1
|
Fu X, Dou H, Fan Y, Xu J, Qi H, Zhang C, Song L, Zhao J, Ren L, Ming W. Anticorrosion coating with near-infrared light triggered precisely controllable self-healing performances. J Colloid Interface Sci 2025; 683:587-599. [PMID: 39742740 DOI: 10.1016/j.jcis.2024.12.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
Great attentions have been paid to anticorrosion coatings with self-healing performances to enhance its reliability and protection period, but massive challenges still remain for developing a coating with selectively triggered and accurately controllable self-healing behaviors. Herein, by integrating lamellar graphene oxide (GO) into a polycaprolactone (PCL) nanofiber loaded with 8-hydroxyquinoline (8HQ) corrosion inhibitors, a composite coating with precisely controllable self-healing capabilities is developed. The coating defects can be remotely and accurately repaired under near-infrared (NIR) light irradiation within a very short time. Notably, the precisely controllable defect recovery even within a minimal region of ∼0.03 cm2 can be achieved, without causing pristine performance recession of irrelevant regions. The embedded GO can work both as efficient photothermal conversion materials, and yield "labyrinth effect" to enhance the passive barrier against corrosive media. Moreover, encapsulated corrosion inhibitors 8HQ can be rapidly released into acid/alkaline microregions in a corrosive-triggered manner, to form self-assembly protective layers and offer instant safeguarding for damaged sites. The integrated precise self-healing system enables extremely high corrosion inhibition efficiency exceeding 98.6 %. This work illustrates a feasible approach for combining remotely precise self-healing and active/passive enhanced passive barrier, presenting perspective potential in practical engineering anticorrosion applications or other controllable micro-reaction function surfaces.
Collapse
Affiliation(s)
- Xue Fu
- College of Chemistry, Ministry of Education, Jilin University, Changchun 130022, China; Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Haixu Dou
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Yong Fan
- College of Chemistry, Ministry of Education, Jilin University, Changchun 130022, China.
| | - Jianing Xu
- College of Chemistry, Ministry of Education, Jilin University, Changchun 130022, China
| | - Hui Qi
- Second Hospital of Jilin University, Changchun 130041, China
| | - Chengchun Zhang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Lingjie Song
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Jie Zhao
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China.
| | - Luquan Ren
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Weihua Ming
- Georgia Southern Univ, Dept Chem & Biochem, POB 8064, Statesboro, GA 30460, USA
| |
Collapse
|
2
|
Yu P, Yu Z, Guo Y, Liao K, Li K, Xia S, Song Y. Triple Corrosion Protection: Dual-Layer Coating with Simultaneous Superhydrophobicity, Intelligent Self-Healing, and Shape Memory. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:4016-4030. [PMID: 39921724 DOI: 10.1021/acs.langmuir.4c04304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2025]
Abstract
In this paper, a self-healing superhydrophobic smart two-layer coating, ZOA/SMP-S, was developed. ZIF-8 was surface hydrophobically modified by octadecylphosphoric acid (OPA) to obtain Z-OPA and then encapsulated with a corrosion inhibitor, AMT ( 2-Amino-5-mercapto-1,3,4-thiadiazole), to obtain the superhydrophobic nanocontainers, ZOA. ZOA was embedded into the SMP (shape memory coating) to obtain the smart coating, and Z-OPA was sprayed to obtain the second superhydrophobic coating. SEM showed that the scratch coatings were rapidly reduced by scratches after a simple heat treatment. The prepared composite coatings showed excellent performance in corrosion inhibitor release, immersion, superhydrophobicity, and self-healing experiments. The contact angle of the superhydrophobic coating reached 158.2°, and the sliding angle was 2.8°. The low-frequency impedance value |Z|f=0.01 Hz of ZOA/SMP-S is as high as 1.58 × 1010 Ω·cm2 after 40 days of immersion test, which indicates that the triple protection greatly enhances the corrosion resistance of the coating.
Collapse
Affiliation(s)
- Pengao Yu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P.R. China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, P.R. China
| | - Zongxue Yu
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P.R. China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, P.R. China
| | - Yuchi Guo
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P.R. China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, P.R. China
| | - Kexi Liao
- School Oil & Nature Gas Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P.R. China
| | - Kun Li
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P.R. China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, P.R. China
| | - Shuangshuang Xia
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P.R. China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, P.R. China
| | - Yulong Song
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, P.R. China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500, P.R. China
| |
Collapse
|
3
|
Zhang Q, Wu K, Liu R, Luo J. Dual Anticorrosive and Self-healing Coating Based on Multiresponsive Polyaniline Porous Microspheres. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20906-20917. [PMID: 39323030 DOI: 10.1021/acs.langmuir.4c01703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
In this work, a smart self-healing coating with long-term anticorrosion ability was developed based on multiresponsive polyaniline (PANI) porous microspheres. The polyaniline porous microspheres loaded with corrosion inhibitor (benzotriazole, BTA) was prepared by the emulsion template method and photopolymerization. The BTA loaded in the polyaniline microspheres acted as a corrosion inhibitor, while the polyaniline in the shell performed the multiple functions of corrosion inhibition, pH-responsive and photoresponsive release, and photothermal conversion. Owing to the inherent corrosion-inhibiting nature of BTA and PANI, the BTA-loaded polyaniline microsphere could endow coating with dual anticorrosive properties. The coating with polyaniline microspheres did not show any corrosion product after 700 h of salt spray testing, while obvious pitting corrosion could be observed for the blank coating after 100 h of the salt spray test. Thanks to the photothermal properties of PANI, the composite coating exhibited self-healing behavior under NIR light irradiation. The coating with 10 wt % polyaniline microspheres could achieve rapid closure and recover its barrier properties within 5 s of NIR irradiation. And the release of BTA could form a passivation film on scratches to further repair coating defects. The on-command responsive release, high healing efficiency, and excellent anticorrosion properties of this dual self-healing anticorrosion coating provide perspectives on extending the service life of metals.
Collapse
Affiliation(s)
- Qingqing Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi 214122, China
| | - Kaiyun Wu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi 214122, China
| | - Ren Liu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi 214122, China
| | - Jing Luo
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi 214122, China
| |
Collapse
|
4
|
Sokjorhor J, Yimyai T, Thiramanas R, Crespy D. Self-healing, antibiofouling and anticorrosion properties enabled by designing polymers with dynamic covalent bonds and responsive linkages. J Mater Chem B 2024; 12:6827-6839. [PMID: 38904191 DOI: 10.1039/d4tb00736k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Coating metal structures with a protective material is a popular strategy to prevent their deterioration due to corrosion. However, maintaining the barrier properties of coatings after their mechanical damage is challenging. Herein, we prepared multifunctional coatings with self-healing ability to conserve their anticorrosion performance after damage. The coating was formed by blending synthesized redox-responsive copolymers with the ability to release a corrosion inhibitor upon the onset of corrosion with synthesized self-healing polyurethanes containing disulfide bonds. The corrosion rate of steel substrates coated with a blend is approximately 24 times lower than that of steel coated with only self-healing polyurethane. An exceptional healing efficiency, as high as 95%, is obtained after mechanical damage. The antibiofouling property against bacterial and microalgal attachments on coatings is facilitated by the repellent characteristic of fluorinated segments and the biocidal activity of the inhibitor moieties in the copolymer.
Collapse
Affiliation(s)
- Jenpob Sokjorhor
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| | - Tiwa Yimyai
- Department of Chemical and Bimolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Raweewan Thiramanas
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| |
Collapse
|
5
|
Li PX, Zhang ZY, Cui JY, Wu SH, Liu Y, Ren HT, Han X. Satisfactory Tensile Strength and Strain of Recyclable Polyurethane with a Trimaleimide Structure for Thermal Self-Healing and Anticorrosive Coatings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12250-12263. [PMID: 38818891 DOI: 10.1021/acs.langmuir.4c01363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Bismaleimide (BMI) is often used as the cross-linking reagent in Diels-Alder (D-A)-type intrinsic self-healing materials (DISMs) to promote the connectivity of damaged surfaces based on reversible D-A bond formation on the molecular scale. Until now, although DISMs have exhibited great potential in the applications of various sensors, electronic skin, and artificial muscles, it is still difficult to prepare DISMs with satisfactory self-healing abilities and high tensile strengths and strains at the same time, thus largely limiting their applications in self-healing anticorrosive coatings. Herein, symmetrical trimaleimide (TMI) was successfully synthesized, and trimaleimide-structured D-A self-healing polyurethane (TMI-DA-PU) was prepared via the reversible D-A reaction (cycloaddition of furan and maleimide). As a DISM, TMI-DA-PU exhibits apparently higher self-healing efficiency (98.7%), tensile strength (25.4 MPa), and strain (1378%) compared to bismaleimide-structured D-A self-healing polyurethane (BMI-DA-PU) (self-healing efficiency, 90.2%; tensile strength, 19.3 MPa; strain, 1174%). In addition, TMI-DA-PU shows a high recycling efficiency (>95%) after 4 cycles of recycling. A series of characterizations indicate that TMI provides more monoene rings as the self-healing sites, forms denser cross-linked structures compared to BMI, and is, thus, more appropriate to be used for DISM applications. Moreover, the barrier abilities of coatings can be semi-quantitatively expressed by the impedance value at 0.01 Hz (|Z|0.01 Hz). The |Z|0.01 Hz value of the TMI-DA-PU coating is 3.93 × 109 Ω cm2 on day 0, which is significantly higher than that of the BMI-DA-PU coating (6.76 × 108 Ω cm2 on day 0), indicating that the denser rigid cross-linked structure of TMI results in the small porosity in the TMI-DA-PU coating, thus effectively improving the anticorrosion performance. The construction of DISMs with the structure of TMI demonstrates immense potential in self-healing anticorrosive coatings.
Collapse
Affiliation(s)
- Peng-Xiang Li
- Tianjin Key Laboratory of Chemical Process Safety and Equipment Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| | - Zhi-Yang Zhang
- Tianjin Key Laboratory of Chemical Process Safety and Equipment Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| | - Jia-Ying Cui
- Tianjin Key Laboratory of Chemical Process Safety and Equipment Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| | - Song-Hai Wu
- Tianjin Key Laboratory of Chemical Process Safety and Equipment Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| | - Yong Liu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Hai-Tao Ren
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, People's Republic of China
| | - Xu Han
- Tianjin Key Laboratory of Chemical Process Safety and Equipment Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| |
Collapse
|
6
|
Xian W, Zhan YS, Maiti A, Saab AP, Li Y. Filled Elastomers: Mechanistic and Physics-Driven Modeling and Applications as Smart Materials. Polymers (Basel) 2024; 16:1387. [PMID: 38794580 PMCID: PMC11125212 DOI: 10.3390/polym16101387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Elastomers are made of chain-like molecules to form networks that can sustain large deformation. Rubbers are thermosetting elastomers that are obtained from irreversible curing reactions. Curing reactions create permanent bonds between the molecular chains. On the other hand, thermoplastic elastomers do not need curing reactions. Incorporation of appropriated filler particles, as has been practiced for decades, can significantly enhance mechanical properties of elastomers. However, there are fundamental questions about polymer matrix composites (PMCs) that still elude complete understanding. This is because the macroscopic properties of PMCs depend not only on the overall volume fraction (ϕ) of the filler particles, but also on their spatial distribution (i.e., primary, secondary, and tertiary structure). This work aims at reviewing how the mechanical properties of PMCs are related to the microstructure of filler particles and to the interaction between filler particles and polymer matrices. Overall, soft rubbery matrices dictate the elasticity/hyperelasticity of the PMCs while the reinforcement involves polymer-particle interactions that can significantly influence the mechanical properties of the polymer matrix interface. For ϕ values higher than a threshold, percolation of the filler particles can lead to significant reinforcement. While viscoelastic behavior may be attributed to the soft rubbery component, inelastic behaviors like the Mullins and Payne effects are highly correlated to the microstructures of the polymer matrix and the filler particles, as well as that of the polymer-particle interface. Additionally, the incorporation of specific filler particles within intelligently designed polymer systems has been shown to yield a variety of functional and responsive materials, commonly termed smart materials. We review three types of smart PMCs, i.e., magnetoelastic (M-), shape-memory (SM-), and self-healing (SH-) PMCs, and discuss the constitutive models for these smart materials.
Collapse
Affiliation(s)
- Weikang Xian
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (W.X.); (Y.-S.Z.)
| | - You-Shu Zhan
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (W.X.); (Y.-S.Z.)
| | - Amitesh Maiti
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (A.M.); (A.P.S.)
| | - Andrew P. Saab
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (A.M.); (A.P.S.)
| | - Ying Li
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (W.X.); (Y.-S.Z.)
| |
Collapse
|
7
|
Zhao Y, He P, Yao J, Li M, Bai J, Xue F, Chu C, Cong Y, Chu PK. Self-Assembled Multilayered Coatings with Multiple Cyclic Self-Healing Capability, Bacteria Killing, Osteogenesis, and Angiogenesis Properties on Magnesium Alloys. Adv Healthc Mater 2024; 13:e2302519. [PMID: 38078818 DOI: 10.1002/adhm.202302519] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Indexed: 12/28/2023]
Abstract
Self-healing coatings improve the durability of magnesium (Mg) implants, but rapid corrosion still poses a challenge in the healing stage. Moreover, Mg-based materials with acceptable bacteria killing, osteogenic and angiogenic properties are challenging in biomedical applications. Herein, the self-healing polymeric coatings are fabricated on Mg alloys using the spin-assisted layer-by-layer (SLbL) assembly of hyaluronic acid (HA) and branched polyethyleneimine (bPEI) followed by chemical crosslinking treatment. The self-healing coatings show excellent adhesion strength and structure stability. The corrosion resistance is improved due to the physical barrier of polymer coatings, which also promotes the formation of hydroxyapatite (HAp) during degradation for further protection of Mg substrate. Owing to the dynamic reversible hydrogen bonds existing between HA and bPEI, the crosslinked multilayered coatings possess fast, substantial, and cyclic self-healing capabilities leading to restoration of the original structure and functions. In vitro investigations reveal that the self-healing coatings have multiple functionalities pertaining to bacteria killing, cytocompatibility, osteogenesis, as well as angiogenesis. In addition, the self-healing coatings stimulate alkaline phosphatase activity (ALP), extracellular matrix (ECM) mineralization, and the expression of osteogenesis-related genes of mBMSCs and HUVECs. This study reveals a feasible strategy to design and prepare versatile self-healing coatings on Mg implants for biomedical applications.
Collapse
Affiliation(s)
- Yanbin Zhao
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Peng He
- Department of Orthopedics, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing, 211166, China
| | - Junyan Yao
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Mei Li
- Medical Research Center, Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Jing Bai
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Feng Xue
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Chenglin Chu
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Yu Cong
- Jinling Hospital Department of Orthopedics, School of Medicine, Southeast University, Department of Orthopedics, Chinese PLA General Hospital of Eastern Theater Command, Nanjing, 210002, China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
8
|
Zhao Y, He P, Wang B, Bai J, Xue F, Chu C. Incorporating pH/NIR responsive nanocontainers into a smart self-healing coating for a magnesium alloy with controlled drug release, bacteria killing and osteogenesis properties. Acta Biomater 2024; 174:463-481. [PMID: 38072225 DOI: 10.1016/j.actbio.2023.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
Magnesium (Mg)-based orthopedic implant materials can potentially be protected from deterioration using a protective polymer coating. However, this coating is susceptible to excessive corrosion and accidental scratches. Moreover, the inadequate bone integration and infections associated with bone implants present additional challenges that hinder their effective use. In this work, a spin-spray layer-by-layer (SSLbL) assembly technique was employed to develop a smart self-healing coating for Mg alloy WE43. This coating was based on paeonol-encapsulated nanocontainers (PMP) that were modified with a stimuli-responsive polydopamine (PDA). The leached paeonol could form a compact chelating layer when complexed with Mg2+ ions. Dynamic reversible hydrogen bonds were formed between assembly units, which ensured that the hybrid coating possessed rapid and cyclic self-healing properties. Under 808 nm near-infrared (NIR) laser irradiation, the self-healing coating exhibited antibacterial properties due to the synergistic effects of hyperthermia, reactive oxygen species (ROS), and paeonol. In addition, the incorporation of nanoparticles into the hybrid coating led to improvements in the cytocompatibility and osteogenic properties of the implant material. The smart coating enhanced alkaline phosphatase activity, extracellular matrix (ECM) mineralization, and the expression of osteogenic genes. This study presents a promising opportunity to explore the application of a smart self-healing coating for a Mg alloy. STATEMENT OF SIGNIFICANCE: Herein, we report a self-healing coating comprised of polyethyleneimine and nanocontainer-crosslinked hyaluronic acid to achieve drug-controlled release, antimicrobial activity, and osteogenesis performance. The formation of hydrogen bonds between HA and PEI facilitated the self-assembly process, thereby improving the coating's corrosion resistance and adhesion strength. The hybrid coating exhibited a rapid and cyclic self-healing activity due to paeonol and dynamic reversible bonds. The release of paeonol was controlled by pH and NIR stimuli owing to polydopamine modification. In vitro testing revealed that the hybrid coating achieved effective bacteria eradication through synergistic effects of hyperthermia, reactive oxygen species, and paeonol. Moreover, the smart coating was found to enhance alkaline phosphatase activity, extracellular matrix mineralization, and the expression of osteogenic genes.
Collapse
Affiliation(s)
- Yanbin Zhao
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing 211189, China
| | - Peng He
- Department of Orthopedics, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing 211166, China; Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210093, China
| | - Bin Wang
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Nanjing 210093, China
| | - Jing Bai
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing 211189, China
| | - Feng Xue
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing 211189, China
| | - Chenglin Chu
- School of Materials Science and Engineering, Southeast University, Nanjing 211189, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing 211189, China.
| |
Collapse
|
9
|
Udoh II, Garcia AG, Dam-Johansen K. Synthesis of Mesoporous Silica Particles as Inhibitor Containers for Anticorrosive Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:17165-17174. [PMID: 37988615 DOI: 10.1021/acs.langmuir.3c02192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Herein, we introduce an innovative experimental assembly based on a high-speed disperser and a water recirculator connected to a double-wall stainless steel container as a new and effective pathway for an eco-friendly and controlled synthesis of mesoporous silica particles (MSPs). With the setup, we demonstrated a one-pot encapsulation of the particles with an inhibitor benzotriazole (BTA) to produce a smart nano/microcontainer for potential use in anticorrosive coatings. One advantage of the experimental setup is the high volume of reactant solution that can be used, yet with good control of solution temperature and stirring conditions, which increases the yield and saves laboratory time. The results obtained from the modified Stöber method show the successful preparation of near-spherical and "bean-shaped" nanometer-size (∼310 nm) MSPs with high benzotriazole encapsulation capacity (46 wt %). More so, the one-pot BTA encapsulated mesoporous silica approach revealed monodispersed spherical particles at optimal temperature and stirring conditions with a mean diameter of ∼1.1 μm and a BTA encapsulation of 23 wt %. The synthesized particles show pH responsiveness and can be further optimized and applied as nanocarriers in smart anticorrosive coatings. The experimental assembly adopted in this work represents a new, scalable approach for the synthesis of mesoporous silica particles.
Collapse
Affiliation(s)
- Inime I Udoh
- CoaST, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| | - Alicia G Garcia
- CoaST, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| | - Kim Dam-Johansen
- CoaST, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
10
|
Yimyai T, Crespy D, Rohwerder M. Corrosion-Responsive Self-Healing Coatings. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300101. [PMID: 36939547 DOI: 10.1002/adma.202300101] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Organic coatings are one of the most popular and powerful strategies for protecting metals against corrosion. They can be applied in different ways, such as by dipping, spraying, electrophoresis, casting, painting, or flow coating. They offer great flexibility of material designs and cost effectiveness. Moreover, self-healing has evolved as a new research topic for protective organic coatings in the last two decades. Responsive materials play a crucial role in this new research field. However, for targeting the development of high-performance self-healing coatings for corrosion protection, it is not sufficient just to focus on smart responsive materials and suitable active agents for self-healing. A better understanding of how coatings can react on different stimuli induced by corrosion, how these stimuli can spread in the coating, and how the released agents can reach the corroding defect is also of high importance. Such knowledge would allow the design of coatings that are optimized for specific applications. Herein, the requirements and possibilities from the corrosion and synthesis perspectives for designing materials for preparing self-healing coatings for corrosion protection are discussed.
Collapse
Affiliation(s)
- Tiwa Yimyai
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Michael Rohwerder
- Max-Planck-Institut für Eisenforschung GmbH, 40237, Düsseldorf, Germany
| |
Collapse
|
11
|
Zhang T, Zhang Y, Chen C, Tian Y, Wang Y, Cao S, Ma J. Corrosion-resistant SiO2-graphene oxide/epoxy coating reinforced by effective electron beam curing. PROGRESS IN ORGANIC COATINGS 2023; 184:107855. [DOI: 10.1016/j.porgcoat.2023.107855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
|
12
|
Wang J, Liu Z, Xin Y, Yang H, Yu X. A pH-response waterborne epoxy coating based on acid-alkali responsive supramolecular hydrogel. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
13
|
Li B, Yang H, He J, Yu S, Xiao R, Luo H, Wen Y, Peng S, Liao X, Yang D. Photopolymerization of Coating Materials for Protection against Carbon Steel Corrosion. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2015. [PMID: 36903126 PMCID: PMC10004307 DOI: 10.3390/ma16052015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
This work demonstrated a workable approach for the synthesis of a re-healing polyaniline-modified epoxy resin coating material via photopolymerization. The prepared coating material exhibited low water absorption, allowing it to be used as an anti-corrosion protective layer for carbon steel. First, graphene oxide (GO) was synthesized through the modified Hummers' method. It was then mixed with TiO2 to extend its light response range. The structural features of the coating material were identified using scanning electron microscopy (SEM), X ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FT IR). The corrosion behavior of the coatings and the pure resin layer were tested by using electrochemical impedance spectroscopy (EIS) and the potentiodynamic polarization curve (Tafel). The presence of TiO2 reduced the corrosion potential (Ecorr) toward lower values in 3.5% NaCl at room temperature, which was due to the photocathode of titanium dioxide. The experimental results indicated that GO was successfully compounded with TiO2 and that GO effectively improved the light utilization capacity of TiO2. The experiments showed that the presence of local impurities or defects can reduce the band gap energy, resulting in a lower Eg for the 2GO:1TiO2 composite (2.95 eV) compared to that of TiO2 alone (3.37 eV). After applying visible light to the coating surface, the change in the Ecorr value of the V-composite coating was 993 mV and the value of Icorr decreased to 1.993 × 10-6 A/cm2. The calculated results showed that the protection efficiency of the D-composite and V-composite coatings on composite substrates was approximately 73.5 and 83.3%, respectively. More analyses revealed that under visible light, the coating had better corrosion resistance. This coating material is expected to be a candidate for carbon steel corrosion protection.
Collapse
Affiliation(s)
- Bo Li
- Electric Power Research Institute of Guizhou Power Grid Co., Guiyang 550002, China
| | - Huibing Yang
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Jinhang He
- Electric Power Research Institute of Guizhou Power Grid Co., Guiyang 550002, China
| | - Siwu Yu
- Electric Power Research Institute of Guizhou Power Grid Co., Guiyang 550002, China
| | - Rengui Xiao
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Huanhu Luo
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Yi Wen
- Electric Power Research Institute of Guizhou Power Grid Co., Guiyang 550002, China
| | - Shengyan Peng
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Xia Liao
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Daning Yang
- Electric Power Research Institute of Hainan Power Grid Co., Haikou 570203, China
| |
Collapse
|
14
|
Sachan R, Warkar SG, Purwar R. An overview on synthesis, properties and applications of polycaprolactone copolymers, blends & composites. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2113890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Radha Sachan
- Discipline of Polymer Science and Chemical Technology, Department of Applied Chemistry, Delhi Technological University, Delhi, India
| | - Sudhir G. Warkar
- Discipline of Polymer Science and Chemical Technology, Department of Applied Chemistry, Delhi Technological University, Delhi, India
| | - Roli Purwar
- Discipline of Polymer Science and Chemical Technology, Department of Applied Chemistry, Delhi Technological University, Delhi, India
| |
Collapse
|
15
|
Pengpeng L, Xue F, Xin L, Li X, Fan Y, Zhao J, Tian L, Sun J, Ren L. Anticorrosion Coating with Heterogeneous Assembly of Nanofillers Modulated by a Magnetic Field. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7538-7551. [PMID: 36706036 DOI: 10.1021/acsami.2c19132] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
An anticorrosive coating with randomly distributed passive barriers and regionally enriched active corrosion inhibitors is developed by integrating mica nanosheets (MNSs) and magnetic-responsive core-shell mesoporous nanoparticles with 2-mercaptobenzothiazole (Fe3O4@mSiO2/MBT) under magnetic field incubation. The bottom enriched Fe3O4@mSiO2/MBT rapidly releases the MBT to form a passivation layer on corrosion sites, enhancing the corrosion inhibition efficiency by 30.36% compared with the control (NP0.7EP-R). The impedance modulus |Z|0.01 Hz of the sample (NP0.7/MNS0.5/EP) increases by five orders of magnitude compared with that of its control (NP0.7/MNS0EP) after 30 days of corrosion immersion. NP0.7/MNS0.5/EP exhibited the lowest corrosion rate (3.984 × 10-5 mm/year) as compared to the other samples. Notably, the coating in a fractured state still maintains superior corrosion inhibition even after 40 day salt spray testing. The differentiated distribution of nanofillers was well confirmed by optical microscopy and SEM-EDS, and the synergistic effect of the active/passive integrated anticorrosive coating with merits of both comprehensive protection and fast responsiveness was systematically explored.
Collapse
Affiliation(s)
- Lu Pengpeng
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun130022, China
| | - Fu Xue
- College of Chemistry, Jilin University, Changchun130012, China
| | - Li Xin
- College of Chemistry, Jilin University, Changchun130012, China
| | - Xu Li
- College of Chemistry, Jilin University, Changchun130012, China
| | - Yong Fan
- College of Chemistry, Jilin University, Changchun130012, China
| | - Jie Zhao
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun130022, China
| | - Limei Tian
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun130022, China
| | - Jiyu Sun
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun130022, China
| | - Luquan Ren
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun130022, China
| |
Collapse
|
16
|
Hao X, Yang K, Yuan Y, Zhang D, Lu L. Investigating Different Local Polyurethane Coatings Degradation Effects and Corrosion Behaivors by Talaromyces funiculosus via Wire Beam Electrodes. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1402. [PMID: 36837032 PMCID: PMC9964212 DOI: 10.3390/ma16041402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
The degradation effect of mold on the coating in a hot and humid environment is one of the important factors that cause layer failure. Combined with the wire beam electrode (WBE) and the traditional surface analysis technique, the local biodegradation of the coatings and the corrosion behaviors of metal substrates can be characterized accurately by a WBE. Herein, a WBE was used to study the degradation impact of Talaromyces funiculosus (T. funiculosus) isolated from a tropical rainforest environment on the corrosion of polyurethane (PU) coating. After immersion for 14 days, the local current density distribution of the WBE surface can reach ~10-3 A/cm2 in the fungal liquid mediums but maintains ~10-7 A/cm2 in sterile liquid mediums. The |Z|0.01Hz value of the high current densities area (#85 electrode) was 1.06 × 109 Ω cm2 in a fungal liquid medium after 14 days of immersion. After being attacked by T. funiculosus, the degradation of the PU was more severe, and there were wrinkles, cracks, blisters, and even micro-holes distributed randomly on the surface of electrodes. This resulted from the self-corrosion caused by the T. funiculosus degradation of the coating; the corrosion caused by the electric coupling effect of the coating was introduced. Energy dispersive spectroscopy (EDS) and Raman spectra results showed that the corrosion products were flakey and globular, which consisted of γ-FeOOH, γ-Fe2O3, and α-FeOOH.
Collapse
Affiliation(s)
- Xiangping Hao
- National Materials Corrosion and Protection Data Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
- BRI Southeast Asia Network for Corrosion and Protection (MOE), Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China
- Beijing Advanced Innovationation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Kexin Yang
- National Materials Corrosion and Protection Data Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Yiding Yuan
- National Materials Corrosion and Protection Data Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Dawei Zhang
- National Materials Corrosion and Protection Data Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
- BRI Southeast Asia Network for Corrosion and Protection (MOE), Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China
- Beijing Advanced Innovationation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lin Lu
- National Materials Corrosion and Protection Data Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
17
|
Gopinath S, Adarsh NN, Nair PR, Mathew S. Carbon nanofiber-reinforced shape memory polyurethanes based on HTPB/PTMG blend as anticorrosive coatings. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2022.2129386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Sithara Gopinath
- Advanced Molecular Materials Research Centre (AMMRC), Mahatma Gandhi University, Kottayam, India
| | | | - P. Radhakrishnan Nair
- Advanced Molecular Materials Research Centre (AMMRC), Mahatma Gandhi University, Kottayam, India
| | - Suresh Mathew
- Advanced Molecular Materials Research Centre (AMMRC), Mahatma Gandhi University, Kottayam, India
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, India
| |
Collapse
|
18
|
ZnPA@ZIF-8 nanoparticles: Synthesis, sustained release properties and anticorrosion performance. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Cao Y, Wu H, Wang X, Wang G, Yang H. Novel long-acting smart anticorrosion coating based on pH-controlled release polyaniline hollow microspheres encapsulating inhibitor. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Feng C, Zhu L, Cao K, Yu Z, Song Y. Difunctional Silicon Dioxide Combined with Graphene Oxide Nanocomposite to Enhance the Anticorrosion Performance of Epoxy Coatings. ACS OMEGA 2022; 7:24134-24144. [PMID: 35874218 PMCID: PMC9301642 DOI: 10.1021/acsomega.2c00494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The nanocomposite BTA-SiO2-GO was fabricated for the purpose of metal corrosion protection. Herein, the BTA-loaded mesoporous silica nanocontainers were prepared through a facile one-step synthetic method. Subsequently, graphene oxide (GO) was combined with the resultant BTA-SiO2 compound because GO had a superior barrier property and impermeability. We must note that the double functional groups exist on SiO2. Benzotriazole (BTA), as an inhibitor, can be loaded into the nanocontainer and GO can also be modified by it, resulting in excellent dispersion in epoxy coatings, which were conducive to enhancing its anticorrosion performance. In this way, the nanocomposite endows the coating system with both self-healing and physical barrier abilities. The EIS results indicated that the impedance value of the BTA-SiO2-GO composite coatings was up to 1.2 × 109 Ω cm2, which indicated excellent corrosion resistant properties.
Collapse
Affiliation(s)
- Chun Feng
- Tubular
Goods Research Institute of China National Petroleum Corporation, Xi’an 710077, China
- State Key
Laboratory for Performance and Structure Safety of Petroleum Tubular
Goods and Equipment Materials, Xi’an 710077, China
| | - Lijuan Zhu
- Tubular
Goods Research Institute of China National Petroleum Corporation, Xi’an 710077, China
- State Key
Laboratory for Performance and Structure Safety of Petroleum Tubular
Goods and Equipment Materials, Xi’an 710077, China
| | - Kunyao Cao
- Southwest
Petroleum University, School of Chemistry
and Chemical Engineering, Chengdu 610500, China
| | - Zongxue Yu
- Southwest
Petroleum University, School of Chemistry
and Chemical Engineering, Chengdu 610500, China
| | - Yacong Song
- Xi’an
Shiyou University, School of Materials Science
and Engineering, Xi’an 710065, China
| |
Collapse
|
21
|
Wang J, Yi D, Peng X, Yang H, Wang T, Gao J, Xie B, Su G. The hydrophobically modified cellulose-based aerogel loaded with BTA enhances the anticorrosion and active self-healing properties of epoxy coating. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Wang X, Zhang J, Liu J, Liu R, Luo J. Synthesis of acrylated tannic acid as bio-based adhesion promoter in UV-curable coating with improved corrosion resistance. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Zhou C, Pan M, Li S, Sun Y, Zhang H, Luo X, Liu Y, Zeng H. Metal organic frameworks (MOFs) as multifunctional nanoplatform for anticorrosion surfaces and coatings. Adv Colloid Interface Sci 2022; 305:102707. [PMID: 35640314 DOI: 10.1016/j.cis.2022.102707] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022]
Abstract
Corrosion of metallic materials is a long-standing problem in many engineering fields. Various organic coatings have been widely applied in anticorrosion of metallic materials over the past decades. However, the protective performance of many organic coatings is limited due to the undesirable local failure of the coatings caused by micro-pores and cracks in the coating matrix. Recently, metal organic frameworks (MOFs)-based surfaces and coatings (MOFBSCs) have exhibited great potential in constructing protective materials on metallic substrates with efficient and durable anticorrosion performance. The tailorable porous structure, flexible composition, numerous active sites, and controllable release properties of MOFs make them an ideal platform for developing various protective functionalities, such as self-healing property, superhydrophobicity, and physical barrier against corrosion media. MOFs-based anticorrosion surfaces and coatings can be divided into two categories: the composite surfaces/coatings using MOFs-based passive/active nanofillers and the surfaces/coatings using MOFs as functional substrate support. In this work, the state-of-the-art fabrication strategies of the MOFBSCs are systematically reviewed. The anticorrosion mechanisms of MOFBSCs and functions of the MOFs in the coating matrix are discussed accordingly. Additionally, we highlight both traditional and emerging electrochemical techniques for probing protective performances and mechanisms of MOFBSCs. The remaining challenging issues and perspectives are also discussed.
Collapse
Affiliation(s)
- Chengliang Zhou
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, PR China; Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada; Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, Hunan 410082, PR China
| | - Mingfei Pan
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Sijia Li
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Yongxiang Sun
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongjian Zhang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, PR China; Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, Hunan 410082, PR China
| | - Xiaohu Luo
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, PR China; School of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities, Duyun 558000, PR China.
| | - Yali Liu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, PR China; Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, Hunan 410082, PR China.
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
24
|
Liu CB, Cheng L, Qian B, Cui LY, Zeng RC. Corrosion self-warning and repair tracking of polymeric coatings based on stimulus responsive nanosensors. NANOSCALE 2022; 14:8429-8440. [PMID: 35642496 DOI: 10.1039/d2nr01406h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Smart polymeric coatings with early corrosion self-warning and damage self-repairing characteristics have garnered tremendous interest due to their ability to sense corrosion reactions and repair coating defects. However, tracking the repair process and its underlying protection mechanism is highly challenging. Herein, we report the construction of a novel composite coating by incorporating multifunctional nanosensors (graphene oxide-zeolitic imidazole frameworks loaded with 1,10-phenanthroline) into a thermo-responsive polyurethane. Under damaging events, the localized acidity derived from metal corrosion stimulates the decomposition of the nanosensors to produce 1,10-phenanthroline and benzimidazole. The generated ferrous ions are rapidly sensed by the released 1,10-phenanthroline to produce a conspicuous red color, which warns of the corrosion occurrence. In profiting from the photothermal effect of graphene oxide, the composite coating exhibits efficient crack closure behavior under near-infrared light irradiation. Morphology observation indicates that a coating scratch (about 30 μm wide) almost closed with 20 s of irradiation. The photothermally activated crack closure combined with benzimidazole inhibition endows the prepared coating with superior self-repairing performance. Interestingly, the change in color intensity around the coating defect can assist in tracking the repair process. Therefore, this work provides a novel strategy to visualize microscopic behaviors during damage and repair processes.
Collapse
Affiliation(s)
- Cheng-Bao Liu
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Li Cheng
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bei Qian
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Lan-Yue Cui
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Rong-Chang Zeng
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| |
Collapse
|
25
|
Uses of Scanning Electrochemical Microscopy (SECM) for the Characterization with Spatial and Chemical Resolution of Thin Surface Layers and Coating Systems Applied on Metals: A Review. COATINGS 2022. [DOI: 10.3390/coatings12050637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Scanning Electrochemical Microscopy (SECM) is increasingly used in the study and characterization of thin surface films as well as organic and inorganic coatings applied on metals for the collection of spatially- and chemically-resolved information on the localized reactions related to material degradation processes. The movement of a microelectrode (ME) in close proximity to the interface under study allows the application of various experimental procedures that can be classified into amperometric and potentiometric operations depending on either sensing faradaic currents or concentration distributions resulting from the corrosion process. Quantitative analysis can be performed using the ME signal, thus revealing different sample properties and/or the influence of the environment and experimental variables that can be observed on different length scales. In this way, identification of the earlier stages for localized corrosion initiation, the adsorption and formation of inhibitor layers, monitoring of water and specific ions uptake by intact polymeric coatings applied on metals for corrosion protection as well as lixiviation, and detection of coating swelling—which constitutes the earlier stages of blistering—have been successfully achieved. Unfortunately, despite these successful applications of SECM for the characterization of surface layers and coating systems applied on metallic materials, we often find in the scientific literature insufficient or even inadequate description of experimental conditions related to the reliability and reproducibility of SECM data for validation. This review focuses specifically on these features as a continuation of a previous review describing the applications of SECM in this field.
Collapse
|
26
|
Boga K, Patti AF, Warner JC, Simon GP, Saito K. Sustainable Light‐stimulated Synthesis of Cross‐linked Polymer Microparticles. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Karteek Boga
- School of Chemistry Monash University Clayton VIC 3800 Australia
| | - Antonio F. Patti
- School of Chemistry Monash University Clayton VIC 3800 Australia
| | - John C. Warner
- School of Chemistry Monash University Clayton VIC 3800 Australia
| | - George P. Simon
- Department of Materials Science and Engineering Monash University Clayton VIC 3800 Australia
| | - Kei Saito
- School of Chemistry Monash University Clayton VIC 3800 Australia
- Graduate School of Advanced Integrated Studies in Human Survivability Kyoto University Higashi‐Ichijo‐Kan, Yoshida‐nakaadachicho 1 Sakyo‐ku Kyoto Japan
| |
Collapse
|
27
|
Epoxy coating with excellent anticorrosion and pH-responsive performances based on DEAEMA modified mesoporous silica nanomaterials. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Fu X, Du W, Dou H, Fan Y, Xu J, Tian L, Zhao J, Ren L. Nanofiber Composite Coating with Self-Healing and Active Anticorrosive Performances. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57880-57892. [PMID: 34797646 DOI: 10.1021/acsami.1c16052] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Synergetic self-healing anticorrosion behaviors, by forming a self-assembly protective layer and repairing coating passive barrier, exhibit great potential in handling the notorious metal corrosion phenomenon. Herein, we developed a nanofiber-supported anticorrosion coating with synergistic protection effects of both self-healing and active corrosion inhibition, via a facile electrospinning combined coating technique. Polycaprolactone (PCL) nanofiber integrated with 2-mecapobenzothiazole-loaded halloysite nanotubes (HNTs-MBT) is directly deposited on the surface of metal substrate, forming an interconnected fiber network framework. The encapsulated corrosion inhibitor MBT can be released by a pH-triggered manner to realize instant corrosion protections. Additionally, coating defects could be repeatedly repaired by continuous polymer fiber upon heat treatment and the anticorrosion efficiency effectively remained, even after three cycles of damage-healing. Moreover, the repaired coating also exhibited durable anticorrosion performance, mainly attributed to the synergetic effects of both thermal-triggered bulk healing and active corrosion inhibition. This type of dual-functional coating provides efficient anticorrosive performances and may show great promise in long-term corrosion protection.
Collapse
Affiliation(s)
- Xue Fu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
- College of Chemistry, Jilin University, Changchun 130022, China
| | - Wenbo Du
- National Key Laboratory for Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China
| | - Haixu Dou
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Yong Fan
- College of Chemistry, Jilin University, Changchun 130022, China
| | - Jianing Xu
- College of Chemistry, Jilin University, Changchun 130022, China
| | - Limei Tian
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Jie Zhao
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Luquan Ren
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| |
Collapse
|
29
|
Synthesis and controlled release kinetics of pH-sensitive hollow polyaniline microspheres encapsuled with the corrosion inhibitor. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Shundo A, Aoki M, Yamamoto S, Tanaka K. Effect of Cross-Linking Density on Horizontal and Vertical Shift Factors in Linear Viscoelastic Functions of Epoxy Resins. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01293] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Atsuomi Shundo
- Department of Automotive Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Mika Aoki
- Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Satoru Yamamoto
- Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Keiji Tanaka
- Department of Automotive Science, Kyushu University, Fukuoka 819-0395, Japan
- Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, Fukuoka 819-0395, Japan
- Department of Applied Chemistry, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
31
|
Ekeocha J, Ellingford C, Pan M, Wemyss AM, Bowen C, Wan C. Challenges and Opportunities of Self-Healing Polymers and Devices for Extreme and Hostile Environments. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008052. [PMID: 34165832 DOI: 10.1002/adma.202008052] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/21/2020] [Indexed: 06/13/2023]
Abstract
Engineering materials and devices can be damaged during their service life as a result of mechanical fatigue, punctures, electrical breakdown, and electrochemical corrosion. This damage can lead to unexpected failure during operation, which requires regular inspection, repair, and replacement of the products, resulting in additional energy consumption and cost. During operation in challenging, extreme, or harsh environments, such as those encountered in high or low temperature, nuclear, offshore, space, and deep mining environments, the robustness and stability of materials and devices are extremely important. Over recent decades, significant effort has been invested into improving the robustness and stability of materials through either structural design, the introduction of new chemistry, or improved manufacturing processes. Inspired by natural systems, the creation of self-healing materials has the potential to overcome these challenges and provide a route to achieve dynamic repair during service. Current research on self-healing polymers remains in its infancy, and self-healing behavior under harsh and extreme conditions is a particularly untapped area of research. Here, the self-healing mechanisms and performance of materials under a variety of harsh environments are discussed. An overview of polymer-based devices developed for a range of challenging environments is provided, along with areas for future research.
Collapse
Affiliation(s)
- James Ekeocha
- International Institute for Nanocomposites Manufacturing (IINM), University of Warwick, Coventry, CV4 7AL, UK
| | - Christopher Ellingford
- International Institute for Nanocomposites Manufacturing (IINM), University of Warwick, Coventry, CV4 7AL, UK
| | - Min Pan
- Department of Mechanical Engineering, University of Bath, Bath, BA2 7AY, UK
| | - Alan M Wemyss
- International Institute for Nanocomposites Manufacturing (IINM), University of Warwick, Coventry, CV4 7AL, UK
| | - Christopher Bowen
- Department of Mechanical Engineering, University of Bath, Bath, BA2 7AY, UK
| | - Chaoying Wan
- International Institute for Nanocomposites Manufacturing (IINM), University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
32
|
Abstract
Shape memory alloys, materials capable of being deformed and maintaining the deformation and additionally capable of returning to the initial position, are valued for a range of applications from actuators to flexible microdevices. Maintaining the properties that make them useful, their ability to deform and reform, requires that shape memory alloys must be protected against corrosion, in which the integration of shape memory polymers can act as a means of protection. Thus, this review is to highlight the utility of self-healing shape memory polymers as a means of corrosion inhibition. Therefore, this review discusses the benefits of utilizing self-healing shape memory polymers for the protection of shape memory, several types of self-healing polymers that could be used, means of improving or tailoring the polymers towards specific usages, and future prospects in designing a shape memory polymer for use in corrosion inhibition.
Collapse
|
33
|
Shundo A, Aoki M, Yamamoto S, Tanaka K. Cross-Linking Effect on Segmental Dynamics of Well-Defined Epoxy Resins. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00513] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Atsuomi Shundo
- Department of Automotive Science, Kyushu University, Fukuoka 819-0395, Japan
- Department of Applied Chemistry, Kyushu University, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan
| | - Mika Aoki
- Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Satoru Yamamoto
- Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Keiji Tanaka
- Department of Automotive Science, Kyushu University, Fukuoka 819-0395, Japan
- Department of Applied Chemistry, Kyushu University, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan
- Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
34
|
Gopinath S, Adarsh NN, Nair PR, Mathew S. Shape-Memory Polymer Nanocomposites of Poly(ε-caprolactone) with the Polystyrene- block-polybutadiene- block-polystyrene-tri- block Copolymer Encapsulated with Metal Oxides. ACS OMEGA 2021; 6:6261-6273. [PMID: 33718716 PMCID: PMC7948221 DOI: 10.1021/acsomega.0c05839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Shape-memory polymer composite (SMPC) blends with thermo-responsive shape memorizing capability have received increasing interest and have been a grooming research area due to their various potential applications. In this work, we report three thermo-responsive SMPCs derived from poly(ε-caprolactone) (PCL) and the polystyrene-block-polybutadiene-block-polystyrene-tri-block copolymer (SBS) encapsulated with CuO, Fe2O3, and CuFe2O4, namely, SMPC-CuO, SMPC-Fe 2 O 3 , and SMPC-CuFe 2 O 4 , respectively. We have also synthesized the neat shape-memory polymer matrix SMP in the context of the effect of the metal oxide encapsulates on the shape-memory property. Neat SBS rubber and PCL are used as the polymer-elastomer blend matrix to form SMP. The objective of this study is to understand the effect of these three metal oxide nanofillers encapsulated within the SMP matrix and their thermal, mechanical, and shape-memory properties. Morphological, thermal, mechanical, and shape-memory properties of the prepared SMPCs are completely characterized. It is revealed that the addition of nano-metallic-oxide fillers into the polymeric matrix significantly improved the overall properties of SMPCs. The tensile test confirmed that SMPC-CuFe 2 O 4 possesses a high tensile modulus and is found to be very rigid when compared to other SMPCs. The shape fixing property is found in the increasing order as follows: SMPC-CuO > SMPC-Fe 2 O 3 > SMP > SMPC-CuFe 2 O 4 . The better thermal, mechanical, and shape-memory performances were shown by the SMPC-Fe 2 O 3 composite, and thus, it can be considered as the better shape-memory polymer nanocomposite among all others. An optimum storage modulus was attained by SMPC-Fe 2 O 3 among the SMPCs. More interestingly, we have developed a microvalve actuator system using SMPC-Fe 2 O 3 , which could be useful for promising microsystem applications.
Collapse
Affiliation(s)
- Sithara Gopinath
- Advanced
Molecular Materials Research Centre (AMMRC), Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | - Nayarassery N. Adarsh
- School
of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | | | - Suresh Mathew
- Advanced
Molecular Materials Research Centre (AMMRC), Mahatma Gandhi University, Kottayam, Kerala 686560, India
- School
of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| |
Collapse
|
35
|
Zhang J, Wei J, Li B, Zhao X, Zhang J. Long-term corrosion protection for magnesium alloy by two-layer self-healing superamphiphobic coatings based on shape memory polymers and attapulgite. J Colloid Interface Sci 2021; 594:836-847. [PMID: 33794405 DOI: 10.1016/j.jcis.2021.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 01/29/2023]
Abstract
Magnesium (Mg) alloy has wide potential applications due to its unique properties, but is apt to corrosion. Recently, superhydrophobic coatings are receiving great interest for corrosion protection of metals but suffer from short lifespan. Here, we report a strategy for long-term corrosion protection of Mg alloy by designing two-layer self-healing superamphiphobic coatings based on shape memory polymers (SMP) and attapulgite. The superamphiphobic coatings are composed of a bottom SMP coating containing a corrosion inhibitor (1, 2, 3-benzotriazole, BTA) and ceresine wax microparticles and a top superamphiphobic attapulgite coating. The two-layer self-healing coatings have excellent superamphiphobicity and initial anti-corrosion performance. The Mg alloy with the coatings can withstand immersion in 3.5 wt% NaCl solution for 80 days and neutral salt spray with 5 wt% NaCl for 54 days. Furthermore, the coatings show excellent self-healing capability towards various physical damages, such as 10 scratching/self-healing cycles at the same position, hexagonal star scratching and grid scratching. Moreover, the physically damaged coatings exhibit self-healing behavior of the microstructure and superhydrophobicity, driven by the shape memory effect of the bottom SMP layer. Thus, the self-healed coatings can still withstand 60 days of 3.5 wt% NaCl solution immersion and 30 days of 5 wt% NaCl salt spray. This study paves the way for applying super anti-wetting coatings for long-term corrosion protection of metals.
Collapse
Affiliation(s)
- Jiaojiao Zhang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, and Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Jinfei Wei
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, and Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Bucheng Li
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, and Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Xia Zhao
- Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China
| | - Junping Zhang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, and Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
36
|
Thongchaivetcharat K, Salaluk S, Crespy D, Thérien-Aubin H, Landfester K. Responsive Colloidosomes with Triple Function for Anticorrosion. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42129-42139. [PMID: 32841000 PMCID: PMC7503512 DOI: 10.1021/acsami.0c11866] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Strategies for corrosion protection are required to prolong the life span of metallic structures used by the construction, aerospace, and transport industries. Currently, there are no coatings that can provide at the same time information about the corrosion status of the coated metal and protect the metal against corrosive species and mechanical damage. Herein, triple-functional microcarriers with functions of corrosion sensing, self-healing, and corrosion inhibition are produced and embedded in coatings to prolong the lifetime of metals and enhance the anticorrosion performance of coatings. The microcarriers are prepared by creating Pickering droplets loaded with a corrosion inhibitor and a healing agent and stabilized by silica nanocapsules containing thymol blue as corrosion sensor. The microcarriers are then embedded in a water-based polymer matrix coated on metal substrates. When the coating or metal is mechanically damaged, the healing agent is released from the droplets to hinder further corrosion of the metal. When the local pH value near the metal surface is changing by the generation of hydroxide ion due to the corrosion process, a change of color is detected as well as a release of corrosion inhibitor, leading to a significant decrease of corrosion rate of the coated metal.
Collapse
Affiliation(s)
- Kusuma Thongchaivetcharat
- Max
Planck-VISTEC Partner Laboratory for Sustainable Materials, Department
of Materials Science and Engineering, School of Molecular Science
and Engineering, Vidyasirimedhi Institute
of Science and Technology, Rayong 21210, Thailand
| | - Suttiruk Salaluk
- Max
Planck-VISTEC Partner Laboratory for Sustainable Materials, Department
of Materials Science and Engineering, School of Molecular Science
and Engineering, Vidyasirimedhi Institute
of Science and Technology, Rayong 21210, Thailand
| | - Daniel Crespy
- Max
Planck-VISTEC Partner Laboratory for Sustainable Materials, Department
of Materials Science and Engineering, School of Molecular Science
and Engineering, Vidyasirimedhi Institute
of Science and Technology, Rayong 21210, Thailand
| | | | - Katharina Landfester
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
37
|
Qu Q, Wang H, He J, Qin T, Da Y, Tian X. Analysis of the microphase structure and performance of self-healing polyurethanes containing dynamic disulfide bonds. SOFT MATTER 2020; 16:9128-9139. [PMID: 32926046 DOI: 10.1039/d0sm01072c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Self-healable polyurethanes can be used in various fields for extended service life and reduced maintenance costs. It is generally believed that the shape memory effect is helpful for achieving a high healing efficiency. The morphological features were focused on in this study as microphase separation is one of the main factors affecting various performances of polyurethanes, including their shape memory behavior and mechanical properties. Microphase separation can be regulated by changing the content and types of the hard segments. With this in mind, polyurethanes from polycaprolactone diol, hexamethylene diisocyanate, and different chain extenders were synthesized, characterized, and designed as promising self-healing polymers. All the polyurethane specimens were equipped with a similar content of hard segments but diverse types, such as aliphatic, aromatic, and disulfide-bonded. Differential scanning calorimetry, thermogravimetric analysis, X-ray diffractometry, infrared spectroscopy, and atomic force microscopy were used to describe the microstructures of the polyurethanes, including the crystalline regions. The relationship between the microphase separation structures and material properties was focused on in this examination. Various properties, including the thermal stability, mechanical behavior, hydrophobicity, and self-healing efficiency showed significant differences due to the change in the hard segments' structure and multiphase distribution. The aliphatic disulfide stimulated the conformation of a proper microphase separation structure (the large heterogeneous structure at physical length scales as well as a more sufficient combination of soft and hard phases), which helped to improve the healing effect as much as possible by effective wound closure and the exchange reactions of disulfide bonds.
Collapse
Affiliation(s)
- Qiqi Qu
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China. and University of Science and Technology of China, Hefei 230026, P. R. China
| | - Hua Wang
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China. and Hefei Institute of Technology Innovation, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Jing He
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China. and University of Science and Technology of China, Hefei 230026, P. R. China
| | - Tengfei Qin
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China. and University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yunsheng Da
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China. and University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xingyou Tian
- Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.
| |
Collapse
|
38
|
Liu C, Zhao J, Li X, Yang J, Ma H, Li X. Size dependency between the carbides and durability of X80 steel in acid solid environment. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114506] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
39
|
Zhao X, Wei J, Li B, Li S, Tian N, Jing L, Zhang J. A self-healing superamphiphobic coating for efficient corrosion protection of magnesium alloy. J Colloid Interface Sci 2020; 575:140-149. [DOI: 10.1016/j.jcis.2020.04.097] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/01/2020] [Accepted: 04/23/2020] [Indexed: 11/26/2022]
|
40
|
Aoki M, Shundo A, Yamamoto S, Tanaka K. Effect of a heterogeneous network on glass transition dynamics and solvent crack behavior of epoxy resins. SOFT MATTER 2020; 16:7470-7478. [PMID: 32747885 DOI: 10.1039/d0sm00625d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In general, it has been widely accepted that the physical properties of an epoxy resin are strongly dependent on how it is prepared. However, a clear understanding of the mechanisms of the relationship at a molecular level has yet to be achieved. We here studied the glass transition dynamics and fracture behavior of four epoxy resins, which were pre-cured at different temperatures and well cured under the same conditions. Fourier-transform infrared spectroscopy revealed that the reaction kinetics for an epoxy-amine mixture were strongly dependent on the pre-curing temperature. The glass transition temperature of epoxy resins with the same cross-linking density was dependent on the pre-curing temperature. Dielectric relaxation spectroscopy and dynamic mechanical analysis revealed that the fragility index of the epoxy resin decreased with increasing pre-curing temperature, indicating that the network structure formed in it became more heterogeneous with increasing pre-curing temperature. Once the epoxy resin was immersed in a good solvent, it was partly swollen and was then macroscopically fractured. The fracture was initiated by the crack generation in an un-swollen region of the resin due to the stress induced upon swelling. The immersion time required to reach the fracture decreased as the extent of the heterogeneity increased. The knowledge here obtained should be useful for understanding and controlling fracture toughness of epoxy resins, leading to the furtherance of their functionalization.
Collapse
Affiliation(s)
- Mika Aoki
- Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, Fukuoka 819-0395, Japan.
| | - Atsuomi Shundo
- Department of Automotive Science, Kyushu University, Fukuoka 819-0395, Japan. and Department of Applied Chemistry, Kyushu University, Fukuoka 819-0395, Japan and International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan
| | - Satoru Yamamoto
- Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, Fukuoka 819-0395, Japan.
| | - Keiji Tanaka
- Center for Polymer Interface and Molecular Adhesion Science, Kyushu University, Fukuoka 819-0395, Japan. and Department of Automotive Science, Kyushu University, Fukuoka 819-0395, Japan. and Department of Applied Chemistry, Kyushu University, Fukuoka 819-0395, Japan and International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
41
|
Huang H, Sheng X, Tian Y, Zhang L, Chen Y, Zhang X. Two-Dimensional Nanomaterials for Anticorrosive Polymeric Coatings: A Review. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02876] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Haowei Huang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, China
| | - Xinxin Sheng
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuqin Tian
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, China
| | - Li Zhang
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Xinya Zhang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
42
|
Iregui Á, Otaegi I, Arandia I, Martin MD, Müller AJ, Irusta L, González A. Fully Reversible Spherulitic Morphology in Cationically Photopolymerized DGEBA/PCL Shape-Memory Blends. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02474] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Álvaro Iregui
- POLYMAT, Department of Polymer Science and Technology, University of the Basque Country UPV-EHU, P.O. Box 1072, 20080 Donostia/San Sebastian, Spain
| | - Itziar Otaegi
- POLYMAT, Department of Polymer Science and Technology, University of the Basque Country UPV-EHU, P.O. Box 1072, 20080 Donostia/San Sebastian, Spain
| | - Idoia Arandia
- POLYMAT, Department of Polymer Science and Technology, University of the Basque Country UPV-EHU, P.O. Box 1072, 20080 Donostia/San Sebastian, Spain
| | - M. Dolores Martin
- Macrobehaviour-Mesostructure-Nanotechnology SGIker Service, Polytechnic School, University of the Basque Country UPV-EHU, Plaza Europa 1, 20018 Donostia/San Sebastian, Spain
| | - Alejandro J. Müller
- POLYMAT, Department of Polymer Science and Technology, University of the Basque Country UPV-EHU, P.O. Box 1072, 20080 Donostia/San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Lourdes Irusta
- POLYMAT, Department of Polymer Science and Technology, University of the Basque Country UPV-EHU, P.O. Box 1072, 20080 Donostia/San Sebastian, Spain
| | - Alba González
- POLYMAT, Department of Polymer Science and Technology, University of the Basque Country UPV-EHU, P.O. Box 1072, 20080 Donostia/San Sebastian, Spain
| |
Collapse
|
43
|
Theerasilp M, Crespy D. Self-reporting of payload release in polymer coatings based on the inner filter effect. Polym Chem 2020. [DOI: 10.1039/c9py01756a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New polymeric nanoparticle sensors are developed for monitoring the release of non-fluorescent payloads in coatings by the naked eye.
Collapse
Affiliation(s)
- Man Theerasilp
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong 21210
- Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong 21210
- Thailand
| |
Collapse
|
44
|
Kasaeian M, Ghasemi E, Ramezanzadeh B, Mahdavian M. Graphene oxide as a potential nanocarrier for Zn(II) to fabricate a dual-functional active/passive protection; sorption/desorption characteristics and electrochemical evaluation. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.01.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
45
|
Hydrophobic self-healing polymer coatings from carboxylic acid- and fluorine-containing polymer nanocontainers. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.02.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
46
|
Shchukina E, Wang H, Shchukin DG. Nanocontainer-based self-healing coatings: current progress and future perspectives. Chem Commun (Camb) 2019; 55:3859-3867. [DOI: 10.1039/c8cc09982k] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Nanocontainers add more functionalities to the standard coating formulations.
Collapse
Affiliation(s)
- Elena Shchukina
- Stephenson Institute for Renewable Energy
- Department of Chemistry
- University of Liverpool
- L69 7ZF Liverpool
- UK
| | - Hongqiang Wang
- Centre for Nanoenergy Materials
- School of Materials Science and Engineering
- Northwestern Polytechnical University
- Xi'an
- P. R. China
| | - Dmitry G. Shchukin
- Stephenson Institute for Renewable Energy
- Department of Chemistry
- University of Liverpool
- L69 7ZF Liverpool
- UK
| |
Collapse
|
47
|
Guo Y, Wang J, Zhang D, Qi T, Li GL. pH-responsive self-healing anticorrosion coatings based on benzotriazole-containing zeolitic imidazole framework. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.10.044] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
Menon AV, Madras G, Bose S. The journey of self-healing and shape memory polyurethanes from bench to translational research. Polym Chem 2019. [DOI: 10.1039/c9py00854c] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this critical review, we have enlisted a comprehensive summary of different approaches that have been used over the past decade to synthesize self-healing polyurethanes including “close then heal” and “shape memory assisted self-healing” concept.
Collapse
Affiliation(s)
- Aishwarya V. Menon
- Center for Nano Science and Engineering
- Indian Institute of Science
- Bangalore-560012
- India
| | - Giridhar Madras
- Department of Chemical Engineering
- Indian Institute of Science
- Bangalore-560012
- India
| | - Suryasarathi Bose
- Department of Materials Engineering
- Indian Institute of Science
- Bangalore-560012
- India
| |
Collapse
|
49
|
Liu C, Zhao H, Hou P, Qian B, Wang X, Guo C, Wang L. Efficient Graphene/Cyclodextrin-Based Nanocontainer: Synthesis and Host-Guest Inclusion for Self-Healing Anticorrosion Application. ACS APPLIED MATERIALS & INTERFACES 2018; 10:36229-36239. [PMID: 30260207 DOI: 10.1021/acsami.8b11108] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cyclodextrin, with a hydrophobic inner cavity and a hydrophilic exterior, is often used to encapsulate a widest range of guest molecules based on host-guest inclusion interactions. Graphene, an emerging nanobuilding material, exhibits great potential for numerous applications because of its superior characteristics. Herein, we synthesized a novel graphene/β-cyclodextrin-based supramolecular nanocontainer with excellent inhibitor encapsulating capacity and high impermeable properties. The benzotriazole (BTA)-loaded nanocontainers were then used to endow coating system with excellent passive and active anticorrosion performance. Local electrochemical impedance spectroscopy (LEIS) was performed to characterize the self-healing behavior of composite coatings. Results indicated that the protective capability of the scratched coatings can be recovered through BTA release from containers. Furthermore, the long-term corrosion resistance of container-based coating was largely improved as observed from EIS. The effective healing process involves two conditions: (1) the release of BTA from containers and formation of adsorption layers on exposed metal surfaces and (2) the impermeable graphene nanosheets greatly impeded the electrolyte penetration and corrosion extension around the scratch. This novel graphene/β-cyclodextrin-based nanocontainer endows polymer coating with efficient self-healing functionality and durable anticorrosion property.
Collapse
Affiliation(s)
- Chengbao Liu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Haichao Zhao
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , China
| | - Peimin Hou
- State Key Laboratory of Marine Coatings , Marine Chemical Research Institute , Qingdao 266071 , China
| | - Bei Qian
- College of Chemistry and Pharmaceutical Sciences , Qingdao Agricultural University , Qingdao 266109 , China
| | - Xiao Wang
- State Key Laboratory of Marine Coatings , Marine Chemical Research Institute , Qingdao 266071 , China
| | - Chunyan Guo
- Ashine Advanced Carbon Materials, Co. Ltd , Changzhou 213245 , China
| | - Liping Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , China
| |
Collapse
|