1
|
Tubio CR, Garea L, Cruz BDD, Correia DM, de Zea Bermudez V, Lanceros-Mendez S. Environmentally Friendly Photoluminescent Coatings for Corrosion Sensing. Polymers (Basel) 2025; 17:389. [PMID: 39940591 PMCID: PMC11819755 DOI: 10.3390/polym17030389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Although an increasing number of studies are being devoted to the field of corrosion, with topics from protection to sensing strategies, there is still a lack of research based on environmentally eco-friendly materials, which is essential in the transition to sustainable technologies. Herein, environmentally friendly composites, based on photoluminescent salts dispersed in vegetable oil-based resins, are prepared and investigated as corrosion sensing coatings. Two salts NaA, where A- is a lanthanide complex anion (with Ln = Nd3+, and Yb3+), are incorporated into the resins as active functional fillers and different coatings are prepared on carbon steel substrates to assess their functional properties. The influence exerted by a corrosive saline solution on the morphology, structural, and photoluminescent properties of the coatings is evaluated, and their suitability for the practical detection of the early corrosion of coated carbon steel is demonstrated. The photoluminescence of the composite coatings depends on the corrosion time, with the effect being more important for the coatings doped with Nd3+. The present work shows that the composites obtained are suitable candidates for corrosion sensing coating applications, offering improved sustainability.
Collapse
Affiliation(s)
- Carmen R. Tubio
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (L.G.); (S.L.-M.)
| | - Laura Garea
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (L.G.); (S.L.-M.)
| | - Bárbara D. D. Cruz
- Centre of Chemistry, University of Minho, 4710-057 Braga, Portugal; (B.D.D.C.); (D.M.C.)
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and Laboratory of Physics for Materials and Emergent Technologies (LapMET), University of Minho, 4710-057 Braga, Portugal
| | - Daniela M. Correia
- Centre of Chemistry, University of Minho, 4710-057 Braga, Portugal; (B.D.D.C.); (D.M.C.)
| | - Verónica de Zea Bermudez
- Chemistry Department and CQ-VR, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal;
| | - Senentxu Lanceros-Mendez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (L.G.); (S.L.-M.)
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
2
|
Preedanorawut P, Chatchawankanphanich O, Yiamsawas D, Crespy D. Controlled Release of Hydrophilic Drug from Hollow Nanodots. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2409112. [PMID: 39888222 DOI: 10.1002/smll.202409112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/14/2025] [Indexed: 02/01/2025]
Abstract
Here the challenge of limited encapsulation efficiency of ionizable hydrophilic molecules in silica materials is addressed. Two effective strategies are showcased that allow high encapsulation efficiency of salicylic acid, while simultaneously maintaining the morphology and particle size of silica nanocapsules. These promising approaches involve the formation and encapsulation of a prodrug or the complexation of the hydrophilic payload with a hydrophobic moiety to form a complex that is dissociated in acidic conditions. Well-defined core-shell silica nanocapsules with a diameter of 6 nm are obtained and exhibited an encapsulation efficiency of over 90%. High amounts of salicylic acid are released in acidic conditions from silica nanocapsules entrapping the prodrug or the complex, leading to pH-responsive characteristics. This work demonstrates promising strategies for the encapsulation and the controlled release of hydrophilic fertilizers, pesticides or drugs.
Collapse
Affiliation(s)
- Patitta Preedanorawut
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Orawan Chatchawankanphanich
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Doungporn Yiamsawas
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| |
Collapse
|
3
|
Zhang Q, Li W, Liu X, Ma J, Gu Y, Liu R, Luo J. Polyaniline Microspheres with Corrosion Inhibition, Corrosion Sensing, and Photothermal Self-Healing Properties toward Intelligent Coating. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1461-1473. [PMID: 38127777 DOI: 10.1021/acsami.3c15158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
A smart coating integrating functions of corrosion inhibition, self-healing, and corrosion-sensing was developed based on a polyaniline (PANI) microsphere-loading corrosion sensing probe (8-hydroxyquinone, 8-HQ). The PANI microsphere was prepared in a facile one-pot process via the combination of photopolymerization and an emulsion template. The 8-HQ-loaded PANI microsphere achieved three synergetic effects simultaneously: corrosion inhibition, corrosion sensing, and photothermal self-healing abilities. Benefiting from the corrosion inhibition effect of PANI, the coating with the PANI microsphere exhibited significantly enhanced anticorrosion behavior. After soaking in NaCl solution for 35 days, its impedance was maintained at 1.26 × 109 Ω·cm2, nearly 3 orders of magnitude higher than that of pure resin coating. Meanwhile, the encapsulated 8-HQ exhibited pH-responsive release behavior thanks to the pH-responsive characteristics of PANI, which could chelate with Al3+ ions to form 8-HQ-Al3+ coordinates with a conspicuous fluorescence, achieving a real-time corrosion diagnosing function. Moreover, benefiting from the photothermal property of PANI, the coating with the PANI microsphere displayed rapid crack closure behavior under NIR light irradiation, and the healing efficiency could reach 83.56% under near-infrared irradiation. This work presents an innovative strategy for fabricating an intelligent self-healing, self-reporting, and anticorrosion coating, which provides a new vision to prolong the lifetime of metals.
Collapse
Affiliation(s)
- Qingqing Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi 214122, China
| | - Wei Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi 214122, China
| | - Xiaoyi Liu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi 214122, China
| | - Jin Ma
- Jiangsu Lanling Polymer Materials Co., Ltd., Changzhou 213119, China
| | - Yao Gu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi 214122, China
| | - Ren Liu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi 214122, China
| | - Jing Luo
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi 214122, China
| |
Collapse
|
4
|
Yimyai T, Crespy D, Rohwerder M. Corrosion-Responsive Self-Healing Coatings. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300101. [PMID: 36939547 DOI: 10.1002/adma.202300101] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Organic coatings are one of the most popular and powerful strategies for protecting metals against corrosion. They can be applied in different ways, such as by dipping, spraying, electrophoresis, casting, painting, or flow coating. They offer great flexibility of material designs and cost effectiveness. Moreover, self-healing has evolved as a new research topic for protective organic coatings in the last two decades. Responsive materials play a crucial role in this new research field. However, for targeting the development of high-performance self-healing coatings for corrosion protection, it is not sufficient just to focus on smart responsive materials and suitable active agents for self-healing. A better understanding of how coatings can react on different stimuli induced by corrosion, how these stimuli can spread in the coating, and how the released agents can reach the corroding defect is also of high importance. Such knowledge would allow the design of coatings that are optimized for specific applications. Herein, the requirements and possibilities from the corrosion and synthesis perspectives for designing materials for preparing self-healing coatings for corrosion protection are discussed.
Collapse
Affiliation(s)
- Tiwa Yimyai
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Michael Rohwerder
- Max-Planck-Institut für Eisenforschung GmbH, 40237, Düsseldorf, Germany
| |
Collapse
|
5
|
Wu YG, Li XZ, Zhao J, Yang X, Cai YJ, Jiang H, Sun YX, Wei NJ, Liu Y, Li YB, Yang ZH, Jiang MY, Gai JG. Biomimetic redox-responsive smart coatings with resistance-release functions for reverse osmosis membranes. J Mater Chem B 2023; 11:7950-7960. [PMID: 37491975 DOI: 10.1039/d3tb00904a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Membrane fouling induces catastrophic loss of separation performance and seriously restricts the applications of reverse osmosis (RO) membranes. Inspired by the mussel structure, polydopamine (PDA) and cystamine molecules (CA) with excellent anti-fouling properties were used to prepare accessible, biocompatible, and redox-responsive coatings for RO membranes. The PDA/CA-coated RO membranes exhibit a superior water flux of 65 L m-2 h-1 with a favourable NaCl rejection exceeding 99%. The water permeability through the PDA/CA-coated membrane is much higher than that of most membranes with similar rejection rates. Due to the formed protective hydration layers by PDA/CA coatings, anti-fouling properties against proteins, polysaccharides and surfactants were evaluated separately, and ultralow fouling properties were demonstrated. Moreover, the disulfide linkages in CA molecules can cleave in a reducing environment, yielding the degradation of PDA/CA coatings, thereby removing the foulants deposited on the coatings. The degradation endows the coated membranes with satisfying longtime anti-fouling properties, where the flux recovery reaches up to 90%. The construction of redox-responsive smart coatings not only provided a promising route to alleviate membrane fouling but can also be upscaled for use in numerous practical applications like sensors, medical devices, and drug delivery.
Collapse
Affiliation(s)
- Ya-Ge Wu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, Sichuan 610065, China.
| | - Xin-Zheng Li
- Nuclear Power Institute of China, 328, Section 1, Changshun Avenue, Huayang, Shuangliu District, Chengdu City, Sichuan Province, 610200, China
| | - Jing Zhao
- PetroChina Liaoyang Petrochemical Company, No. 7 Torch Street, Hongwei District, Liaoyang, Liaoning 111000, China
| | - Xu Yang
- PetroChina Liaoyang Petrochemical Company, No. 7 Torch Street, Hongwei District, Liaoyang, Liaoning 111000, China
| | - Ya-Juan Cai
- Sichuan Guojian Inspection Co., Ltd, No. 17, Section 1, Kangcheng Road, Jiangyang District, Luzhou 646099, Sichuan, China
| | - Han Jiang
- Nuclear Power Institute of China, 328, Section 1, Changshun Avenue, Huayang, Shuangliu District, Chengdu City, Sichuan Province, 610200, China
| | - Yi-Xing Sun
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, Sichuan 610065, China.
| | - Nan-Jun Wei
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, Sichuan 610065, China.
| | - Yang Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, Sichuan 610065, China.
| | - Yi-Bo Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, Sichuan 610065, China.
| | - Zi-Hao Yang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, Sichuan 610065, China.
| | - Meng-Ying Jiang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, Sichuan 610065, China.
| | - Jing-Gang Gai
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, Sichuan 610065, China.
| |
Collapse
|
6
|
Li X, Auepattana-Aumrung K, Butt HJ, Crespy D, Berger R. Fast-release kinetics of a pH-responsive polymer detected by dynamic contact angles. J Chem Phys 2023; 158:144901. [PMID: 37061469 DOI: 10.1063/5.0142928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
Polymers conjugated with active agents have applications in biomedicine, anticorrosion, and smart agriculture. When the active agent is used as a drug, corrosion inhibitor, or pesticide, it can be released upon a specific stimulus. The efficiency and the sustainability of active agents are determined by the released kinetics. In this work, we study the fast-release kinetics of 8-hydroxyquinoline (8HQ) from a pH-responsive, random copolymer of methyl methacrylate and 8-quinolinyl-sulfide-ethyl acrylate [P(MMA-co-HQSEA)] by hydrolysis of the β-thiopropionate groups. We used contact angle measurements of sliding drops as an elegant way to characterize the release kinetics. Based on the results gained from 1H nuclear magnetic resonance measurement, fluorescent intensity measurement, and velocity-dependent contact angle measurement, we found that both the hydrolysis rate and polymer conformation affect the release kinetics of 8HQ from a P(MMA-co-HQSEA) film. Polymer chains collapse and further suppress the release from the inner layer in acidic conditions, while polymer chains in a stretched condition further facilitate the release from the inner layer. As a result, the cumulative release rate of 8HQ is higher in the basic condition than in the acidic condition.
Collapse
Affiliation(s)
- Xiaomei Li
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Krisada Auepattana-Aumrung
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | | | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Rüdiger Berger
- Max Planck Institute for Polymer Research, Mainz, Germany
| |
Collapse
|
7
|
Zheng Q, Chai L, Du B, Li W, Fu LH, Chen X. A pH-Sensitive Lignin-Based Material for Sustained Release of 8-Hydroxyquinoline. Polymers (Basel) 2023; 15:polym15081867. [PMID: 37112014 PMCID: PMC10142775 DOI: 10.3390/polym15081867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The fabrication of pH-sensitive lignin-based materials has received considerable attention in various fields, such as biomass refining, pharmaceuticals, and detecting techniques. However, the pH-sensitive mechanism of these materials is usually depending on the hydroxyl or carboxyl content in the lignin structure, which hinders the further development of these smart materials. Here, a pH-sensitive lignin-based polymer with a novel pH-sensitive mechanism was constructed by establishing ester bonds between lignin and the active molecular 8-hydroxyquinoline (8HQ). The structure of the produced pH-sensitive lignin-based polymer was comprehensively characterized. The substituted degree of 8HQ was tested up to 46.6% sensitivity, and the sustained release performance of 8HQ was confirmed by the dialysis method, the sensitivity of which was found to be 60 times slower compared with the physical mixed sample. Moreover, the obtained pH-sensitive lignin-based polymer showed an excellent pH sensitivity, and the released amount of 8HQ under an alkaline condition (pH = 8) was obviously higher than that under an acidic condition (pH = 3 and 5). This work provides a new paradigm for the high-value utilization of lignin and a theory guidance for the fabrication of novel pH-sensitive lignin-based polymers.
Collapse
Affiliation(s)
- Qian Zheng
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian 116034, China
| | - Lanfang Chai
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian 116034, China
| | - Boyu Du
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian 116034, China
| | - Wei Li
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian 116034, China
| | - Lian-Hua Fu
- School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiaohong Chen
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
8
|
Chen Z, Li X, Gong B, Scharnagl N, Zheludkevich ML, Ying H, Yang W. Double Stimuli-Responsive Conducting Polypyrrole Nanocapsules for Corrosion-Resistant Epoxy Coatings. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2067-2076. [PMID: 36534023 DOI: 10.1021/acsami.2c17466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Stimuli-responsive nanocapsules, which can respond to various environmental stimuli and release their encapsulated payload on demand, have attracted wide interest in different fields in recent years. In this work, a novel kind of polypyrrole (PPy) nanocapsules is fabricated and loaded with zinc salt corrosion inhibitors. The synthesized PPy nanocapsules respond to two different external stimuli (pH- and redox-responsive) and can control the release of their encapsulated corrosion inhibitors. The nanocapsules can detect the micro-environmental pH or surface-potential changes associated with the corrosion initiation of the metal substrate. When introduced into a protective epoxy coating, the fabricated PPy nanocapsules inhibit the anodic and cathodic corrosion reactions. The superior corrosion resistance and active corrosion protection effects of the epoxy-PPy-Zn coatings are further demonstrated via electrochemical and long-term immersion tests. The low-frequency impedance, coating resistance, and oxide film resistance increase after about 400 h of exposure in a 3.5 wt % NaCl solution, reflecting the enhanced corrosion protection properties and excellent repairing performance of the coating. Furthermore, the epoxy-PPy-Zn coating can avoid the pitting corrosion of 304 stainless steel. Overall, we have fabricated double stimuli-responsive PPy nanocapsules via a simple and effective strategy and incorporated them into a corrosion-resistant epoxy coating for protecting Fe-based metal substrates.
Collapse
Affiliation(s)
- Zhihao Chen
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing211816, China
- Institute of Surface Science, Helmholtz-Zentrum hereon GmbH (Hereon), Geesthacht21502, Germany
| | - Xianliang Li
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing211816, China
| | - Bin Gong
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing211816, China
| | - Nico Scharnagl
- Institute of Surface Science, Helmholtz-Zentrum hereon GmbH (Hereon), Geesthacht21502, Germany
| | - Mikhail L Zheludkevich
- Institute of Surface Science, Helmholtz-Zentrum hereon GmbH (Hereon), Geesthacht21502, Germany
- Faculty of Engineering, Kiel University, Kiel24143, Germany
| | - Hanjie Ying
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing211816, China
- National Engineering Technique Research Center for Biotechnology, Nanjing211816, China
| | - Wenzhong Yang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing211816, China
| |
Collapse
|
9
|
Chaouiki A, Chafiq M, Al-Moubaraki AH, Bakhouch M, El Yazidi M, Ko YG. Electrochemical behavior and interfacial bonding mechanism of new synthesized carbocyclic inhibitor for exceptional corrosion resistance of steel alloy: DFTB, MD and experimental approaches. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
10
|
Schmitt S, Renzer G, Benrath J, Best A, Jiang S, Landfester K, Butt HJ, Simonutti R, Crespy D, Koynov K. Monitoring the Formation of Polymer Nanoparticles with Fluorescent Molecular Rotors. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sascha Schmitt
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Galit Renzer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Jennifer Benrath
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Andreas Best
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Shuai Jiang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Roberto Simonutti
- Department of Material Science, University Milano Bicocca, Via R Cozzi 55, I-20125 Milan, Italy
| | | | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
11
|
Abstract
Metal degradation due to corrosion is a major challenge in most industries, and its control and prevention has to maintain a balance between efficiency and cost-effectiveness. The rising concern over environmental damage has greatly influenced this domain, as corrosion prevention should comply with the waste regulations of different regions. In this respect, a fundamental question is which modern synthetic materials are more viable from the point of view of their effectiveness. Therefore, this paper is aims to provide an advanced and holistic review of corrosion prevention and control methods. Corrosion prevention techniques have become extensive; however, the literature indicates that polymer coatings, nano-composite coatings, and encapsulation techniques consistently provide the most efficient and feasible outcomes. Therefore, this review article examined the phenomenon of corrosion inhibition mainly from the perspective of these three techniques. Moreover, this research utilized secondary qualitative methods to obtain data and information on comparative techniques. It is found that due to the rapid development of novel materials, corrosion inhibition techniques need to be developed on scales that are more general, so that they could be applied to varying environments. The self-healing coatings are generally based on epoxy-resins incorporated with synthetic compounds such as inhibitor ions, amino-acids, or carboxylic acids. These coatings have become more widespread, especially due to bans on several traditional prevention materials such as compounds of chromium (VI). However, self-healing coatings are comparatively more costly than other techniques because of their method of synthesis and long-term durability. Therefore, although self-healing nanomaterial-based coatings are viable options for limited usage, their utilization in large and complex facilities is limited due to the costs involved. Amino acids and other biological macro-molecules provide another option to attain environmental sustainability and long durability, especially due to their origins being most of naturally occurring compounds such as lignin, cellulose, and proteins.
Collapse
|
12
|
Feng C, Zhu L, Cao K, Yu Z, Song Y. Difunctional Silicon Dioxide Combined with Graphene Oxide Nanocomposite to Enhance the Anticorrosion Performance of Epoxy Coatings. ACS OMEGA 2022; 7:24134-24144. [PMID: 35874218 PMCID: PMC9301642 DOI: 10.1021/acsomega.2c00494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The nanocomposite BTA-SiO2-GO was fabricated for the purpose of metal corrosion protection. Herein, the BTA-loaded mesoporous silica nanocontainers were prepared through a facile one-step synthetic method. Subsequently, graphene oxide (GO) was combined with the resultant BTA-SiO2 compound because GO had a superior barrier property and impermeability. We must note that the double functional groups exist on SiO2. Benzotriazole (BTA), as an inhibitor, can be loaded into the nanocontainer and GO can also be modified by it, resulting in excellent dispersion in epoxy coatings, which were conducive to enhancing its anticorrosion performance. In this way, the nanocomposite endows the coating system with both self-healing and physical barrier abilities. The EIS results indicated that the impedance value of the BTA-SiO2-GO composite coatings was up to 1.2 × 109 Ω cm2, which indicated excellent corrosion resistant properties.
Collapse
Affiliation(s)
- Chun Feng
- Tubular
Goods Research Institute of China National Petroleum Corporation, Xi’an 710077, China
- State Key
Laboratory for Performance and Structure Safety of Petroleum Tubular
Goods and Equipment Materials, Xi’an 710077, China
| | - Lijuan Zhu
- Tubular
Goods Research Institute of China National Petroleum Corporation, Xi’an 710077, China
- State Key
Laboratory for Performance and Structure Safety of Petroleum Tubular
Goods and Equipment Materials, Xi’an 710077, China
| | - Kunyao Cao
- Southwest
Petroleum University, School of Chemistry
and Chemical Engineering, Chengdu 610500, China
| | - Zongxue Yu
- Southwest
Petroleum University, School of Chemistry
and Chemical Engineering, Chengdu 610500, China
| | - Yacong Song
- Xi’an
Shiyou University, School of Materials Science
and Engineering, Xi’an 710065, China
| |
Collapse
|
13
|
Aslam R, Mobin M, Shoeb M, Aslam J. Novel ZrO 2-glycine nanocomposite as eco-friendly high temperature corrosion inhibitor for mild steel in hydrochloric acid solution. Sci Rep 2022; 12:9274. [PMID: 35661136 PMCID: PMC9166732 DOI: 10.1038/s41598-022-13359-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/11/2022] [Indexed: 11/09/2022] Open
Abstract
We report the green synthesis of novel ZrO2-Glycine nanocomposite referred to as ZrO2-Gly NC followed by its characterization using X-ray diffraction (XRD), Fourier transforms infrared (FT-IR) spectroscopy, SEM/EDX, and transmission electron microscopy (TEM) techniques. Further, the inhibition effect of the varying concentration of ZrO2-Gly NC on the corrosion of mild steel (MS) in 1 M HCl was investigated by weight loss and electrochemical measurements at 40-80 °C. The percentage inhibition efficacy of NC increased with the increase of concentration and temperature and reached about 81.01% at 500 ppm at 70 °C which decreased at 80 °C and exhibited 73.5% inhibition efficiencies. According to the polarization measurements, the investigated ZrO2-Gly NC works as a mixed-type inhibitor with predominantly inhibiting cathodic reaction. Also, the adsorption isotherm analysis indicated that the adsorption was spontaneous and followed the Langmuir adsorption isotherm. Furthermore, the contact angle measurement revealed the water-repelling property of the investigated inhibitor. The surface morphological study via SEM-EDS micrograph affirmed the appearance of a smooth surface in presence of inhibited media suggesting the formation of protective film by the adsorption of ZrO2-Gly NC on the surface of the MS even at higher temperature.
Collapse
Affiliation(s)
- Ruby Aslam
- Corrosion Research Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, 202002, India
| | - Mohammad Mobin
- Corrosion Research Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, 202002, India.
| | - Mohd Shoeb
- Corrosion Research Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, 202002, India
| | - Jeenat Aslam
- Department of Chemistry, College of Science, Taibah University, Yanbu, Al-Madina, 30799, Saudi Arabia
| |
Collapse
|
14
|
Pan W, Dong J, Gui T, Liu R, Liu X, Luo J. Fabrication of dual anti-corrosive polyaniline microcapsules via Pickering emulsion for active corrosion protection of steel. SOFT MATTER 2022; 18:2829-2841. [PMID: 35332906 DOI: 10.1039/d2sm00062h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A novel kind of inhibitor-loaded polyaniline (PANI) microcapsule was prepared by Pickering emulsion photopolymerization using polyaniline particles as the Pickering emulsifier. In our strategy, water-dispersible polyaniline nanoparticles were firstly synthesized using a micelle template method and used to stabilize oil-in-water emulsions, in which the oil phase contained photo-crosslinkable and pH sensitive monomers and a photo-initiator. Under UV light, the pH-responsive monomers underwent photo-polymerization and crosslinking and converted to microcapsule shells. During this process, polyaniline nanoparticles were trapped in the microcapsule shells, leading to the formation of PANI microcapsules. The structure and morphology of the synthesized PANI microcapsules were analyzed using FTIR spectroscopy, SEM, and EDX mapping. The inhibitor (mercaptobenzothiazole, MBT) was subsequently incorporated into the PANI microcapsule as a functional core and demonstrated pH-sensitive releasing behavior. With the anti-corrosive PANI as the microcapsule wall and the inhibitor MBT as the core, the as-prepared MBT loaded PANI (MBT@PANI) microcapsule could afford dual corrosion protection, allowing smart protection of metals when exposed to corrosive conditions. The MBT@PANI microcapsules were embedded in UV-cured coating for protecting steel. The corrosion protection performance of the coating with MBT@PANI microcapsules was evaluated using the electrochemical impedance spectroscopy technique and salt spray test, which demonstrated the synergistic inhibition effect of the PANI wall and the loaded MBT in improving anti-corrosion performance of the coating.
Collapse
Affiliation(s)
- Weihao Pan
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi 214122, China.
| | - Jiahao Dong
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi 214122, China.
| | - Taijiang Gui
- Marine Chemical Research Institute, State Key Laboratory of Marine Coating, Qingdao, Shandong 266071, China
| | - Ren Liu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi 214122, China.
| | - Xiaoya Liu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi 214122, China.
| | - Jing Luo
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi 214122, China.
| |
Collapse
|
15
|
Auepattana‐Aumrung K, Phakkeeree T, Crespy D. Stimuli‐responsive
polymeric additives for anticorrosion. J Appl Polym Sci 2022. [DOI: 10.1002/app.51730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Krisada Auepattana‐Aumrung
- Department of Materials Science and Engineering School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC) Rayong Thailand
| | - Treethip Phakkeeree
- Department of Materials Science and Engineering School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC) Rayong Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC) Rayong Thailand
| |
Collapse
|
16
|
Salaluk S, Jiang S, Viyanit E, Rohwerder M, Landfester K, Crespy D. Design of Nanostructured Protective Coatings with a Sensing Function. ACS APPLIED MATERIALS & INTERFACES 2021; 13:53046-53054. [PMID: 34705432 DOI: 10.1021/acsami.1c14110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanostructured multilayered coatings for metals are prepared to simultaneously provide a function of corrosion mitigation and of corrosion sensing for copper substrates. Silica nanocapsules, embedded in one layer of the coating, are used as a host for a corrosion inhibitor and as a sensor, which detect changes of pH value and release inhibitors via an optical signal. Furthermore, another layer in the coating exists in a nanonetwork loaded with another corrosion inhibitor, which is impregnated with a hydrophobic polymer. We demonstrate that a specific arrangement of layers leads to an optimum anticorrosion and sensing performance while the sensing signal can be prolonged for a long time. It is the first time that the fluorophore detecting corrosion is conjugated to the nanosensor and that nanofibers and nanocapsules are used simultaneously to load and release corrosion inhibitors for anticorrosion applications.
Collapse
Affiliation(s)
- Suttiruk Salaluk
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
- Max Planck-VISTEC Partner Laboratory for Sustainable Materials, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Shuai Jiang
- Max Planck-VISTEC Partner Laboratory for Sustainable Materials, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Ekkarut Viyanit
- Failure Analysis and Corrosion Technology Laboratory, National Metal and Materials Technology Center, Klong Luang, Pathumthani 12120, Thailand
| | - Michael Rohwerder
- Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Strasse 1, Düsseldorf 40237, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
- Max Planck-VISTEC Partner Laboratory for Sustainable Materials, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| |
Collapse
|
17
|
Kim B, Khazi MI, Kim JM. Nickel-Ion-Coordinated Reversibly Solvatochromic Polydiacetylene Based on Tubular Assembly of Macrocyclic Diacetylene. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bubsung Kim
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Korea
| | - Mohammed Iqbal Khazi
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Korea
| | - Jong-Man Kim
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
18
|
|
19
|
Intelligent Polymers, Fibers and Applications. Polymers (Basel) 2021; 13:polym13091427. [PMID: 33925249 PMCID: PMC8125737 DOI: 10.3390/polym13091427] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 12/21/2022] Open
Abstract
Intelligent materials, also known as smart materials, are capable of reacting to various external stimuli or environmental changes by rearranging their structure at a molecular level and adapting functionality accordingly. The initial concept of the intelligence of a material originated from the natural biological system, following the sensing–reacting–learning mechanism. The dynamic and adaptive nature, along with the immediate responsiveness, of the polymer- and fiber-based smart materials have increased their global demand in both academia and industry. In this manuscript, the most recent progress in smart materials with various features is reviewed with a focus on their applications in diverse fields. Moreover, their performance and working mechanisms, based on different physical, chemical and biological stimuli, such as temperature, electric and magnetic field, deformation, pH and enzymes, are summarized. Finally, the study is concluded by highlighting the existing challenges and future opportunities in the field of intelligent materials.
Collapse
|
20
|
Liu C, Qian B, Hou P, Song Z. Stimulus Responsive Zeolitic Imidazolate Framework to Achieve Corrosion Sensing and Active Protecting in Polymeric Coatings. ACS APPLIED MATERIALS & INTERFACES 2021; 13:4429-4441. [PMID: 33442971 DOI: 10.1021/acsami.0c22642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Metal substrates beneath polymeric coatings are susceptible to localized corrosion, which could result in lifetime reduction and catastrophic failure without timely repair treatment. In situ detection of corrosion and repair coating defects are in high demand yet challenging to fulfill so far. Herein, we report a smart polymeric coating by integrating nanosensors into the coating matrix, which is capable of efficient corrosion sensing and active anticorrosion protecting. The nanosensors were constructed by zeolitic imidazolate framework encapsulated with the polyethylene glycol-tannic acid complex. The morphology, chemical constitution, and stimulus responsiveness of nanosensors were systematically analyzed. The generation of local corrosion beneath coating can be promptly sensed and reported by a conspicuous purple color derived from tannic-iron ion coordinates. Meanwhile, local electrochemical impedance spectroscopy results proved that the metal degradation process at the defected interface can be largely inhibited, exhibiting active anticorrosion property. Furthermore, the constructed smart coating possessed superior impermeability and long-term protective performance under simulated seawater and harsh salts spray conditions. This feasible and effective strategy based on simple nanosensors to engineer smart coatings paves a new way to develop high environmental adaptability protective materials with protecting, corrosion sensing, and self-healing functions.
Collapse
Affiliation(s)
- Chengbao Liu
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bei Qian
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Peimin Hou
- State Key Laboratory of Marine Coatings, Marine Chemical Research Institute, Qingdao 266071, P. R. China
| | - Zuwei Song
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| |
Collapse
|
21
|
Mehrjou B, Dehghan-Baniani D, Shi M, Shanaghi A, Wang G, Liu L, Qasim AM, Chu PK. Nanopatterned silk-coated AZ31 magnesium alloy with enhanced antibacterial and corrosion properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111173. [DOI: 10.1016/j.msec.2020.111173] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/29/2020] [Accepted: 06/06/2020] [Indexed: 12/13/2022]
|
22
|
Seidi F, Crespy D. Fighting corrosion with stimuli-responsive polymer conjugates. Chem Commun (Camb) 2020; 56:11931-11940. [PMID: 32955055 DOI: 10.1039/d0cc03061a] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Corrosion is a financial and enviromental plague which leads to the deterioration of our infrastructures. Using corrosion inhibitors at low concentrations in coatings is one effective method for preventing corrosion. Inspired by the development of polymer-drug conjugates, corrosion inhibitors are incorporated in various polymer structures to create novel materials for hindering corrosion. We discuss the strategies to covalently integrate corrosion inhibitors in polymer structures to form polymer-inhibitor conjugates. Inhibitors are conjugated to polymers via non-labile or stimuli-labile linkages to allow the release of the inhibitors upon onset of corrosion. The application and anticorrosion performance of representative polymers are also discussed.
Collapse
Affiliation(s)
- Farzad Seidi
- Department of Material Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| | | |
Collapse
|
23
|
Dararatana N, Seidi F, Crespy D. Polymer conjugates for dual functions of reporting and hindering corrosion. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
24
|
Dararatana N, Seidi F, Crespy D. Acid-cleavable polymers for simultaneous fast and slow release of functional molecules. Polym Chem 2020. [DOI: 10.1039/d0py00905a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hydrophobic copolymers are designed to respond to acid stimuli for both simultaneous rapid and sustained release of multiple cargos.
Collapse
Affiliation(s)
- Naruphorn Dararatana
- Department of Material Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong 21210
- Thailand
| | - Farzad Seidi
- Department of Material Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong 21210
- Thailand
| | - Daniel Crespy
- Department of Material Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong 21210
- Thailand
| |
Collapse
|
25
|
Dararatana N, Seidi F, Hamel J, Crespy D. Controlling release kinetics of pH-responsive polymer nanoparticles. Polym Chem 2020. [DOI: 10.1039/c9py01946d] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polymers with pH-responsive properties display anticorrosion performance.
Collapse
Affiliation(s)
- Naruphorn Dararatana
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong 21210
- Thailand
| | - Farzad Seidi
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong 21210
- Thailand
| | - Juliette Hamel
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong 21210
- Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong 21210
- Thailand
| |
Collapse
|
26
|
Theerasilp M, Crespy D. Self-reporting of payload release in polymer coatings based on the inner filter effect. Polym Chem 2020. [DOI: 10.1039/c9py01756a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New polymeric nanoparticle sensors are developed for monitoring the release of non-fluorescent payloads in coatings by the naked eye.
Collapse
Affiliation(s)
- Man Theerasilp
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong 21210
- Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong 21210
- Thailand
| |
Collapse
|
27
|
Wu WX, Li J, Yang XL, Wang N, Yu XQ. Lipase-catalyzed synthesis of renewable acid-degradable poly(β-thioether ester) and poly(β-thioether ester-co-ricinoleic acid) copolymers derived from castor oil. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
28
|
Wu W. Lipase‐catalyzed synthesis of aliphatic poly(
β
‐thioether ester) with various methylene group contents: thermal properties, crystallization and degradation. POLYM INT 2019. [DOI: 10.1002/pi.5894] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Wan‐Xia Wu
- College of Pharmacy and Biological EngineeringChengdu University Chengdu China
| |
Collapse
|
29
|
Thongchaivetcharat K, Jenjob R, Seidi F, Crespy D. Programming pH-responsive release of two payloads from dextran-based nanocapsules. Carbohydr Polym 2019; 217:217-223. [DOI: 10.1016/j.carbpol.2019.04.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 12/24/2022]
|
30
|
Seidi F, Couffon A, Prawatborisut M, Crespy D. Controlling Release Kinetics of Payloads from Polymer Conjugates by Hydrophobicity. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Farzad Seidi
- Department of Materials Science and EngineeringSchool of Molecular Science and EngineeringVidyasirimedhi Institute of Science and Technology Rayong 21210 Thailand
| | - Antoine Couffon
- Department of Materials Science and EngineeringSchool of Molecular Science and EngineeringVidyasirimedhi Institute of Science and Technology Rayong 21210 Thailand
| | - Mongkhol Prawatborisut
- Department of Materials Science and EngineeringSchool of Molecular Science and EngineeringVidyasirimedhi Institute of Science and Technology Rayong 21210 Thailand
| | - Daniel Crespy
- Department of Materials Science and EngineeringSchool of Molecular Science and EngineeringVidyasirimedhi Institute of Science and Technology Rayong 21210 Thailand
| |
Collapse
|
31
|
Odrobińska J, Gumieniczek-Chłopek E, Szuwarzyński M, Radziszewska A, Fiejdasz S, Strączek T, Kapusta C, Zapotoczny S. Magnetically Navigated Core-Shell Polymer Capsules as Nanoreactors Loadable at the Oil/Water Interface. ACS APPLIED MATERIALS & INTERFACES 2019; 11:10905-10913. [PMID: 30810298 DOI: 10.1021/acsami.8b22690] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Polymer core-shell nanocapsules with magnetic nanoparticles embedded in their oil cores were fabricated and applied as nano(photo)reactors. Superparamagnetic iron oxide nanoparticles (SPIONs) coated with oleic acid were first synthesized and characterized structurally, and their magnetic properties were determined. The capsules with chitosan-based shells were then formed in a one-step process by sonication-assisted mixing of (1) an aqueous solution of the hydrophobically derived chitosan and (2) oleic acid containing the dispersed SPIONs. In this way, magnetic capsules with a diameter of approximately 500-600 nm containing encapsulated SPIONs with an average diameter of approximately 20-30 nm were formed as revealed by dynamic light scattering and scanning transmission electron microscopy measurements. The composition and magnetic properties of the formed capsules were also followed using dynamic light scattering, electron microscopies, and magnetic force microscopy. The water-dispersible capsules, thanks to their magnetic properties, were then navigated in a static magnetic field gradient and transferred between the water and oil phases, as evidenced by fluorescence microscopy. In this way, the capsules could be loaded in a controlled way with a hydrophobic reactant, perylene, which was later photooxidized upon transferring the capsules to the aqueous phase. The capsules were shown to serve as robust reloadable nanoreactors/nanocontainers that via magnetic navigation can be transferred between immiscible phases without disruption. These features make them promising reusable systems not only for loading and carrying lipophilic actives, conducting useful reactions in the confined environment of the capsules, but also for magnetically separating and guiding the encapsulated active molecules to the site of action.
Collapse
Affiliation(s)
- Joanna Odrobińska
- Faculty of Chemistry , Jagiellonian University , Gronostajowa 2 , 30-387 Krakow , Poland
| | | | | | | | | | | | | | - Szczepan Zapotoczny
- Faculty of Chemistry , Jagiellonian University , Gronostajowa 2 , 30-387 Krakow , Poland
| |
Collapse
|
32
|
Liu C, Zhao H, Hou P, Qian B, Wang X, Guo C, Wang L. Efficient Graphene/Cyclodextrin-Based Nanocontainer: Synthesis and Host-Guest Inclusion for Self-Healing Anticorrosion Application. ACS APPLIED MATERIALS & INTERFACES 2018; 10:36229-36239. [PMID: 30260207 DOI: 10.1021/acsami.8b11108] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cyclodextrin, with a hydrophobic inner cavity and a hydrophilic exterior, is often used to encapsulate a widest range of guest molecules based on host-guest inclusion interactions. Graphene, an emerging nanobuilding material, exhibits great potential for numerous applications because of its superior characteristics. Herein, we synthesized a novel graphene/β-cyclodextrin-based supramolecular nanocontainer with excellent inhibitor encapsulating capacity and high impermeable properties. The benzotriazole (BTA)-loaded nanocontainers were then used to endow coating system with excellent passive and active anticorrosion performance. Local electrochemical impedance spectroscopy (LEIS) was performed to characterize the self-healing behavior of composite coatings. Results indicated that the protective capability of the scratched coatings can be recovered through BTA release from containers. Furthermore, the long-term corrosion resistance of container-based coating was largely improved as observed from EIS. The effective healing process involves two conditions: (1) the release of BTA from containers and formation of adsorption layers on exposed metal surfaces and (2) the impermeable graphene nanosheets greatly impeded the electrolyte penetration and corrosion extension around the scratch. This novel graphene/β-cyclodextrin-based nanocontainer endows polymer coating with efficient self-healing functionality and durable anticorrosion property.
Collapse
Affiliation(s)
- Chengbao Liu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Haichao Zhao
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , China
| | - Peimin Hou
- State Key Laboratory of Marine Coatings , Marine Chemical Research Institute , Qingdao 266071 , China
| | - Bei Qian
- College of Chemistry and Pharmaceutical Sciences , Qingdao Agricultural University , Qingdao 266109 , China
| | - Xiao Wang
- State Key Laboratory of Marine Coatings , Marine Chemical Research Institute , Qingdao 266071 , China
| | - Chunyan Guo
- Ashine Advanced Carbon Materials, Co. Ltd , Changzhou 213245 , China
| | - Liping Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , China
| |
Collapse
|
33
|
Osumi S, Felder SE, Wang H, Lin Y, Dong M, Wooley KL. Construction of nanostructures in aqueous solution from amphiphilic glucose‐derived polycarbonates. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.29229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shota Osumi
- Departments of Chemistry, Chemical Engineering, and Materials Science & Engineering, and Laboratory for Synthetic‐Biologic Interactions Texas A&M University College Station Texas 77842
- Chiba Research Center Nippon Soda Co., Ltd. 12‐54 Goi‐minamikaigan, Ichihara Chiba 290‐0045 Japan
| | - Simcha E. Felder
- Departments of Chemistry, Chemical Engineering, and Materials Science & Engineering, and Laboratory for Synthetic‐Biologic Interactions Texas A&M University College Station Texas 77842
| | - Hai Wang
- Departments of Chemistry, Chemical Engineering, and Materials Science & Engineering, and Laboratory for Synthetic‐Biologic Interactions Texas A&M University College Station Texas 77842
| | - Yen‐Nan Lin
- Departments of Chemistry, Chemical Engineering, and Materials Science & Engineering, and Laboratory for Synthetic‐Biologic Interactions Texas A&M University College Station Texas 77842
| | - Mei Dong
- Departments of Chemistry, Chemical Engineering, and Materials Science & Engineering, and Laboratory for Synthetic‐Biologic Interactions Texas A&M University College Station Texas 77842
| | - Karen L. Wooley
- Departments of Chemistry, Chemical Engineering, and Materials Science & Engineering, and Laboratory for Synthetic‐Biologic Interactions Texas A&M University College Station Texas 77842
| |
Collapse
|
34
|
Seidi F, Druet V, Huynh N, Phakkeeree T, Crespy D. Hemiaminal ether linkages provide a selective release of payloads from polymer conjugates. Chem Commun (Camb) 2018; 54:13730-13733. [DOI: 10.1039/c8cc05386c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hemiaminal linkages allow for a selective and pH-responsive release of triazoles from polymer conjugates.
Collapse
Affiliation(s)
- Farzad Seidi
- Department of Material Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong 21210
- Thailand
| | - Victor Druet
- Department of Material Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong 21210
- Thailand
| | - Nguyen Huynh
- Department of Material Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong 21210
- Thailand
| | - Treethip Phakkeeree
- Department of Material Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong 21210
- Thailand
| | - Daniel Crespy
- Department of Material Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong 21210
- Thailand
| |
Collapse
|