1
|
Lou Y, Sun M, Zhang J, Wang Y, Ma H, Sun Z, Li S, Weng X, Ying B, Liu C, Yu M, Wang H. Ultraviolet Light-Based Micropattern Printing on Titanium Surfaces to Promote Early Osseointegration. Adv Healthc Mater 2023; 12:e2203300. [PMID: 37119120 DOI: 10.1002/adhm.202203300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/24/2023] [Indexed: 04/30/2023]
Abstract
Patterned interfaces are widely used for surface modification of biomaterials because of a morphological unit similar to that of native tissue. However, engineering fast and cost-effective high-resolution micropatterns directly onto titanium surfaces remains a grand challenge. Herein, a simply designed ultraviolet (UV) light-based micropattern printing to obtain geometrical patterns on implant interfaces is fabricated by utilizing customized photomasks and titanium dioxide (TiO2 ) nanorods as a photo-responsive platform. The technique manipulates the cytoskeleton of micropatterning cells on the surface of TiO2 nanorods. The linear pattern surface shows the elongated morphology and parallel linear arrangements of human mesenchymal stem cells (hMSCs), significantly enhancing their osteogenic differentiation. In addition to the upregulated expression of key osteo-specific function genes in vitro, the accelerated osseointegration between the implant and the host bone is obtained in vivo. Further investigation indicates that the developed linear pattern surface has an outstanding effect on the cytoskeletal system, and finally activates Yes-Associated Protein (YAP)-mediated mechanotransduction pathways, initiating hMSCs osteogenic differentiation. This study not only offers a microfabrication method that can be extended to fabricate various shape- and size-controlled micropatterns on titanium surfaces, but also provides insight into the surface structure design for enhanced bone regeneration.
Collapse
Affiliation(s)
- Yiting Lou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, 395 Yan'an road, Hangzhou, Zhejiang, 310000, China
| | - Mouyuan Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, 395 Yan'an road, Hangzhou, Zhejiang, 310000, China
| | - Jingyu Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, 395 Yan'an road, Hangzhou, Zhejiang, 310000, China
| | - Yu Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, 395 Yan'an road, Hangzhou, Zhejiang, 310000, China
| | - Haiying Ma
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, 395 Yan'an road, Hangzhou, Zhejiang, 310000, China
| | - Zheyuan Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, 395 Yan'an road, Hangzhou, Zhejiang, 310000, China
| | - Shengjie Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, 395 Yan'an road, Hangzhou, Zhejiang, 310000, China
- Department of Stomatology, The First Affiliated Hospital of Ningbo University, 59 Liuting street, Ningbo, Zhejiang, 315000, China
| | - Xiaoyan Weng
- The Third Affiliated Hospital of Wenzhou Medical University (Ruian People's Hospital), 168 Ruifeng Avenue, Wenzhou, Zhejiang, 325016, China
| | - Binbin Ying
- Department of Stomatology, The First Affiliated Hospital of Ningbo University, 59 Liuting street, Ningbo, Zhejiang, 315000, China
| | - Chao Liu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, 395 Yan'an road, Hangzhou, Zhejiang, 310000, China
| | - Mengfei Yu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, 395 Yan'an road, Hangzhou, Zhejiang, 310000, China
| | - Huiming Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, 395 Yan'an road, Hangzhou, Zhejiang, 310000, China
| |
Collapse
|
2
|
Yang Y, Rao J, Liu H, Dong Z, Zhang Z, Bei HP, Wen C, Zhao X. Biomimicking design of artificial periosteum for promoting bone healing. J Orthop Translat 2022; 36:18-32. [PMID: 35891926 PMCID: PMC9283802 DOI: 10.1016/j.jot.2022.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 01/27/2023] Open
Abstract
Background Periosteum is a vascularized tissue membrane covering the bone surface and plays a decisive role in bone reconstruction process after fracture. Various artificial periosteum has been developed to assist the allografts or bionic bone scaffolds in accelerating bone healing. Recently, the biomimicking design of artificial periosteum has attracted increasing attention due to the recapitulation of the natural extracellular microenvironment of the periosteum and has presented unique capacity to modulate the cell fates and ultimately enhance the bone formation and improve neovascularization. Methods A systematic literature search is performed and relevant findings in biomimicking design of artificial periosteum have been reviewed and cited. Results We give a systematical overview of current development of biomimicking design of artificial periosteum. We first summarize the universal strategies for designing biomimicking artificial periosteum including biochemical biomimicry and biophysical biomimicry aspects. We then discuss three types of novel versatile biomimicking artificial periosteum including physical-chemical combined artificial periosteum, heterogeneous structured biomimicking periosteum, and healing phase-targeting biomimicking periosteum. Finally, we comment on the potential implications and prospects in the future design of biomimicking artificial periosteum. Conclusion This review summarizes the preparation strategies of biomimicking artificial periosteum in recent years with a discussion of material selection, animal model adoption, biophysical and biochemical cues to regulate the cell fates as well as three types of latest developed versatile biomimicking artificial periosteum. In future, integration of innervation, osteochondral regeneration, and osteoimmunomodulation, should be taken into consideration when fabricating multifunctional artificial periosteum. The Translational Potential of this Article: This study provides a holistic view on the design strategy and the therapeutic potential of biomimicking artificial periosteum to promote bone healing. It is hoped to open a new avenue of artificial periosteum design with biomimicking considerations and reposition of the current strategy for accelerated bone healing.
Collapse
Affiliation(s)
- Yuhe Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Jingdong Rao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Huaqian Liu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Zhifei Dong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.,Faculty of Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Zhen Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Ho-Pan Bei
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Chunyi Wen
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| |
Collapse
|
3
|
Recent advances of three-dimensional micro-environmental constructions on cell-based biosensors and perspectives in food safety. Biosens Bioelectron 2022; 216:114601. [DOI: 10.1016/j.bios.2022.114601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 06/29/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022]
|
4
|
Chen J, Mai J, Wang C, Lin Y, Miao D, Lin Y, Babar AA, Wang X, Yu J, Ding B. Biomimetic Aligned Micro-/Nanofibrous Composite Membranes with Ultrafast Water Transport and Evaporation for Efficient Indoor Humidification. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1983-1993. [PMID: 34958189 DOI: 10.1021/acsami.1c20193] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Humidifying membranes with ultrafast water transport and evaporation play a vital role in indoor humidification that improves personal comfort and industrial productivity in daily life. However, commercial nonwoven (NW) humidifying membranes show mediocre humidification capability owing to limited wicking capacity, low water absorption, and relatively less water evaporation. Herein, we report a biomimetic micro-/nanofibrous composite membrane with a highly aligned fibrous structure using a humidity-induced electrospinning technique for high-efficiency indoor humidification. Surface wettability and roughness are also tailored to achieve a high degree of superhydrophilicity by embedding hydrophilic silicon dioxide nanoparticles (SiO2 NPs) into the fiber matrix. The synergistic effect of the highly aligned fibrous structure and surface wettability endows composite membranes with ultrafast water transport and evaporation. Strikingly, the composite membrane exhibits an outstanding wicking height of 19.5 cm, a superior water absorption of 497.7%, a fast evaporation rate of 0.34 mL h-1, and a relatively low air pressure drop of 14.4 Pa, thereby achieving a remarkable humidification capacity of 514 mL h-1 (57% higher than the commercial NW humidifying membrane). The successful synthesis of this biomimetic micro-/nanofibrous composite membrane provides new insights into the development of micro-/nanofibrous humidifying membranes for personal health and comfort as well as industrial production.
Collapse
Affiliation(s)
- Jingxiu Chen
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Jianzhang Mai
- Guangdong Midea Refrigeration Equipment Co., Ltd., Foshan, Guangdong 528311, China
| | - Chao Wang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yanyan Lin
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Dongyang Miao
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yongqiang Lin
- Qing Yuan Polytechnic, Qingyuan, Guangdong 511510, China
| | - Aijaz Ahmed Babar
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
- Textile Engineering Department, Mehran University or Engineering and Technology, Jamshoro 76060, Pakistan
| | - Xianfeng Wang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
- College of Textiles Science and Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 201620, China
| |
Collapse
|
5
|
Xiong J, Wang H, Lan X, Wang Y, Wang Z, Bai J, Ou W, Cai N, Wang W, Tang Y. Fabrication of bioinspired grid-crimp micropatterns by melt electrospinning writing for bone-ligament interface study. Biofabrication 2022; 14. [PMID: 35021164 DOI: 10.1088/1758-5090/ac4ac8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/12/2022] [Indexed: 11/11/2022]
Abstract
Many strategies have been adopted to engineer bone-ligament interface, which is of great value to both the tissue regeneration and the mechanism understanding underlying interface regeneration. However, how to recapitulate the complexity and heterogeneity of the native bone-ligament interface including the structural, cellular and mechanical gradients is still challenging. In this work, a bioinspired grid-crimp micropattern fabricated by melt electrospinning writing (MEW) was proposed to mimic the native structure of bone-ligament interface. The printing strategy of crimped fiber micropattern was developed and the processing parameters were optimized, which were used to mimic the crimp structure of the collagen fibrils in ligament. The guidance effect of the crimp angle and fiber spacing on the orientation of fibroblasts was studied, and both of them showed different levels of cell alignment effect.. MEW grid micropatterns with different fiber spacings were fabricated as bone region. Both the alkaling phosphatase activity and calcium mineralization results demonstrated the higher osteoinductive ability of the MEW grid structures, especially for that with smaller fiber spacing. The combined grid-crimp micropatterns were applied for the co-culture of fibroblasts and osteoblasts. The results showed that more cells were observed to migrate into the in-between interface region for the pattern with smaller fiber spacing, suggested the faster migration speed of cells. Finally, a cylindrical triphasic scaffold was successfully generated by rolling the grid-crimp micropatterns up, showing both structural and mechanical similarity to the native bone-ligament interface. In summary, the proposed strategy is reliable to fabricate grid-crimp triphasic micropatterns with controllable structural parameters to mimic the native bone-to-ligament structure, and the generated 3D scaffold shows great potential for the further bone-ligament interface tissue engineering.
Collapse
Affiliation(s)
- Junjie Xiong
- Guangdong University of Technology, Higher Education Mega Center, Guangzhou, 510006, CHINA
| | - Han Wang
- Guangdong University of Technology, Higher Education Mega Center, Guangzhou, 510006, CHINA
| | - Xingzi Lan
- Guangdong University of Technology, Higher Education Mega Center, Guangzhou, 510006, CHINA
| | - Yaqi Wang
- Guangdong University of Technology, Higher Education Mega Center, Guangzhou, 510006, CHINA
| | - Zixu Wang
- Guangdong University of Technology, Higher Education Mega Center, Guangzhou, 510006, CHINA
| | - Jianfu Bai
- Guangdong University of Technology, Higher Education Mega Center, Guangzhou, 510006, CHINA
| | - Weicheng Ou
- Guangdong University of Technology, Higher Education Mega Center, Guangzhou, 510006, CHINA
| | - Nian Cai
- Guangdong University of Technology, Higher Education Mega Center, Guangzhou, Guangdong, 510006, CHINA
| | - Wenlong Wang
- Guangzhou University, Higher Education Mega Center, Guangzhou, 510006, CHINA
| | - Yadong Tang
- Guangdong University of Technology, Higher Education Mega Center, Guangzhou, 510006, CHINA
| |
Collapse
|
6
|
Biofabrication of aligned structures that guide cell orientation and applications in tissue engineering. Biodes Manuf 2021. [DOI: 10.1007/s42242-020-00104-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Yang G, Liu H, Cui Y, Li J, Zhou X, Wang N, Wu F, Li Y, Liu Y, Jiang X, Zhang S. Bioinspired membrane provides periosteum-mimetic microenvironment for accelerating vascularized bone regeneration. Biomaterials 2020; 268:120561. [PMID: 33316630 DOI: 10.1016/j.biomaterials.2020.120561] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/11/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022]
Abstract
Periosteum plays a pivotal role in vascularization, ossification and remodeling during the healing process of bone injury. However, there are few studies focused on the construction of artificial implants with periosteum-mimetic effect. To emulate the primary role of natural periosteum or endosteal tissues in bone regeneration, here we provide a functional biomimetic membrane with micropatterns of site-specific biomineralization. The micropattern is generated by using printed hydroxyapatite nanoparticles (HANPs), combined with selective growth of biomineralized apatite and in situ coprecipitation with growth factors. The biomimetic membrane can sustainably provide a periosteum-mimetic microenvironment, such as long-term topographical guidance for cell recruitment and induced cell differentiation, by releasing calcium phosphate and growth factors. We demonstrated that rat mesenchymal stem cells (rMSCs) on such biomimetic membrane exhibited highly aligned organization, leading to enhanced angiogenesis and osteogenesis. In the rat calvarial defect model, our biomimetic membranes with biomineralized micropatterns could significantly enhance vascularized ossification and accelerate new bone formation. The current work suggests that the functionally biomimetic membranes with specific biomineralized micropatterns can be a promising alternative to periosteal autografts, with great potential for bench-to-bedside translation in orthopedics.
Collapse
Affiliation(s)
- Gaojie Yang
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Media Lab and McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Haoming Liu
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yi Cui
- Media Lab and McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jiaqi Li
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xuan Zhou
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Nuoxin Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Feige Wu
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yan Li
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yu Liu
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xingyu Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
| | - Shengmin Zhang
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| |
Collapse
|
8
|
Sun Z, Fang S, Hu YH. 3D Graphene Materials: From Understanding to Design and Synthesis Control. Chem Rev 2020; 120:10336-10453. [PMID: 32852197 DOI: 10.1021/acs.chemrev.0c00083] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Carbon materials, with their diverse allotropes, have played significant roles in our daily life and the development of material science. Following 0D C60 and 1D carbon nanotube, 2D graphene materials, with their distinctively fascinating properties, have been receiving tremendous attention since 2004. To fulfill the efficient utilization of 2D graphene sheets in applications such as energy storage and conversion, electrochemical catalysis, and environmental remediation, 3D structures constructed by graphene sheets have been attempted over the past decade, giving birth to a new generation of graphene materials called 3D graphene materials. This review starts with the definition, classifications, brief history, and basic synthesis chemistries of 3D graphene materials. Then a critical discussion on the design considerations of 3D graphene materials for diverse applications is provided. Subsequently, after emphasizing the importance of normalized property characterization for the 3D structures, approaches for 3D graphene material synthesis from three major types of carbon sources (GO, hydrocarbons and inorganic carbon compounds) based on GO chemistry, hydrocarbon chemistry, and new alkali-metal chemistry, respectively, are comprehensively reviewed with a focus on their synthesis mechanisms, controllable aspects, and scalability. At last, current challenges and future perspectives for the development of 3D graphene materials are addressed.
Collapse
Affiliation(s)
- Zhuxing Sun
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, Michigan 49931-1295, United States
| | - Siyuan Fang
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, Michigan 49931-1295, United States
| | - Yun Hang Hu
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, Michigan 49931-1295, United States.,School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
9
|
Mahmood F, Zhang H, Lin J, Wan C. Laser-Induced Graphene Derived from Kraft Lignin for Flexible Supercapacitors. ACS OMEGA 2020; 5:14611-14618. [PMID: 32596598 PMCID: PMC7315590 DOI: 10.1021/acsomega.0c01293] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/25/2020] [Indexed: 05/20/2023]
Abstract
Porous graphene was photothermally induced from kraft lignin via direct laser writing. This laser-induced graphene (LIG) possessed a hierarchical structure with a three-dimensional (3D) interconnected network ideal for its transfer from the kraft lignin/poly(ethylene oxide) (KL/PEO) film onto polydimethylsiloxane (PDMS). The resultant LIG/PDMS composite was shown to keep the intrinsic porous structure and electrically active sites of LIG. The supercapacitors (SCs) fabricated using the LIG/PDMS composite exhibited good electrochemical performance and excellent cyclic stability. More than 90% capacitance was retained after 10 000 cycles. Moreover, due to their high flexibility, the SCs were able to endure bending deformation without significantly sacrificing their capacitance. The proposed technology for the fabrication of flexible SCs based on lignin-derived LIG demonstrated great potential to use a low-cost, renewable material for the manufacture of portable and wearable electronics.
Collapse
Affiliation(s)
- Faisal Mahmood
- Department
of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, Missouri 65211, United States
- Department
of Energy Systems Engineering, University
of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Hanwen Zhang
- Department
of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Jian Lin
- Department
of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Caixia Wan
- Department
of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
10
|
Lu N, Wang L, Lv M, Tang Z, Fan C. Graphene-based nanomaterials in biosystems. NANO RESEARCH 2018; 12:247-264. [PMID: 32218914 PMCID: PMC7090610 DOI: 10.1007/s12274-018-2209-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/12/2018] [Accepted: 09/14/2018] [Indexed: 05/23/2023]
Abstract
Graphene-based nanomaterials have emerged as a novel type of materials with exceptional physicochemical properties and numerous applications in various areas. In this review, we summarize recent advances in studying interactions between graphene and biosystems. We first provide a brief introduction on graphene and its derivatives, and then discuss on the toxicology and biocompatibility of graphene, including the extracellular interactions between graphene and biomacromolecules, cellular studies of graphene, and in vivo toxicological effects. Next, we focus on various graphene-based practical applications in antibacterial materials, wound addressing, drug delivery, and water purification. We finally present perspectives on challenges and future developments in these exciting fields.
Collapse
Affiliation(s)
- Na Lu
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai, 201620 China
| | - Liqian Wang
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
| | - Min Lv
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
| | - Zisheng Tang
- Department of Endodontics, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
- National Clinical Research Center of Oral Diseases, Shanghai, 200011 China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011 China
| | - Chunhai Fan
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|