1
|
Martínez-Miguel M, Castellote-Borrell M, Köber M, Kyvik AR, Tomsen-Melero J, Vargas-Nadal G, Muñoz J, Pulido D, Cristóbal-Lecina E, Passemard S, Royo M, Mas-Torrent M, Veciana J, Giannotti MI, Guasch J, Ventosa N, Ratera I. Hierarchical Quatsome-RGD Nanoarchitectonic Surfaces for Enhanced Integrin-Mediated Cell Adhesion. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48179-48193. [PMID: 36251059 PMCID: PMC9614722 DOI: 10.1021/acsami.2c10497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
The synthesis and study of the tripeptide Arg-Gly-Asp (RGD), the binding site of different extracellular matrix proteins, e.g., fibronectin and vitronectin, has allowed the production of a wide range of cell adhesive surfaces. Although the surface density and spacing of the RGD peptide at the nanoscale have already shown a significant influence on cell adhesion, the impact of its hierarchical nanostructure is still rather unexplored. Accordingly, a versatile colloidal system named quatsomes, based on fluid nanovesicles formed by the self-assembling of cholesterol and surfactant molecules, has been devised as a novel template to achieve hierarchical nanostructures of the RGD peptide. To this end, RGD was anchored on the vesicle's fluid membrane of quatsomes, and the RGD-functionalized nanovesicles were covalently anchored to planar gold surfaces, forming a state of quasi-suspension, through a long poly(ethylene glycol) (PEG) chain with a thiol termination. An underlying self-assembled monolayer (SAM) of a shorter PEG was introduced for vesicle stabilization and to avoid unspecific cell adhesion. In comparison with substrates featuring a homogeneous distribution of RGD peptides, the resulting hierarchical nanoarchitectonic dramatically enhanced cell adhesion, despite lower overall RGD molecules on the surface. The new versatile platform was thoroughly characterized using a multitechnique approach, proving its enhanced performance. These findings open new methods for the hierarchical immobilization of biomolecules on surfaces using quatsomes as a robust and novel tissue engineering strategy.
Collapse
Affiliation(s)
- Marc Martínez-Miguel
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | | | - Mariana Köber
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Adriana R. Kyvik
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Judit Tomsen-Melero
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Guillem Vargas-Nadal
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
| | - Jose Muñoz
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
| | - Daniel Pulido
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
- Unidad
de Péptidos, UB, Unidad asociada
al CSIC por el IQAC, Barcelona 08028, Spain
| | - Edgar Cristóbal-Lecina
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
- Unidad
de Péptidos, UB, Unidad asociada
al CSIC por el IQAC, Barcelona 08028, Spain
| | - Solène Passemard
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
| | - Miriam Royo
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
- Institut
de Química Avançada de Catalunya (IQAC−CSIC), Barcelona 08034, Spain
| | - Marta Mas-Torrent
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Jaume Veciana
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Marina I. Giannotti
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
- Nanoprobes
and Nanoswitches group, Institute for Bioengineering of Catalonia
(IBEC), The Barcelona Institute of Science
and Technology (BIST), Barcelona 08028, Spain
- Departament
de Ciència dels Materials i Química Física, Universitat de Barcelona, Barcelona 08028, Spain
| | - Judith Guasch
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
- Dynamic Biomimetics
for Cancer Immunotherapy, Max Planck Partner
Group, ICMAB-CSIC, Campus UAB, Bellaterra 08193, Spain
| | - Nora Ventosa
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Imma Ratera
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| |
Collapse
|
2
|
Cano-Garrido O, Serna N, Unzueta U, Parladé E, Mangues R, Villaverde A, Vázquez E. Protein scaffolds in human clinics. Biotechnol Adv 2022; 61:108032. [PMID: 36089254 DOI: 10.1016/j.biotechadv.2022.108032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/30/2022] [Accepted: 09/03/2022] [Indexed: 11/02/2022]
Abstract
Fundamental clinical areas such as drug delivery and regenerative medicine require biocompatible materials as mechanically stable scaffolds or as nanoscale drug carriers. Among the wide set of emerging biomaterials, polypeptides offer enticing properties over alternative polymers, including full biocompatibility, biodegradability, precise interactivity, structural stability and conformational and functional versatility, all of them tunable by conventional protein engineering. However, proteins from non-human sources elicit immunotoxicities that might bottleneck further development and narrow their clinical applicability. In this context, selecting human proteins or developing humanized protein versions as building blocks is a strict demand to design non-immunogenic protein materials. We review here the expanding catalogue of human or humanized proteins tailored to execute different levels of scaffolding functions and how they can be engineered as self-assembling materials in form of oligomers, polymers or complex networks. In particular, we emphasize those that are under clinical development, revising their fields of applicability and how they have been adapted to offer, apart from mere mechanical support, highly refined functions and precise molecular interactions.
Collapse
Affiliation(s)
- Olivia Cano-Garrido
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain
| | - Naroa Serna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193 Cerdanyola del Vallès (Barcelona), Spain
| | - Ugutz Unzueta
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193 Cerdanyola del Vallès (Barcelona), Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain; Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025 Barcelona, Spain; Josep Carreras Leukaemia Research Institute, 08916 Badalona (Barcelona), Spain
| | - Eloi Parladé
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193 Cerdanyola del Vallès (Barcelona), Spain
| | - Ramón Mangues
- Biomedical Research Institute Sant Pau (IIB Sant Pau), 08025 Barcelona, Spain; Josep Carreras Leukaemia Research Institute, 08916 Badalona (Barcelona), Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193 Cerdanyola del Vallès (Barcelona), Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain.
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 08193 Cerdanyola del Vallès (Barcelona), Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain.
| |
Collapse
|
3
|
Martínez-Miguel M, Tatkiewicz W, Köber M, Ventosa N, Veciana J, Guasch J, Ratera I. Methods for Processing Protein Aggregates into Surfaces. Methods Mol Biol 2022; 2406:517-530. [PMID: 35089578 DOI: 10.1007/978-1-0716-1859-2_31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The processing of inclusion bodies (IBs) into surfaces is of great interest for cell culture applications due to the combined physical and biological cues these particles provide. The arrangement of these IBs into defined and tunable micropatterns can be useful for basic research purposes regarding the mechanical properties needed for cell adhesion and migration, among other responses. There are several approaches that can be used when functionalizing a substrate with IBs, regarding both the strategy used and also the kind of surface-particle interaction. The interaction between surface and IB can be mainly of three types: physisorption, electrostatic or covalent. This interaction can be controlled by depositing an appropriate self-assembled monolayer (SAM) on top of a substrate as an interface. Furthermore, several strategies can be used to immobilize IBs on surfaces in various configurations, like random deposition, micrometric printed geometries or gradient patterns.
Collapse
Affiliation(s)
- Marc Martínez-Miguel
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC and CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Campus UAB, Bellaterra, Spain
| | - Witold Tatkiewicz
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC and CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Campus UAB, Bellaterra, Spain
| | - Mariana Köber
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC and CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Campus UAB, Bellaterra, Spain
| | - Nora Ventosa
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC and CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Campus UAB, Bellaterra, Spain
| | - Jaume Veciana
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC and CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Campus UAB, Bellaterra, Spain
| | - Judith Guasch
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC and CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Campus UAB, Bellaterra, Spain
- Dynamic Biomimetics for Cancer Immunotherapy, Max Planck Partner Group, ICMAB-CSIC, Campus UAB, Bellaterra, Spain
| | - Imma Ratera
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC and CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Campus UAB, Bellaterra, Spain.
| |
Collapse
|
4
|
Polylactide, Processed by a Foaming Method Using Compressed Freon R134a, for Tissue Engineering. Polymers (Basel) 2021; 13:polym13203453. [PMID: 34685212 PMCID: PMC8539307 DOI: 10.3390/polym13203453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 11/17/2022] Open
Abstract
Fabricating polymeric scaffolds using cost-effective manufacturing processes is still challenging. Gas foaming techniques using supercritical carbon dioxide (scCO2) have attracted attention for producing synthetic polymer matrices; however, the high-pressure requirements are often a technological barrier for its widespread use. Compressed 1,1,1,2-tetrafluoroethane, known as Freon R134a, offers advantages over CO2 in manufacturing processes in terms of lower pressure and temperature conditions and the use of low-cost equipment. Here, we report for the first time the use of Freon R134a for generating porous polymer matrices, specifically polylactide (PLA). PLA scaffolds processed with Freon R134a exhibited larger pore sizes, and total porosity, and appropriate mechanical properties compared with those achieved by scCO2 processing. PLGA scaffolds processed with Freon R134a were highly porous and showed a relatively fragile structure. Human mesenchymal stem cells (MSCs) attached to PLA scaffolds processed with Freon R134a, and their metabolic activity increased during culturing. In addition, MSCs displayed spread morphology on the PLA scaffolds processed with Freon R134a, with a well-organized actin cytoskeleton and a dense matrix of fibronectin fibrils. Functionalization of Freon R134a-processed PLA scaffolds with protein nanoparticles, used as bioactive factors, enhanced the scaffolds' cytocompatibility. These findings indicate that gas foaming using compressed Freon R134a could represent a cost-effective and environmentally friendly fabrication technology to produce polymeric scaffolds for tissue engineering approaches.
Collapse
|
5
|
Martínez-Miguel M, Kyvik AR, M Ernst L, Martínez-Moreno A, Cano-Garrido O, Garcia-Fruitós E, Vazquez E, Ventosa N, Guasch J, Veciana J, Villaverde A, Ratera I. Stable anchoring of bacteria-based protein nanoparticles for surface enhanced cell guidance. J Mater Chem B 2020; 8:5080-5088. [PMID: 32400840 DOI: 10.1039/d0tb00702a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In tissue engineering, biological, physical, and chemical inputs have to be combined to properly mimic cellular environments and successfully build artificial tissues which can be designed to fulfill different biomedical needs such as the shortage of organ donors or the development of in vitro disease models for drug testing. Inclusion body-like protein nanoparticles (pNPs) can simultaneously provide such physical and biochemical stimuli to cells when attached to surfaces. However, this attachment has only been made by physisorption. To provide a stable anchoring, a covalent binding of lactic acid bacteria (LAB) produced pNPs, which lack the innate pyrogenic impurities of Gram-negative bacteria like Escherichia coli, is presented. The reported micropatterns feature a robust nanoscale topography with an unprecedented mechanical stability. In addition, they are denser and more capable of influencing cell morphology and orientation. The increased stability and the absence of pyrogenic impurities represent a step forward towards the translation of this material to a clinical setting.
Collapse
Affiliation(s)
- Marc Martínez-Miguel
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Tatkiewicz WI, Seras-Franzoso J, García-Fruitós E, Vazquez E, Kyvik AR, Ventosa N, Guasch J, Villaverde A, Veciana J, Ratera I. High-Throughput Cell Motility Studies on Surface-Bound Protein Nanoparticles with Diverse Structural and Compositional Characteristics. ACS Biomater Sci Eng 2019; 5:5470-5480. [PMID: 33464066 DOI: 10.1021/acsbiomaterials.9b01085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Eighty areas with different structural and compositional characteristics made of bacterial inclusion bodies formed by the fibroblast growth factor (FGF-IBs) were simultaneously patterned on a glass surface with an evaporation-assisted method that relies on the coffee-drop effect. The resulting surface patterned with these protein nanoparticles enabled to perform a high-throughput study of the motility of NIH-3T3 fibroblasts under different conditions including the gradient steepness, particle concentrations, and area widths of patterned FGF-IBs, using for the data analysis a methodology that includes "heat maps". From this analysis, we observed that gradients of concentrations of surface-bound FGF-IBs stimulate the total cell movement but do not affect the total net distances traveled by cells. Moreover, cells tend to move toward an optimal intermediate FGF-IB concentration (i.e., cells seeded on areas with high IB concentrations moved toward areas with lower concentrations and vice versa, reaching the optimal concentration). Additionally, a higher motility was obtained when cells were deposited on narrow and highly concentrated areas with IBs. FGF-IBs can be therefore used to enhance and guide cell migration, confirming that the decoration of surfaces with such IB-like protein nanoparticles is a promising platform for regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Witold I Tatkiewicz
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Bellaterra, Spain
| | - Joaquin Seras-Franzoso
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Bellaterra, Spain
| | - Elena García-Fruitós
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Bellaterra, Spain
| | - Esther Vazquez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Bellaterra, Spain
| | - Adriana R Kyvik
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Bellaterra, Spain
| | - Nora Ventosa
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Bellaterra, Spain
| | - Judith Guasch
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Bellaterra, Spain.,Dynamic Biomimetics for Cancer Immunotherapy, Max Planck Partner Group, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Antonio Villaverde
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Bellaterra, Spain
| | - Jaume Veciana
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Bellaterra, Spain
| | - Imma Ratera
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Bellaterra, Spain
| |
Collapse
|
7
|
de Marco A, Ferrer-Miralles N, Garcia-Fruitós E, Mitraki A, Peternel S, Rinas U, Trujillo-Roldán MA, Valdez-Cruz NA, Vázquez E, Villaverde A. Bacterial inclusion bodies are industrially exploitable amyloids. FEMS Microbiol Rev 2019; 43:53-72. [PMID: 30357330 DOI: 10.1093/femsre/fuy038] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/23/2018] [Indexed: 12/13/2022] Open
Abstract
Understanding the structure, functionalities and biology of functional amyloids is an issue of emerging interest. Inclusion bodies, namely protein clusters formed in recombinant bacteria during protein production processes, have emerged as unanticipated, highly tunable models for the scrutiny of the physiology and architecture of functional amyloids. Based on an amyloidal skeleton combined with varying amounts of native or native-like protein forms, bacterial inclusion bodies exhibit an unusual arrangement that confers mechanical stability, biological activity and conditional protein release, being thus exploitable as versatile biomaterials. The applicability of inclusion bodies in biotechnology as enriched sources of protein and reusable catalysts, and in biomedicine as biocompatible topographies, nanopills or mimetics of endocrine secretory granules has been largely validated. Beyond these uses, the dissection of how recombinant bacteria manage the aggregation of functional protein species into structures of highly variable complexity offers insights about unsuspected connections between protein quality (conformational status compatible with functionality) and cell physiology.
Collapse
Affiliation(s)
- Ario de Marco
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska Cesta 13, 5000 Nova Gorica, Slovenia
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina (IBB), Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,Departament de Genètica i de Microbiologia, Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Carrer de la Vall Moronta s/n, 08193 Cerdanyola del Vallès, Spain
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain
| | - Anna Mitraki
- Department of Materials Science and Technology, University of Crete, Vassilika Vouton, 70013 Heraklion, Crete, Greece.,Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH), N. Plastira 100, Vassilika Vouton, 70013 Heraklion, Crete, Greece
| | | | - Ursula Rinas
- Leibniz University of Hannover, Technical Chemistry and Life Science, 30167 Hannover, Germany.,Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Mauricio A Trujillo-Roldán
- Programa de Investigación de Producción de Biomoléculas, Unidad de Bioprocesos, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - Norma A Valdez-Cruz
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina (IBB), Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,Departament de Genètica i de Microbiologia, Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Carrer de la Vall Moronta s/n, 08193 Cerdanyola del Vallès, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina (IBB), Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,Departament de Genètica i de Microbiologia, Carrer de la Vall Moronta s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Carrer de la Vall Moronta s/n, 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
8
|
Davydova N, Rodriguez XR, Blázquez C, Gómez A, Perevyazko I, Guasch J, Sergeev V, Laukhina E, Ratera I, Veciana J. Functionalization of polyacrylamide for nanotrapping positively charged biomolecules. RSC Adv 2019; 9:15402-15409. [PMID: 35514832 PMCID: PMC9064249 DOI: 10.1039/c8ra07764a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 05/09/2019] [Indexed: 11/21/2022] Open
Abstract
Engineering new materials which are capable of trapping biomolecules in nanoscale quantities, is crucial in order to achieve earlier diagnostics in different diseases. This article demonstrates that using free radical copolymerization, polyacrylamide can be successfully functionalized with specific synthons for nanotrapping positively charged molecules, such as numerous proteins, through electrostatic interactions due to their negative charge. Specifically, two functional random copolymers, acrylamide/acrylic acid (1) and acrylamide/acrylic acid/N-(pyridin-4-yl-methyl)acrylamide (2), whose negative net charges differ in their water solutions, were synthetized and their ability to trap positively charged proteins was studied using myoglobin as a proof-of-concept example. In aqueous solutions, copolymer 1, whose net charge for a 100 chain fragment (QpH 6/M) is −1.323 × 10−3, interacted with myoglobin forming a stable monodisperse nanosuspension. In contrast, copolymer 2, whose value of QpH 6/M equals −0.361 × 10−3, was not able to form stable particles with myoglobin. Nevertheless, thin films of both copolymers were grown using a dewetting process, which exhibited nanoscale cavities capable of trapping different amounts of myoglobin, as demonstrated by bimodal AFM imaging. The simple procedures used to build protein traps make this engineering approach promising for the development of new materials for biomedical applications where trapping biomolecules is required. Engineering new materials which are capable of trapping biomolecules in nanoscale quantities, is crucial in order to achieve earlier diagnostics in different diseases.![]()
Collapse
Affiliation(s)
- Nadejda Davydova
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences
- 119991 Moscow
- Russia
| | - Xavier R. Rodriguez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
- 08193 Barcelona
- Spain
- Department of Molecular Nanoscience and Organic Materials
- Institute of Materials Science of Barcelona (ICMAB-CSIC)
| | - Carlos Blázquez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
- 08193 Barcelona
- Spain
- Department of Molecular Nanoscience and Organic Materials
- Institute of Materials Science of Barcelona (ICMAB-CSIC)
| | - Andrés Gómez
- SPM Service
- Institute of Materials Science of Barcelona (ICMAB-CSIC)
- 08193 Barcelona
- Spain
| | - Igor Perevyazko
- Department of Molecular Biophysics and Polymer Physics
- St. Petersburg State University
- 198504 St. Petersburg
- Russia
| | - Judith Guasch
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
- 08193 Barcelona
- Spain
- Department of Molecular Nanoscience and Organic Materials
- Institute of Materials Science of Barcelona (ICMAB-CSIC)
| | - Vladimir Sergeev
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences
- 119991 Moscow
- Russia
| | - Elena Laukhina
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
- 08193 Barcelona
- Spain
- Department of Molecular Nanoscience and Organic Materials
- Institute of Materials Science of Barcelona (ICMAB-CSIC)
| | - Imma Ratera
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
- 08193 Barcelona
- Spain
- Department of Molecular Nanoscience and Organic Materials
- Institute of Materials Science of Barcelona (ICMAB-CSIC)
| | - Jaume Veciana
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
- 08193 Barcelona
- Spain
- Department of Molecular Nanoscience and Organic Materials
- Institute of Materials Science of Barcelona (ICMAB-CSIC)
| |
Collapse
|