singapore University of Technology and Design, Singapore, 487372, Singapore
| | - Zhe Chen
- State Key Laboratory of Fluid Power and Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Rong Wang
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiangnan He
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ji Liu
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Rui Xiao
- State Key Laboratory of Fluid Power and Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Shaoxing Qu
- State Key Laboratory of Fluid Power and Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Qi Ge
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
26
|
Wang J, Zhang Y, Aghda NH, Pillai AR, Thakkar R, Nokhodchi A, Maniruzzaman M. Emerging 3D printing technologies for drug delivery devices: Current status and future perspective. Adv Drug Deliv Rev 2021; 174:294-316. [PMID: 33895212 DOI: 10.1016/j.addr.2021.04.019] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/26/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022]
Abstract
The 'one-size-fits-all' approach followed by conventional drug delivery platforms often restricts its application in pharmaceutical industry, due to the incapability of adapting to individual pharmacokinetic traits. Driven by the development of additive manufacturing (AM) technology, three-dimensional (3D) printed drug delivery medical devices have gained increasing popularity, which offers key advantages over traditional drug delivery systems. The major benefits include the ability to fabricate 3D structures with customizable design and intricate architecture, and most importantly, ease of personalized medication. Furthermore, the emergence of multi-material printing and four-dimensional (4D) printing integrates the benefits of multiple functional materials, and thus provide widespread opportunities for the advancement of personalized drug delivery devices. Despite the remarkable progress made by AM techniques, concerns related to regulatory issues, scalability and cost-effectiveness remain major hurdles. Herein, we provide an overview on the latest accomplishments in 3D printed drug delivery devices as well as major challenges and future perspectives for AM enabled dosage forms and drug delivery systems.
Collapse
Affiliation(s)
- Jiawei Wang
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, A1920, Austin, TX 78712, USA
| | - Yu Zhang
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, A1920, Austin, TX 78712, USA
| | - Niloofar Heshmati Aghda
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, A1920, Austin, TX 78712, USA
| | - Amit Raviraj Pillai
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, A1920, Austin, TX 78712, USA
| | - Rishi Thakkar
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, A1920, Austin, TX 78712, USA
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK
| | - Mohammed Maniruzzaman
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, College of Pharmacy, The University of Texas at Austin, 2409 University Avenue, A1920, Austin, TX 78712, USA.
| |
Collapse
|
27
|
Meng X, Yang J, Liu W, Ramakrishna S, Sun Y, Dai Y. Stimulus-Responsive Graphene with Periodical Wrinkles on Grooved Microfiber Arrays: Simulation, Programmable Shape-Shifting, and Catalytic Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26561-26572. [PMID: 34038638 DOI: 10.1021/acsami.1c03443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This work demonstrates a facile fabrication of stimulus-responsive, periodically wrinkled graphene sheets on grooved microfiber arrays with fast and reversible shape change, multiresponsiveness, and programmable deformation, with the aid of finite element analysis (FEA). The cellulose acetate (CA) microfibers, endowing responsiveness to humidity and solvents, are designed to grooved shape and assembled into a well-aligned fibrous mat by electrospinning. Under the guidance of FEA simulation, the stiff reduced graphene oxide (RGO) sheets, serving as a photoresponsive component, could ably bind on grooved CA microfibers with favorable interlocked interfacial-structure. Through simple direct-writing and hot-pressing, the grooved CA arrays interlocked the conformal RGO sheets by water-induced self-clamping, and enabled the generation of periodic wrinkles within RGO sheets to maximize interfacial areas. By simply adjusting the orientation of written RGO patterns relative to uniaxial CA microfibers, programmed and omnidirectional shape-shifting were obtained to minimize strain energy, consisting with the dynamic deformation process simulated by FEA. Upon remote light or contactless humidity stimuli, the RGO/CA mat shows a rapid response (≤1 s), large amplitude (angle change ≥150°, 1.62 cm-1), sophisticated 3D motions, and lifts objects that weigh 12.7-times its own weight up to over 1/3 of own height within 1 s. After loading catalytical nanoparticles, the RGO/CA mat could rapidly move to the targeted position by continuous crawling even on a slippery surface, and served as a microchannel reactor to trigger a reaction in built-in microchannels with suppressing catalyst leaching while accelerating reaction kinetics by both nanoconfinement and photothermal effect.
Collapse
Affiliation(s)
- Xiangyu Meng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, P. R. China
- Center for Flexible RF Technology, Southeast University, Purple Mountain Laboratory, Nanjing, Jiangsu 211189, P. R. China
| | - Jianhui Yang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, P. R. China
| | - Wei Liu
- School of Instrument Science and Engineering, Southeast University, Nanjing, Jiangsu 211189, P. R. China
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, 119260 Singapore
| | - Yueming Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, P. R. China
| | - Yunqian Dai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, P. R. China
- Center for Flexible RF Technology, Southeast University, Purple Mountain Laboratory, Nanjing, Jiangsu 211189, P. R. China
| |
Collapse
|
28
|
Liu X, Wei M, Wang Q, Tian Y, Han J, Gu H, Ding H, Chen Q, Zhou K, Gu Z. Capillary-Force-Driven Self-Assembly of 4D-Printed Microstructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100332. [PMID: 33885192 DOI: 10.1002/adma.202100332] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Capillary-force-driven self-assembly is emerging as a significant approach for the massive manufacture of advanced materials with novel wetting, adhesion, optical, mechanical, or electrical properties. However, academic value and practical applications of the self-assembly are greatly restricted because traditional micropillar self-assembly is always unidirectional. In this work, two-photon-lithography-based 4D microprinting is introduced to realize the reversible and bidirectional self-assembly of microstructures. With asymmetric crosslinking densities, the printed vertical microstructures can switch to a curved state with controlled thickness, curvature, and smooth morphology that are impossible to replicate by traditional 3D-printing technology. In different evaporating solvents, the 4D-printed microstructures can experience three states: (I) coalesce into clusters from original vertical states via traditional self-assembly, (II) remain curved, or (III) arbitrarily self-assemble (4D self-assembly) toward the curving directions. Compared to conventional approaches, this 4D self-assembly is distance-independent, which can generate varieties of assemblies with a yield as high as 100%. More importantly, the three states can be reversibly switched, allowing the development of many promising applications such as reversible micropatterns, switchable wetting, and dynamic actuation of microrobots, origami, and encapsulation.
Collapse
Affiliation(s)
- Xiaojiang Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University, Nanjing, 210096, China
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Mengxiao Wei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University, Nanjing, 210096, China
| | - Qiong Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University, Nanjing, 210096, China
| | - Yujia Tian
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jiamian Han
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University, Nanjing, 210096, China
| | - Hongcheng Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University, Nanjing, 210096, China
| | - Haibo Ding
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University, Nanjing, 210096, China
| | - Qiang Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University, Nanjing, 210096, China
| | - Kun Zhou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University, Nanjing, 210096, China
| |
Collapse
|
29
|
Chen L, Zhang Y, Ye H, Duan G, Duan H, Ge Q, Wang Z. Color-Changeable Four-Dimensional Printing Enabled with Ultraviolet-Curable and Thermochromic Shape Memory Polymers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:18120-18127. [PMID: 33830721 DOI: 10.1021/acsami.1c02656] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Four-dimensional (4D) printing, which enables 3D printed structures to alter shapes over time, is attracting increasing attention because of its exciting potential in various applications. Among all the 4D printing materials, shape memory polymers (SMPs) have a higher stiffness and faster response rate and therefore are considered as one of the most promising 4D printing materials. However, the current studies of SMP-based 4D printing mainly focused on the deformation behavior and structural design of 4D printed structures. An additional function such as color change is desired for 4D printed structure, which would be potentially beneficial to the applications such as anti-counterfeiting, encryption, and bioinspired camouflage. In this paper, we report an ultraviolet (UV)-curable and thermochromic (UVT) SMP system that enables color-changeable 4D printing. The UVT SMP system is acrylate-based, thus highly UV-curable and compatible with PμSL-based high-resolution 3D printing technique. Thermochromism is imparted by adding the thermochromic microcapsules to the UVT SMP system, which allows the printed structures to reversibly change colors upon heating and cooling. To demonstrate its extraordinary thermochromic and mechanical performance, we use UVT SMP to print QR codes and multilevel anti-counterfeiting patterns which can hide the visible information at room temperature and visualize the information by encrypting, decrypting, and encrypting again steps with the shape-color recovery process. The development of UVT SMP will significantly advance current applications of SMP-based 4D printing, especially for anti-counterfeiting and safe data recording.
Collapse
Affiliation(s)
- Lei Chen
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P. R. China
| | - Yiru Zhang
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P. R. China
| | - Haitao Ye
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Guihui Duan
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P. R. China
| | - Huigao Duan
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P. R. China
| | - Qi Ge
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Zhaolong Wang
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
30
|
Weng S, Kuang X, Zhang Q, Hamel CM, Roach DJ, Hu N, Jerry Qi H. 4D Printing of Glass Fiber-Regulated Shape Shifting Structures with High Stiffness. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12797-12804. [PMID: 33355461 DOI: 10.1021/acsami.0c18988] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
4D printing allows 3D printed structures to change their shapes overtime under external stimuli, finding a wide range of potential applications in actuators, soft robotics, active metamaterials, flexible electronics, and biomedical devices. However, most 4D printing uses soft polymers to accommodate large strain shape-changing capability at the price of low stiffness, which impedes their engineering applications. Here, we demonstrate an approach to design and manufacture self-morphing structures with large deformation and high modulus (∼4.8 GPa). The structures are printed by multimaterial direct ink writing (DIW) using composite inks that contain a high volume fraction of solvent, photocurable polymer resin, and short glass fibers as well as fumed silica. During printing, the glass fibers undergo shear-induced alignment through the nozzle, leading to highly anisotropic mechanical properties. The solvent is then evaporated, during which the aligned glass fibers enable anisotropic shrinkage in the parallel and perpendicular directions to the fiber alignment for shape shifting. A final postphotocuring step is applied to further increase the stiffness of the composite from ∼300 MPa to ∼4.8 GPa. A finite element analysis (FEA) model is developed to predict the influence of the solvent, fiber contents, and fiber orientation on the shape shifting. We demonstrate the anisotropic volume shrinkage of the structures can be used as active hinges to transform printed two-dimensional structures into complex three-dimensional structures with large shape-shifting and outstanding mechanical properties. This strategy for fabricating composite structures with programmable architectures and excellent mechanical properties shows potential applications in morphing lightweight structures with load-bearing capabilities.
Collapse
Affiliation(s)
- Shayuan Weng
- The George W. Woodruff School of Mechanical Engineering Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- College of Aerospace Engineering, Chongqing University, Chongqing 400044, PR China
| | - Xiao Kuang
- The George W. Woodruff School of Mechanical Engineering Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Qiang Zhang
- The George W. Woodruff School of Mechanical Engineering Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- State Key Laboratory for Turbulence and Complex System, College of Engineering, Peking University, Beijing 100871, PR China
| | - Craig M Hamel
- The George W. Woodruff School of Mechanical Engineering Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Devin J Roach
- The George W. Woodruff School of Mechanical Engineering Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ning Hu
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - H Jerry Qi
- The George W. Woodruff School of Mechanical Engineering Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
31
|
Bagheri A, Fellows CM, Boyer C. Reversible Deactivation Radical Polymerization: From Polymer Network Synthesis to 3D Printing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003701. [PMID: 33717856 PMCID: PMC7927619 DOI: 10.1002/advs.202003701] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/11/2020] [Indexed: 05/04/2023]
Abstract
3D printing has changed the fabrication of advanced materials as it can provide customized and on-demand 3D networks. However, 3D printing of polymer materials with the capacity to be transformed after printing remains a great challenge for engineers, material, and polymer scientists. Radical polymerization has been conventionally used in photopolymerization-based 3D printing, as in the broader context of crosslinked polymer networks. Although this reaction pathway has shown great promise, it offers limited control over chain growth, chain architecture, and thus the final properties of the polymer networks. More fundamentally, radical polymerization produces dead polymer chains incapable of postpolymerization transformations. Alternatively, the application of reversible deactivation radical polymerization (RDRP) to polymer networks allows the tuning of network homogeneity and more importantly, enables the production of advanced materials containing dormant reactivatable species that can be used for subsequent processes in a postsynthetic stage. Consequently, the opportunities that (photoactivated) RDRP-based networks offer have been leveraged through the novel concepts of structurally tailored and engineered macromolecular gels, living additive manufacturing and photoexpandable/transformable-polymer networks. Herein, the advantages of RDRP-based networks over irreversibly formed conventional networks are discussed.
Collapse
Affiliation(s)
- Ali Bagheri
- School of Science and TechnologyThe University of New EnglandArmidaleNSW2351Australia
| | - Christopher M. Fellows
- School of Science and TechnologyThe University of New EnglandArmidaleNSW2351Australia
- Desalination Technologies Research InstituteAl Jubail31951Kingdom of Saudi Arabia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN)School of Chemical EngineeringThe University of New South WalesSydneyNSW2052Australia
| |
Collapse
|
32
|
3D Printable Electrically Conductive Hydrogel Scaffolds for Biomedical Applications: A Review. Polymers (Basel) 2021; 13:polym13030474. [PMID: 33540900 PMCID: PMC7867335 DOI: 10.3390/polym13030474] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023] Open
Abstract
Electrically conductive hydrogels (ECHs), an emerging class of biomaterials, have garnered tremendous attention due to their potential for a wide variety of biomedical applications, from tissue-engineered scaffolds to smart bioelectronics. Along with the development of new hydrogel systems, 3D printing of such ECHs is one of the most advanced approaches towards rapid fabrication of future biomedical implants and devices with versatile designs and tuneable functionalities. In this review, an overview of the state-of-the-art 3D printed ECHs comprising conductive polymers (polythiophene, polyaniline and polypyrrole) and/or conductive fillers (graphene, MXenes and liquid metals) is provided, with an insight into mechanisms of electrical conductivity and design considerations for tuneable physiochemical properties and biocompatibility. Recent advances in the formulation of 3D printable bioinks and their practical applications are discussed; current challenges and limitations of 3D printing of ECHs are identified; new 3D printing-based hybrid methods for selective deposition and fabrication of controlled nanostructures are highlighted; and finally, future directions are proposed.
Collapse
|
33
|
Stereolithography (SLA) 3D printing of a bladder device for intravesical drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111773. [DOI: 10.1016/j.msec.2020.111773] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/05/2020] [Accepted: 11/26/2020] [Indexed: 11/23/2022]
|
34
|
Xu X, Awad A, Robles-Martinez P, Gaisford S, Goyanes A, Basit AW. Vat photopolymerization 3D printing for advanced drug delivery and medical device applications. J Control Release 2020; 329:743-757. [PMID: 33031881 DOI: 10.1016/j.jconrel.2020.10.008] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 12/17/2022]
Abstract
Three-dimensional (3D) printing is transforming manufacturing paradigms within healthcare. Vat photopolymerization 3D printing technology combines the benefits of high resolution and favourable printing speed, offering a sophisticated approach to fabricate bespoke medical devices and drug delivery systems. Herein, an overview of the vat polymerization techniques, their unique applications in the fields of drug delivery and medical device fabrication, material examples and the advantages they provide within healthcare, is provided. The challenges and drawbacks presented by this technology are also discussed. It is forecast that the adoption of 3D printing could pave the way for a personalised health system, advancing from traditional treatments pathways towards digital healthcare.
Collapse
Affiliation(s)
- Xiaoyan Xu
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Atheer Awad
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Pamela Robles-Martinez
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Simon Gaisford
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FabRx Ltd., 3 Romney Road, Ashford, Kent TN24 0RW, UK
| | - Alvaro Goyanes
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FabRx Ltd., 3 Romney Road, Ashford, Kent TN24 0RW, UK; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I + D Farma (GI-1645), Facultad de Farmacia, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FabRx Ltd., 3 Romney Road, Ashford, Kent TN24 0RW, UK.
| |
Collapse
|
35
|
Kuang X, Roach DJ, Hamel CM, Yu K, Qi HJ. Materials, design, and fabrication of shape programmable polymers. ACTA ACUST UNITED AC 2020. [DOI: 10.1088/2399-7532/aba1d9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
36
|
Zhu X, Wu S, Yang C, Deng H, Du Y, Shi X. Electrical Writing to Three-Dimensional Pattern Dynamic Polysaccharide Hydrogel for Programmable Shape Deformation. Macromol Rapid Commun 2020; 42:e2000342. [PMID: 32808372 DOI: 10.1002/marc.202000342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/28/2020] [Indexed: 12/21/2022]
Abstract
The ability to pattern and actuate hydrogels is essential for biomimetics, soft robotics, and biosensors. Here an electrical writing technique with the capability to create both surface and across thickness patterns in dynamic chitosan-H+ /agarose hydrogel by electronically generated pH gradient is introduced. The diffusible pH cues deprotonate and re-assemble chitosan chains by hydrogen bonds, changing the electrical writing domains from original loose structure to a dense layer and resulting in different mechanical stress and swell ability that causes the hydrogel to deform. The deformable trend can be modulated by writing depth and selective writing area on the surface, and significantly enhanced by temperature increment. Finally, a dual electrical writing process to create three-dimensional patterns and demonstrate programmable shape transition by differing patterns is performed.
Collapse
Affiliation(s)
- Xinyi Zhu
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, 430079, China
| | - Si Wu
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, 430079, China
| | - Chen Yang
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, 430079, China
| | - Hongbing Deng
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, 430079, China
| | - Yumin Du
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, 430079, China
| | - Xiaowen Shi
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan, 430079, China
| |
Collapse
|
37
|
Li H, Fan W, Zhu X. Three‐dimensional printing: The potential technology widely used in medical fields. J Biomed Mater Res A 2020; 108:2217-2229. [DOI: 10.1002/jbm.a.36979] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/30/2020] [Accepted: 04/04/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Hongjian Li
- Southern Marine Science and Engineering Guangdong Laboratory ZhanjiangMarine Medical Research Institute of Guangdong Zhanjiang (GDZJMMRI), Guangdong Medical University Zhanjiang China
| | - Wenguo Fan
- Department of Anesthesiology, Guanghua School of StomatologyHospital of Stomatology, Sun Yat‐sen University Guangzhou China
| | - Xiao Zhu
- Southern Marine Science and Engineering Guangdong Laboratory ZhanjiangMarine Medical Research Institute of Guangdong Zhanjiang (GDZJMMRI), Guangdong Medical University Zhanjiang China
| |
Collapse
|
38
|
McCracken JM, Donovan BR, White TJ. Materials as Machines. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906564. [PMID: 32133704 DOI: 10.1002/adma.201906564] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/19/2019] [Indexed: 05/23/2023]
Abstract
Machines are systems that harness input power to extend or advance function. Fundamentally, machines are based on the integration of materials with mechanisms to accomplish tasks-such as generating motion or lifting an object. An emerging research paradigm is the design, synthesis, and integration of responsive materials within or as machines. Herein, a particular focus is the integration of responsive materials to enable robotic (machine) functions such as gripping, lifting, or motility (walking, crawling, swimming, and flying). Key functional considerations of responsive materials in machine implementations are response time, cyclability (frequency and ruggedness), sizing, payload capacity, amenability to mechanical programming, performance in extreme environments, and autonomy. This review summarizes the material transformation mechanisms, mechanical design, and robotic integration of responsive materials including shape memory alloys (SMAs), piezoelectrics, dielectric elastomer actuators (DEAs), ionic electroactive polymers (IEAPs), pneumatics and hydraulics systems, shape memory polymers (SMPs), hydrogels, and liquid crystalline elastomers (LCEs) and networks (LCNs). Structural and geometrical fabrication of these materials as wires, coils, films, tubes, cones, unimorphs, bimorphs, and printed elements enables differentiated mechanical responses and consistently enables and extends functional use.
Collapse
Affiliation(s)
- Joselle M McCracken
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Brian R Donovan
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Timothy J White
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA
| |
Collapse
|
39
|
Zhou LY, Ye JH, Fu JZ, Gao Q, He Y. 4D Printing of High-Performance Thermal-Responsive Liquid Metal Elastomers Driven by Embedded Microliquid Chambers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:12068-12074. [PMID: 32066245 DOI: 10.1021/acsami.9b22433] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Four-dimensional (4D) printing of swellable materials have been viewed as an ideal approach to build shape morphing architectures. However, there is less variety in high-performance swellable materials, limiting its development. To address this challenge, we proposed a new strategy for designing high-performance thermal-responsive swellable materials. The reversible liquid-vapor phase change of embedded low boiling point liquid chambers and functional liquid metal fillers endows the designed elastomer with the reversible thermal-responsive swellable property with high stability, fast response speed, and large equilibrium deformation. Notably, liquid metal fillers play a crucial role in improving the thermal-responsive property via improving the thermal conductivity and fracture toughness and decreasing the stiffness. To demonstrate the feasibility of constructing shape morphing architectures with proposed thermal-responsive liquid metal elastomers, typical bilayer structures were printed and investigated. By altering the key design parameters, the response speed and equilibrium deformation can be adjusted as needed. Therefore, complex shape morphing architectures can be printed. This study could provide a new avenue to design swellable material systems for 4D printing of shape morphing architectures.
Collapse
Affiliation(s)
- Lu-Yu Zhou
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiang-Hao Ye
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jian-Zhong Fu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qing Gao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Materials Processing and Mold, Zhengzhou University, Zhengzhou 450002, China
| |
Collapse
|
40
|
Cheng X, Zhang Y. Micro/Nanoscale 3D Assembly by Rolling, Folding, Curving, and Buckling Approaches. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901895. [PMID: 31265197 DOI: 10.1002/adma.201901895] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/03/2019] [Indexed: 06/09/2023]
Abstract
The miniaturization of electronics has been an important topic of study for several decades. The established roadmaps following Moore's Law have encountered bottlenecks in recent years, as planar processing techniques are already close to their physical limits. To bypass some of the intrinsic challenges of planar technologies, more and more efforts have been devoted to the development of 3D electronics, through either direct 3D fabrication or indirect 3D assembly. Recent research efforts into direct 3D fabrication have focused on the development of 3D transistor technologies and 3D heterogeneous integration schemes, but these technologies are typically constrained by the accessible range of sophisticated 3D geometries and the complexity of the fabrication processes. As an alternative route, 3D assembly methods make full use of mature planar technologies to form predefined 2D precursor structures in the desired materials and sizes, which are then transformed into targeted 3D mesostructures by mechanical deformation. The latest progress in the area of micro/nanoscale 3D assembly, covering the various classes of methods through rolling, folding, curving, and buckling assembly, is discussed, focusing on the design concepts, principles, and applications of different methods, followed by an outlook on the remaining challenges and open opportunities.
Collapse
Affiliation(s)
- Xu Cheng
- AML, Department of Engineering Mechanics, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Yihui Zhang
- AML, Department of Engineering Mechanics, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
41
|
Shafranek RT, Millik SC, Smith PT, Lee CU, Boydston AJ, Nelson A. Stimuli-responsive materials in additive manufacturing. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.03.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
42
|
Li J, Pallicity TD, Slesarenko V, Goshkoderia A, Rudykh S. Domain Formations and Pattern Transitions via Instabilities in Soft Heterogeneous Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1807309. [PMID: 30762902 DOI: 10.1002/adma.201807309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/26/2018] [Indexed: 06/09/2023]
Abstract
Experimental observations of domain formations and pattern transitions in soft particulate composites under large deformations are reported herein. The system of stiff inclusions periodically distributed in a soft elastomeric matrix experiences dramatic microstructure changes upon the development of elastic instabilities. In the experiments, the formation of microstructures with antisymmetric domains and their geometrically tailored evolution into a variety of patterns of cooperative particle rearrangements are observed. Through experimental and numerical analyses, it is shown that these patterns can be tailored by tuning the initial microstructural periodicity and concentration of the inclusions. Thus, these fully determined new patterns can be achieved by fine tuning of the initial microstructure.
Collapse
Affiliation(s)
- Jian Li
- Department of Aerospace Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Tarkes Dora Pallicity
- Department of Mechanical Engineering, University of Wisconsin Madison, Madison, WI, 53706, USA
| | - Viacheslav Slesarenko
- Department of Aerospace Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Artemii Goshkoderia
- Department of Aerospace Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Stephan Rudykh
- Department of Mechanical Engineering, University of Wisconsin Madison, Madison, WI, 53706, USA
| |
Collapse
|
43
|
Zhu P, Yang W, Wang R, Gao S, Li B, Li Q. 4D Printing of Complex Structures with a Fast Response Time to Magnetic Stimulus. ACS APPLIED MATERIALS & INTERFACES 2018; 10:36435-36442. [PMID: 30270611 DOI: 10.1021/acsami.8b12853] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A poly(dimethylsiloxane)/Fe (PDMS/Fe) composite ink was developed for reversible four-dimensional (4D) printing to create magnetically responsive three-dimensional (3D) structures with a fast response time for their structure evolvements under external magnetic field. These 3D structures could obtain or lose high magnetization immediately by the on or off of an external magnetic field due to the low magnetic coercive force and the high magnetic permittivity of soft magnetic Fe particles in this composite ink, whereas PDMS in this composite ink served as the flexible matrix component to ensure their shape recovery. As exampled by a 3D butterfly with the fast flapping of its wings under an external magnetic field, complex 3D structures created by 4D printing with this PDMS/Fe ink could have the reversible magnetically stimulated structure evolvement property and develop designed magnetically induced motions with a fast response time for various magnetomechanical applications. Furthermore, structure evolvements of these 3D structures could also induce structure-related property changes, as demonstrated by a 3D terahertz photonic crystal (3D-TPC) device with remotely tunable terahertz properties, which could create novel functionalities for various functional devices created by 4D printing from this kind of ink through external magnetic field stimulation.
Collapse
Affiliation(s)
- Pengfei Zhu
- Environment Functional Materials Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research , Chinese Academy of Sciences , Shenyang 110016 , P. R. China
- School of Materials Science and Engineering , University of Science and Technology of China , Wenhua Road , Shenyang 110016 , P. R. China
| | - Weiyi Yang
- Environment Functional Materials Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research , Chinese Academy of Sciences , Shenyang 110016 , P. R. China
| | - Rong Wang
- Division of Energy and Environment, Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , P. R. China
| | - Shuang Gao
- Division of Energy and Environment, Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , P. R. China
| | - Bo Li
- Division of Energy and Environment, Graduate School at Shenzhen , Tsinghua University , Shenzhen 518055 , P. R. China
| | - Qi Li
- Environment Functional Materials Division, Shenyang National Laboratory for Materials Science, Institute of Metal Research , Chinese Academy of Sciences , Shenyang 110016 , P. R. China
| |
Collapse
|