1
|
Zhu H, Xia D, He H, Zhang J, Wu D. Polydopamine Decorated Hyaluronic Acid Clusters for Tumor Cell Targeting Combination Therapy via Template Self-Consumption Methods. Macromol Rapid Commun 2024:e2400887. [PMID: 39632414 DOI: 10.1002/marc.202400887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/19/2024] [Indexed: 12/07/2024]
Abstract
Photothermal-chemodynamic-chemotherapy (PTT-CDT-CT) combination therapy significantly enhances the therapeutic efficacy against tumors. However, synthesizing PTT-CDT-CT nanosystems is complex, typically requiring the preparation and conjugation of three components into a single carrier. To overcome this challenge, a facile template self-consumption method is developed. In this approach, hyaluronic acid (HA), recognized for its tumor cell targeting properties, chelates with Cu2+ to form Cu-HA, which then transforms into CuO2@HA cluster templates. These templates self-consume gradually, producing ·OH and Cu2+, which catalyze the rapid polymerization of dopamine and coordinate with polydopamine respectively, enhancing the photothermal conversion efficiency. After gossypol loading, GPDA@HA clusters are formed, achieving high gossypol loading efficiency due to π-π stacking between gossypol and PDA, as well as coordination between gossypol and Cu2+. The GPDA@HA clusters are effectively internalized by tumor cells through endocytosis, mediating the synergistic damage or inhibition of intracellular proteins, and nucleic acids against tumor cells via PTT, CDT, and CT. Crucially, the synergism of PTT-CDT-CT combination therapy far surpasses those of a single modality. This work introduces a new pathway for the synthesis of PTT-CDT-CT nanosystems, avoiding the conventional synthesis and loading of different therapeutic agents, and provides insights into developing personalized drug combination therapies with high efficacy.
Collapse
Affiliation(s)
- Hongrui Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Daqing Xia
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Huan He
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China
| | - Daocheng Wu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No.28 Xianning West Road, Xi'an, 710049, China
| |
Collapse
|
2
|
Fu Y, Zhang H, Ye J, Chen C, Yang Y, Wu B, Yin X, Shi J, Zhu Y, Zhao C, Zhang W. An "all-in-one" treatment and imaging nanoplatform for breast cancer with photothermal nanoparticles. NANOSCALE ADVANCES 2024; 6:1423-1435. [PMID: 38419880 PMCID: PMC10898424 DOI: 10.1039/d3na00814b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/22/2024] [Indexed: 03/02/2024]
Abstract
Drug delivery systems based on nanoparticles still face challenges of low efficacy and an inability to track treatment effects in tumor therapy due to biological barriers. This limitation hinders clinicians' ability to determine treatment effects and proper drug dosages, thus, ultimately impeding the further application and transformation of nanoplatforms. To address this challenge, an all-in-one nanoplatform for therapy and imaging is proposed. The nanoplatform is constructed by using nanoparticles through the co-encapsulation of the photothermal therapeutic agent IR780, the passively targeted drug OA@Fe3O4, and the chemotherapeutic drug paclitaxel. Under the guidance of magnetic navigation, the nanoparticles can enhance local enrichment of the drug, while the luminescence properties of IR780 enable drug tracking at the same time. Remarkably, the nanoparticles exhibit improved photothermal-chemotherapy synergy under magnetic targeting guidance, demonstrating antitumor effects in both in vitro and in vivo experiments. It is demonstrated that the use of these polymeric nanoparticles has significant potential for future biomedical applications and clinical decisions.
Collapse
Affiliation(s)
- Yuping Fu
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing 210008 China
| | - Hongmei Zhang
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing 210008 China
| | - Jiahui Ye
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University Nanjing 210008 China
| | - Changrong Chen
- Division of Emergency Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University Nanjing 210008 China
| | - Yaxuan Yang
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University Nanjing 210008 China
| | - Baojuan Wu
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University Nanjing 210008 China
| | - Xi Yin
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University Nanjing 210008 China
| | - Jiajun Shi
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University Nanjing 210008 China
| | - Yun Zhu
- Division of Pharmacy Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University Nanjing 210008 China
| | - Cheng Zhao
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University Nanjing 210008 China
| | - Weijie Zhang
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing 210008 China
- Division of Breast Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School, Nanjing University Nanjing 210008 China
| |
Collapse
|
3
|
Shashikumar U, Joshi S, Srivastava A, Tsai PC, Shree KDS, Suresh M, Ravindran B, Hussain CM, Chawla S, Ke LY, Ponnusamy VK. Trajectory in biological metal-organic frameworks: Biosensing and sustainable strategies-perspectives and challenges. Int J Biol Macromol 2023; 253:127120. [PMID: 37820902 DOI: 10.1016/j.ijbiomac.2023.127120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
The ligand attribute of biomolecules to form coordination bonds with metal ions led to the discovery of a novel class of materials called biomolecule-associated metal-organic frameworks (Bio-MOFs). These biomolecules coordinate in multiple ways and provide versatile applications. Far-spread bio-ligands include nucleobases, amino acids, peptides, cyclodextrins, saccharides, porphyrins/metalloporphyrin, proteins, etc. Low-toxicity, self-assembly, stability, designable and selectable porous size, the existence of rigid and flexible forms, bio-compatibility, and synergistic interactions between metal ions have led Bio-MOFs to be commercialized in industries such as sensors, food, pharma, and eco-sensing. The rapid growth and commercialization are stunted by absolute bio-compatibility issues, bulk morphology that makes it rigid to alter shape/porosity, longer reaction times, and inadequate research. This review elucidates the structural vitality, biocompatibility issues, and vital sensing applications, including challenges for incorporating bio-ligands into MOF. Critical innovations in Bio-MOFs' applicative spectrum, including sustainable food packaging, biosensing, insulin and phosphoprotein detection, gas sensing, CO2 capture, pesticide carriers, toxicant adsorptions, etc., have been elucidated. Emphasis is placed on biosensing and biomedical applications with biomimetic catalysis and sensitive sensor designing.
Collapse
Affiliation(s)
- Uday Shashikumar
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| | - Somi Joshi
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida 201301, India
| | - Ananya Srivastava
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Pei-Chien Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 602105, India
| | - Kandkuri Dhana Sai Shree
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida 201301, India
| | - Meera Suresh
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida 201301, India
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Shashi Chawla
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida 201301, India.
| | - Liang-Yin Ke
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung City 807, Taiwan.
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan.; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung Medical University, Kaohsiung City 807, Taiwan; Department of Chemistry, National Sun Yat-sen University, Kaohsiung City 804, Taiwan.
| |
Collapse
|
4
|
Liu Z, Zhang Z, Huang C, Di J, Lu Z, Gan Z, Cui Y, Wu D. IR780-doped cobalt ferrite nanoparticles@poly(ethylene glycol) microgels as dual-enzyme immobilized micro-systems: Preparations, photothermal-responsive dual-enzyme release, and highly efficient recycling. J Colloid Interface Sci 2023; 644:81-94. [PMID: 37094475 DOI: 10.1016/j.jcis.2023.04.068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/23/2023] [Accepted: 04/16/2023] [Indexed: 04/26/2023]
Abstract
To solve the problems of separating dual enzymes from the carriers of dual-enzyme immobilized micro-systems and greatly increase the carriers' recycling times, photothermal-responsive micro-systems of IR780-doped cobalt ferrite nanoparticles@poly(ethylene glycol) microgels (CFNPs-IR780@MGs) are prepared. A novel two-step recycling strategy is proposed based on the CFNPs-IR780@MGs. First, the dual enzymes and the carriers are separated from the reaction system as a whole via magnetic separation. Second, the dual enzymes and the carriers are separated through photothermal-responsive dual-enzyme release so that the carriers can be reused. Results show that CFNPs-IR780@MGs is 281.4 ± 9.6 nm with a shell of 58.2 nm, and the low critical solution temperature is 42 °C, and the photothermal conversion efficiency increases from 14.04% to 58.41% by doping 1.6% of IR780 into the CFNPs-IR780 clusters. The dual-enzyme immobilized micro-systems and the carriers are recycled 12 and 72 times, respectively, and the enzyme activity remains above 70%. The micro-systems can realize whole recycling of the dual enzymes and carriers and further recycling of the carriers, thus providing a simple and convenient recycling method for dual-enzyme immobilized micro-systems. The findings reveal the micro-systems' important application potential in biological detection and industrial production.
Collapse
Affiliation(s)
- Zeying Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Zhen Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Chenqi Huang
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Jingran Di
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Ziwei Lu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Zhenhai Gan
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yali Cui
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Daocheng Wu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
5
|
Recent progress in theranostic microbubbles. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
6
|
Wu P, Ya Z, Li Y, Zhu M, Zhang L, Zong Y, Guo S, Wan M. Focused Acoustic Vortex-Regulated Composite Nanodroplets Combined with Checkpoint Blockade for High-Performance Tumor Synergistic Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30466-30479. [PMID: 35699948 DOI: 10.1021/acsami.2c02137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The combination of checkpoint blockade with focused ultrasound (FUS) physical therapy can enhance antitumor immune response by improving the precision and efficiency of immunotherapy. However, one of the major disadvantages of conventional FUS treatment is the small lesion size, which prolongs treatment duration. We constructed a focused acoustic vortex (FAV) system with a hollow cylindrical focal region, which exhibited a larger focal region compared to conventional FUS of the same frequency. We developed an all-in-one synergistic therapy against metastatic breast cancer based on integrated FAV double combination sequence-regulated phase-transformation nanodroplets (CPDA@PFH) with checkpoint blockade immunotherapy. A single treatment with FAV + CPDA@PFH resulted in 2.25-fold higher inhibition of tumor growth compared to that with FUS + CPDA@PFH. In addition, FAV-regulated CPDA@PFH combined with ICB induced a systemic immune response that not only inhibited the growth of primary (98.41% inhibition rate) and distal (80.71%) 4T1 tumors but also reduced the progression of lung metastasis. In addition, the synergistic therapy achieved long-term immune memory that effectively prevented tumor growth and improved the survival time of mice. The long-term survival rate of 4T1 tumor-bearing mice treated with FAV + CPDA@PFH + Anti-PD-L1 was 57.14% on day 60 after treatment. Our study is a proof-of-concept of cascade-amplified synergistic tumor therapeutics based on ultrasonic-hyperthermia, cavitation, sonodynamic therapy (SDT), and checkpoint blockade immunotherapy through FAV-regulated CPDA@PFH phase-transformation nanodroplets.
Collapse
Affiliation(s)
- Pengying Wu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Zhen Ya
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Yan Li
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Mingting Zhu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Lei Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Yujin Zong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Shifang Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Mingxi Wan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
7
|
Zhang C, Yan K, Fu C, Peng H, Hawker CJ, Whittaker AK. Biological Utility of Fluorinated Compounds: from Materials Design to Molecular Imaging, Therapeutics and Environmental Remediation. Chem Rev 2022; 122:167-208. [PMID: 34609131 DOI: 10.1021/acs.chemrev.1c00632] [Citation(s) in RCA: 158] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The applications of fluorinated molecules in bioengineering and nanotechnology are expanding rapidly with the controlled introduction of fluorine being broadly studied due to the unique properties of C-F bonds. This review will focus on the design and utility of C-F containing materials in imaging, therapeutics, and environmental applications with a central theme being the importance of controlling fluorine-fluorine interactions and understanding how such interactions impact biological behavior. Low natural abundance of fluorine is shown to provide sensitivity and background advantages for imaging and detection of a variety of diseases with 19F magnetic resonance imaging, 18F positron emission tomography and ultrasound discussed as illustrative examples. The presence of C-F bonds can also be used to tailor membrane permeability and pharmacokinetic properties of drugs and delivery agents for enhanced cell uptake and therapeutics. A key message of this review is that while the promise of C-F containing materials is significant, a subset of highly fluorinated compounds such as per- and polyfluoroalkyl substances (PFAS), have been identified as posing a potential risk to human health. The unique properties of the C-F bond and the significant potential for fluorine-fluorine interactions in PFAS structures necessitate the development of new strategies for facile and efficient environmental removal and remediation. Recent progress in the development of fluorine-containing compounds as molecular imaging and therapeutic agents will be reviewed and their design features contrasted with environmental and health risks for PFAS systems. Finally, present challenges and future directions in the exploitation of the biological aspects of fluorinated systems will be described.
Collapse
Affiliation(s)
- Cheng Zhang
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Kai Yan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hui Peng
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Craig J Hawker
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
8
|
Liu S, Liu Z, Wu M, Xu X, Huang F, Zhang L, Liu Y, Shuai Q. NIR as a "trigger switch" for rapid phase change, on-demand release, and photothermal synergistic antibacterial treatment with chitosan-based temperature-sensitive hydrogel. Int J Biol Macromol 2021; 191:344-358. [PMID: 34560148 DOI: 10.1016/j.ijbiomac.2021.09.093] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/11/2021] [Accepted: 09/14/2021] [Indexed: 01/10/2023]
Abstract
Temperature-sensitive hydrogels have shown good performances as wound dressing owing to their ability to fill wounds in the liquid state and to release drugs in a solid state. However, their treatment efficiency is restricted by the phase transition time. In this study, we developed a photothermal synergistic chitosan-based temperature-sensitive hydrogel, h-EGF-CS/β-GP-MPDA@Cip, with the unique properties of rapid phase transition and drug release under near-infrared light (NIR). High antibacterial efficiency was achieved when we covered infected mice wounds with hydrogels. The local high temperature produced under NIR illumination not only accelerated the formation of a porous gel to release the loaded drug on-demand, but also dissolved bacteria, achieving synergistic anti-bacterial treatment. In addition, the healing cycle of wounds could be significantly shortened by adding human epidermal growth factor (h-EGF) in the hydrogel. Overall, the developed temperature-sensitive hydrogel could utilise NIR as a "trigger switch" for on-demand drug release and photothermal-enhanced antibacterial treatment during the rapid phase change process.
Collapse
Affiliation(s)
- Shupeng Liu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zhicheng Liu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Mingyuan Wu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiaomei Xu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Fubin Huang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Li Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yu Liu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Qi Shuai
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
9
|
Wei M, Rao H, Niu Z, Xue X, Luo M, Zhang X, Huang H, Xue Z, Lu X. Breaking the time and space limitation of point-of-care testing strategies: Photothermometric sensors based on different photothermal agents and materials. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
10
|
Guo R, Xu N, Liu Y, Ling G, Yu J, Zhang P. Functional ultrasound-triggered phase-shift perfluorocarbon nanodroplets for cancer therapy. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2064-2079. [PMID: 33992473 DOI: 10.1016/j.ultrasmedbio.2021.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
In recent years, because of their unique properties, the use of perfluorocarbon nanodroplets (PFC NDs) in ultrasound-mediated tumor theranostics has attracted increasing interest. PFC is one of the most stable organic compounds with high hydrophobicity. Phase-shift PFC NDs can be transformed into highly echogenic microbubbles for ultrasound and photoacoustic imaging by ultrasound and laser light. In addition, in the process of acoustic droplet vaporization, PFC NDs with cavitation nuclei can be combined with a variety of ultrasound technologies to produce cavitation effects for tumor ablation, antivascular therapy and release of therapeutic agents loaded in nanodroplets. Moreover, they can also be used to overcome tumor hypoxia by virtue of high oxygen solubility. In this review, first the preparation and stabilization of PFC NDs are summarized and then the issues and outlook are discussed. More importantly, multifunctional platforms based on PFC NDs for cancer diagnostics, therapy and theranostics are reviewed in detail.
Collapse
Affiliation(s)
- Ranran Guo
- Shenyang Pharmaceutical University, Shenyang, China
| | - Na Xu
- Shenyang Pharmaceutical University, Shenyang, China
| | - Ying Liu
- Shenyang Pharmaceutical University, Shenyang, China
| | - Guixia Ling
- Shenyang Pharmaceutical University, Shenyang, China
| | - Jia Yu
- Shenyang Pharmaceutical University, Shenyang, China.
| | - Peng Zhang
- Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
11
|
Wang Z, Liu B, Sun Q, Feng L, He F, Yang P, Gai S, Quan Z, Lin J. Upconverted Metal-Organic Framework Janus Architecture for Near-Infrared and Ultrasound Co-Enhanced High Performance Tumor Therapy. ACS NANO 2021; 15:12342-12357. [PMID: 34160201 DOI: 10.1021/acsnano.1c04280] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Strict conditions such as hypoxia, overexpression of glutathione (GSH), and high concentration of hydrogen peroxide (H2O2) in the tumor microenvironment (TME) limit the therapeutic effects of reactive oxygen species (ROS) for photodynamic therapy (PDT), chemodynamic therapy (CDT), and sonodynamic therapy (SDT). Here we fabricated a biocatalytic Janus nanocomposite (denoted as UPFB) for ultrasound (US) driven SDT and 808 nm near-infrared (NIR) light mediated PDT by combining core-shell-shell upconversion nanoparticles (UCNPs, NaYF4:20%Yb,1%Tm@NaYF4:10%Yb@NaNdF4) and a ferric zirconium porphyrin metal organic framework [PCN-224(Fe)]. Our design not only substantially overcomes the inefficient PDT effect arising from the inadequate Förster resonance energy transfer (FRET) process from UCNPs (donor) to MOFs (acceptor) with only NIR laser irradiation, but also promotes the ROS generation via GSH depletion and oxygen supply contributed by Fe3+ ions coordinated in UPFB as a catalase-like nanozyme. Additionally, the converted Fe2+ from the foregoing process can achieve CDT performance under acidic conditions, such as lysosomes. Meanwhile, UPFB linked with biotin exhibits a good targeting ability to rapidly accumulate in the tumor region, verified by fluorescence imaging and T2-weighted magnetic resonance imaging (MRI). In a word, it is believed that the synthesis and antitumor detection of UPFB heterostructures render them suitable for application in cancer therapeutics.
Collapse
Affiliation(s)
- Zhao Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Bin Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Qianqian Sun
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Lili Feng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Zewei Quan
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|
12
|
Wang Z, Sun Q, Liu B, Kuang Y, Gulzar A, He F, Gai S, Yang P, Lin J. Recent advances in porphyrin-based MOFs for cancer therapy and diagnosis therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213945] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
13
|
Kwon N, Kim H, Li X, Yoon J. Supramolecular agents for combination of photodynamic therapy and other treatments. Chem Sci 2021; 12:7248-7268. [PMID: 34163818 PMCID: PMC8171357 DOI: 10.1039/d1sc01125a] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/04/2021] [Indexed: 12/17/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising treatment for cancers such as superficial skin cancers, esophageal cancer, and cervical cancer. Unfortunately, PDT often does not have sufficient therapeutic benefits due to its intrinsic oxygen dependence and the limited permeability of irradiating light. Side effects from "always on" photosensitizers (PSs) can be problematic, and PDT cannot treat tumor metastases or recurrences. In recent years, supramolecular approaches using non-covalent interactions have attracted attention due to their potential in PS development. A supramolecular PS assembly could be built to maximize photodynamic effects and minimize side effects. A combination of two or more therapies can effectively address shortcomings while maximizing the benefits of each treatment regimen. Using the supramolecular assembly, it is possible to design a multifunctional supramolecular PS to exert synergistic effects by combining PDT with other treatment methods. This review provides a summary of important research progress on supramolecular systems that can be used to combine PDT with photothermal therapy, chemotherapy, and immunotherapy to compensate for the shortcomings of PDT, and it provides an overview of the prospects for future cancer treatment advances and clinical applications.
Collapse
Affiliation(s)
- Nahyun Kwon
- Department of Chemistry and Nanoscience, Ewha Womans University Seoul 03760 Korea
| | - Heejeong Kim
- Department of Chemistry and Nanoscience, Ewha Womans University Seoul 03760 Korea
| | - Xingshu Li
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University Fuzhou 350116 China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University Seoul 03760 Korea
| |
Collapse
|
14
|
Zhong H, Wu YX, Yu S, Wang X, He K, Li D, Cao Y, Gan N. Two-Photon CQDs-Based Dual-Mode Nanoprobe for Fluorescence Imaging and Magnetic Resonance Imaging of Intracellular Wide pH. Anal Chem 2021; 93:5691-5699. [DOI: 10.1021/acs.analchem.0c04605] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hongmei Zhong
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yong-Xiang Wu
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
- Institute of Mass Spectrometry, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Shengrong Yu
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
- Institute of Mass Spectrometry, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xiao Wang
- Immunology Innovation Team, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Kangdi He
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Dian Li
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yuting Cao
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Ning Gan
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
15
|
Li K, Lu M, Xia X, Huang Y. Recent advances in photothermal and RNA interfering synergistic therapy. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Lawanprasert A, Chau A, Sloand JN, Hannifin S, Medina SH. Tuning the Interfacial Properties of Fluorous Colloids Toward Ultrasound Programmable Bioactivity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:5989-5998. [PMID: 33522791 DOI: 10.1021/acsami.0c20352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Liquid-in-liquid emulsions are kinetically stable colloids that undergo liquid-to-gas phase transitions in response to thermal or acoustic stimuli. Perfluorocarbons (PFCs) are preferred species as their highly fluorinated nature imparts unique properties that are unparalleled by nonfluorinated counterparts. However, traditional methods to prepare PFC emulsions lack the ability to precisely tune the thermodynamic stability of the fluorous-water interphase and consequently control their vaporization behavior. Here, we report a privileged fluoroalkanoic acid that undergoes concentration-dependent assembly on the surfaces of fluorous droplets to modulate interfacial tension. This allows for the rational formulation of orthogonal PFC droplets that can be programmed to vaporize at specified ultrasound powers. We exploit this behavior in two exemplary biomedical settings by developing emulsions that aid ultrasound-mediated hemostasis and enable bioorthogonal delivery of molecular sensors to mammalian cells. Mechanistic insights gained from these studies can be generalized to tune the thermodynamic interfacial equilibria of PFC emulsions toward designing controllable tools for precision medicine.
Collapse
Affiliation(s)
- Atip Lawanprasert
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania 16802, United States
| | - Alda Chau
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania 16802, United States
| | - Janna N Sloand
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania 16802, United States
| | - Sean Hannifin
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania 16802, United States
- Immunology Graduate Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Scott H Medina
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania 16802, United States
- Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
17
|
|
18
|
Wang Y, Luo S, Wu Y, Tang P, Liu J, Liu Z, Shen S, Ren H, Wu D. Highly Penetrable and On-Demand Oxygen Release with Tumor Activity Composite Nanosystem for Photothermal/Photodynamic Synergetic Therapy. ACS NANO 2020; 14:17046-17062. [PMID: 33290657 DOI: 10.1021/acsnano.0c06415] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A deep penetrating and pH-responsive composite nanosystem was strategically developed to improve the efficacy of synergetic photothermal/photodynamic therapy (PTT/PDT) against hypoxic tumor. The designed nanosystem ([PHC]PP@HA NPs) was constructed by coloading hemoglobin (Hb) and chlorin e6 on polydopamine to build small-sized PHC NPs, which were encapsulated inside the polymer micelles (poly(ethylene glycol)-poly(ethylenimine)) and then capped with functionalized hyaluronic acid. The pH-responsive feature made [PHC]PP@HA NPs retain an initial size of ∼140 nm in blood circulation but rapidly release small PHC NPs (∼10 nm) with a high tumor-penetrating ability in the tumor microenvironment. The in vitro penetration experiment showed that the penetration depth of PHC NPs in the multicellular tumor spheroids exceeded 110 μm. The [PHC]PP@HA NPs exhibited excellent biocompatibility, deep tumor permeability, high photothermal conversion efficiency (47.09%), and low combination index (0.59) under hypoxic conditions. Notably, the nanosystem can freely adjust the release of oxygen and damaging PHC NPs in an on-demand manner on the basis of the feedback of tumor activity. This feedback tumor therapy significantly improved the synergistic effect of PTT/PDT and reduced its toxic side effects. The in vivo antitumor results showed that the tumor inhibition rate of [PHC]PP@HA NPs with an on-demand oxygen supply of Hb was ∼100%, which was much better than those of PTT alone and Hb-free nanoparticles ([PC]PP@HA NPs). Consequently, the [PHC]PP@HA NP-mediated PTT/PDT guided by feedback tumor therapy achieved an efficient tumor ablation with an extremely low tumor recurrence rate (8.3%) 60 d later, indicating the versatile potential of PTT/PDT.
Collapse
Affiliation(s)
- Ya Wang
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Siyuan Luo
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Youshen Wu
- Department of Chemistry, School of Science, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Peng Tang
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Jiajun Liu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Zeying Liu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Shihong Shen
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Haozhe Ren
- Health Science Center, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, P. R. China
| | - Daocheng Wu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
19
|
Xu Y, Li W, Chen S, Huang B, Pei W, Niu C. Near-Infrared Responsive Phase-Shifted Nanoparticles for Magnetically Targeted MR/US Imaging and Photothermal Therapy of Cancer. Front Bioeng Biotechnol 2020; 8:599107. [PMID: 33304893 PMCID: PMC7701124 DOI: 10.3389/fbioe.2020.599107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/26/2020] [Indexed: 01/25/2023] Open
Abstract
Accurate diagnosis, providing guidance for early treatment, can greatly improve the survival rate of cancer patients. However, there are still some difficulties with the existing diagnostic technology and early treatment methods. Here, near-infrared responsive phase-shifted nanoparticles (NRPNs) have been designed for magnetically targeted MR/US imaging and photothermal therapy of tumors. In this study, we fabricated a multifunctional polymer nanoparticle encapsulating indocyanine green (ICG), magnetic Fe3O4 nanoparticles and perfluoropentane (PFP). Under laser irradiation, the NRPNs, which trigger a phase-shifted expansion effect due to the quick conversion from light to heat by ICG and Fe3O4, can be used for ultrasound (US) imaging. At the same time, such nanoparticles can kill cancer cells via photothermal therapy (PTT). As a kind of negative enhancement agent, magnetic Fe3O4 nanoparticles in NRPNs showed high spatial resolution in MR imaging. Moreover, with the help of the magnetic field, the NRPNs nanoparticles showed high cellular uptake and high tumor accumulation, indicating their magnetic targeting property without biosafety concerns. Therefore, we present a strategy for magnetically targeted MR/US imaging guided photothermal therapy for the accurate diagnosis and efficient treatment of tumors.
Collapse
Affiliation(s)
- Yan Xu
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wang Li
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Sijie Chen
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Biying Huang
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wenjing Pei
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chengcheng Niu
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
20
|
Yang GG, Pan ZY, Zhang DY, Cao Q, Ji LN, Mao ZW. Precisely Assembled Nanoparticles against Cisplatin Resistance via Cancer-Specific Targeting of Mitochondria and Imaging-Guided Chemo-Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:43444-43455. [PMID: 32883070 DOI: 10.1021/acsami.0c12814] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cisplatin resistance in tumor cells is known mainly due to the reduced accumulation of platinum ions by efflux, detoxification by intracellular GSH, and nucleotide excision repair machinery-mediated nuclear DNA repair. In this work, theranostic Pt(IV)-NPs, which are precisely self-assembled by biotin-labeled Pt(IV) prodrug derivative and cyclodextrin-functionalized IR780 in a 1:1 molecular ratio, have been developed for addressing all these hurdles via mitochondria-targeted chemotherapy solely or chemophotothermal therapy. In these nanoparticles, IR780 as a small-molecule dye acts as a mitochondria-targeting ligand to make Pt(IV)-NPs relocate finally in the mitochondria and release cisplatin. As demonstrated by in vitro and in vivo experiments, Pt(IV)-NPs can markedly facilitate cancer-specific mitochondrial targeting, inducing mitochondrial dysfunction and mitochondrial DNA (mtDNA) damage, thus greatly increasing the Pt accumulation, reducing the GSH levels, and avoiding DNA repair machinery in cisplatin-resistant cancer cells (A549R), finally resulting in significant inhibition of A549R tumor growth on animal models by chemotherapy solely. Upon near-infrared irradiation, mitochondria-targeted chemophotothermal synergistic therapy can be realized, further overcoming cisplatin resistance and even eliminating A549R tumors completely. Moreover, such novel Pt(IV)-NPs integrate multimodal targeting (cancer and mitochondria targeting), imaging (near-infrared imaging and photoacoustic imaging), and therapeutic (chemo- and photothermal therapy) moieties in a constant ratio (1:1:1) into a single, reproducible, and structurally homogeneous entity, avoiding nonuniform drug loading and premature leakage as well as the discrete steps of imaging and therapy, which thus is more beneficial for precise therapeutics and future clinical translation.
Collapse
Affiliation(s)
- Gang-Gang Yang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Zheng-Yin Pan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Dong-Yang Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Qian Cao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Liang-Nian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
21
|
Liang Y, Yang H, Li Q, Zhao P, Li H, Zhang Y, Cai W, Ma X, Duan Y. Novel biomimetic dual-mode nanodroplets as ultrasound contrast agents with potential ability of precise detection and photothermal ablation of tumors. Cancer Chemother Pharmacol 2020; 86:405-418. [PMID: 32797251 DOI: 10.1007/s00280-020-04124-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/04/2020] [Indexed: 01/20/2023]
Abstract
PURPOSE Molecule-targeted ultrasound imaging has attracted extensive attention for precise diagnosis and targeted therapy of tumors. The aim of this research is to prepare novel biomimetic dual-mode nanoscale ultrasound contrast agents (UCAs), which can not only evade the immune clearance of reticuloendothelial system, but also have the potential ability of precise detection and photothermal ablation of tumors. METHODS In this study, for the first time, the novel biomimetic UCAs were prepared by encapsulating liquid perfluorohexanes with red blood cell membranes carrying IR-780 iodide and named IR780-RBCM@NDs. The characteristics of that were verified through the particle size analyzer, scanning electron microscopy, transmission electron microscopy and laser scanning confocal microscopy. The stability of IR780-RBCM@NDs at 37 °C was explored. The abilities of immune escape, dual-mode imaging and photothermal effect for IR780-RBCM@NDs were verified via in vitro experiments. RESULTS The novel prepared nanodroplets have good characteristics such as mean diameter, zeta potential, and relatively stability. Importantly, the integrin-associated protein expressed on the surface of RBCMs was detected on IR780-RBCM@NDs. Then, compared with control groups, IR780-RBCM@NDs performed excellent immune escape function away from macrophages in vitro. Furthermore, the IR-780 iodide was observed on the new nanodroplets and that was able to perform the dual-mode imaging with near-infrared fluorescence imaging and contrast-enhanced ultrasound imaging after the phase change. Finally, the effective photothermal ablation ability of IR780-RBCM@NDs was verified in tumor cells. CONCLUSION The newly prepared biomimetic IR780-RBCM@NDs provided novel ideas for evading immune clearance, performing precise diagnosis and photothermal ablation of tumor cells.
Collapse
Affiliation(s)
- Yuan Liang
- Department of Ultrasound Diagnosis, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Hengli Yang
- Department of Ultrasound Diagnosis, The Second Affiliated Hospital, Xi'an Medical College, Xi'an, China.
| | - Qiaoying Li
- Department of Ultrasound Diagnosis, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Ping Zhao
- Department of Ultrasound Diagnosis, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Han Li
- Department of Ultrasound Diagnosis, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Yuxin Zhang
- Department of Ultrasound Diagnosis, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Wenbin Cai
- Special Diagnosis Department, General Hospital of Tibet Military Command, Lhasa, China
| | - Xiaoju Ma
- Department of Ultrasound Diagnosis, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Yunyou Duan
- Department of Ultrasound Diagnosis, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China.
| |
Collapse
|
22
|
Xiao YF, Xiang C, Li S, Mao C, Chen H, Chen JX, Tian S, Cui X, Wan Y, Huang Z, Li X, Zhang XH, Guo W, Lee CS. Single-Photomolecular Nanotheranostics for Synergetic Near-Infrared Fluorescence and Photoacoustic Imaging-Guided Highly Effective Photothermal Ablation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002672. [PMID: 32697430 DOI: 10.1002/smll.202002672] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Multi-modality imaging-guided cancer therapy is considered as a powerful theranostic platform enabling simultaneous precise diagnosis and treatment of cancer. However, recently reported multifunctional systems with multiple components and sophisticate structures remain major obstacles for further clinical translation. In this work, a single-photomolecular theranostic nanoplatform is fabricated via a facile nanoprecipitation strategy. By encapsulating a semiconductor oligomer (IT-S) into an amphiphilic lipid, water-dispersible IT-S nanoparticles (IT-S NPs) are prepared. The obtained IT-S NPs have a very simple construction and possess ultra-stable near-infrared (NIR) fluorescence (FL)/photoacoustic (PA) dual-modal imaging and high photothermal conversion efficiency of 72.3%. Accurate spatiotemporal distribution profiles of IT-S NPs are successfully visualized by NIR FL/PA dual-modal imaging. With the comprehensive in vivo imaging information provided by IT-S NPs, tumor photothermal ablation is readily realized under precise manipulation of laser irradiation, which greatly improves the therapeutic efficacy without any obvious side effects. Therefore, the IT-S NPs allow high tumor therapeutic efficacy under the precise guidance of FL/PA imaging techniques and thus hold great potential as an effective theranostic platform for future clinical applications.
Collapse
Affiliation(s)
- Ya-Fang Xiao
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Chenyang Xiang
- Translational Medicine Center, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P. R. China
| | - Shengliang Li
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Cong Mao
- Translational Medicine Center, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P. R. China
| | - Haoting Chen
- Translational Medicine Center, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P. R. China
| | - Jia-Xiong Chen
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Shuang Tian
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Xiao Cui
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Yingpeng Wan
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Zhongming Huang
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Xiaozhen Li
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Xiao-Hong Zhang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Weisheng Guo
- Translational Medicine Center, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P. R. China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| |
Collapse
|
23
|
Zhang H, Guo Y, Zhou Y, Zhu H, Wu P, Wang K, Ruan L, Wan M, Insana MF. Fluidity and elasticity form a concise set of viscoelastic biomarkers for breast cancer diagnosis based on Kelvin-Voigt fractional derivative modeling. Biomech Model Mechanobiol 2020; 19:2163-2177. [PMID: 32335785 DOI: 10.1007/s10237-020-01330-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 04/13/2020] [Indexed: 02/07/2023]
Abstract
Cancer progression involves biomechanical changes within transformed cells and the surrounding extracellular matrix (ECM). The viscoelastic features of fluidity and elasticity that are based on a novel Kelvin-Voigt fractional derivative (KVFD) model were found capable of discriminating normal, benign and malignant breast biopsy tissues on the cellular scale. The improved specificity of KVFD model parameters derives from greater accuracy of fitting the entire approaching force-indentation measurement curve ([Formula: see text] > 0.99) compared with traditional elastic models ([Formula: see text] < 0.86). Moreover, model parameters can be interpreted in terms of histopathological features. First, statistical comparisons reveal there are significant differences (p < 0.001) in elasticity E0, fluidity [Formula: see text], and viscosity [Formula: see text] among healthy, benign, and malignant groups. Malignant breast tissues show low-value, broad-distributions in E0 and with high fluidity [Formula: see text] as compared with healthy and benign tissues. Second, histograms of E0 and [Formula: see text] provide distinctive features by fitting to Gaussian mixture (GM) models. The histograms of E0 and [Formula: see text] are best fit by two kernels GM for malignant tissues, indicating that the cells are soft but with high fluidity and the ECM is stiff but with low fluidity. However, the data suggest one-kernel GM model for benign tissue and a patched uniform distribution for healthy tissue. Third, using fluidity [Formula: see text] as the test statistic, the area under the receiver operator characteristic curve (AUC) is 0.701 ± 0.012 (p < 0.0001) for control versus malignant and 0.706 ± 0.013 (p < 0.0001) for benign versus malignant group. Variations in tissue fluidity and elasticity offer a concise set of viscoelastic biomarkers that correlate well with histopathological features.
Collapse
Affiliation(s)
- Hongmei Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an JiaoTong University, Xi'an, 710049, PR China
| | - Ying Guo
- Department of Pathology, School of Medicine, Northwest University, Xi'an, 710069, PR China
| | - Yan Zhou
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an JiaoTong University, Xi'an, 710049, PR China
| | - Hongrui Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an JiaoTong University, Xi'an, 710049, PR China
| | - Pengying Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an JiaoTong University, Xi'an, 710049, PR China
| | - Kai Wang
- Department of Pathology, Xi'an JiaoTong University Medical College First Affiliated Hospital, Xi'an, 710004, PR China
| | - Litao Ruan
- Department of Medical Ultrasonics, Xi'an JiaoTong University Medical College First Affiliated Hospital, Xi'an, 710004, PR China
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an JiaoTong University, Xi'an, 710049, PR China.
| | - Michael F Insana
- Department of Bioengineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
24
|
Guo Y, Chen Y, Han P, Liu Y, Li W, Zhu F, Fu K, Chu M. Biocompatible chitosan-carbon nanocage hybrids for sustained drug release and highly efficient laser and microwave co-irradiation induced cancer therapy. Acta Biomater 2020; 103:237-246. [PMID: 31843717 DOI: 10.1016/j.actbio.2019.12.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 01/18/2023]
Abstract
Graphitic carbon nanocages (GCNCs) are unique graphene-based nanomaterials that can be used for cancer photothermal therapy (PTT). However, low toxicity GCNC-based organic/inorganic hybrid biomaterials for microwave irradiation assisted PTT have not yet been reported. In the present study, chitosan (CS)-coated GCNCs (CS-GCNCs) loaded with 5-fluorouracil (5Fu) were used for cancer therapy when activated by 808-nm laser and microwave co-irradiation. The cytotoxicity of GCNCs was significantly reduced after coating with CS. For example, fewer cell-cycle defects were caused by CS-GCNCs in comparison with non-coated GCNCs. The release rate of 5Fu from CS-GCNCs was significantly slower than that of 5Fu from GCNCs, providing sustained release. The release rate could be accelerated by 808-nm laser and microwave co-irradiation. The 5Fu in CS-GCNCs retained high cancer cell killing bioactivity by enhancing the caspase-3 expression level. The cancer cell killing and tumor inhibition efficiencies of the 5Fu-loaded nanomaterials increased significantly under 808-nm laser and microwave co-irradiation. The strong cell killing and tumor ablation activities were due to the synergy of the enhanced GCNC thermal effect caused by laser and microwave co-irradiation and the chemotherapy of 5Fu. Our research opens a door for the development of drug-loaded GCNC-based nano-biomaterials for chemo-photothermal synergistic therapy with the assistance of microwave irradiation. STATEMENT OF SIGNIFICANCE: Graphitic carbon nanocages (GCNCs) are graphene-based nanomaterials that can be used for both drug loading and cancer photothermal therapy (PTT). Herein, we showed that chitosan (CS)-GCNCs hybrid biomaterials had very low cytotoxicity, high ability for loading drug, and exhibited sustained drug release. In particular, although low-power microwaves alone are unable to trigger cancer cell damage by GCNCs, the cell killing and mouse tumor inhibition efficiencies were significantly improved by near-infrared (NIR) laser and microwave co-irradiation compared with laser-triggered PTT alone. This combined use of laser and microwave co-irradiation promises essential therapeutic modality and opens a new avenue for PTT.
Collapse
|
25
|
Li X, Liu L, Li S, Wan Y, Chen JX, Tian S, Huang Z, Xiao YF, Cui X, Xiang C, Tan Q, Zhang XH, Guo W, Liang XJ, Lee CS. Biodegradable π-Conjugated Oligomer Nanoparticles with High Photothermal Conversion Efficiency for Cancer Theranostics. ACS NANO 2019; 13:12901-12911. [PMID: 31682416 DOI: 10.1021/acsnano.9b05383] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We developed a biodegradable photothermal therapeutic (PTT) agent, π-conjugated oligomer nanoparticles (F8-PEG NPs), for highly efficient cancer theranostics. By exploiting an oligomer with excellent near-infrared (NIR) absorption, the nanoparticles show a high photothermal conversion efficiency (PCE) up to 82%, surpassing those of reported inorganic and organic PTT agents. In addition, the oligomer nanoparticles show excellent photostability and good biodegradability. The F8-PEG NPs are also demonstrated to have excellent biosafety and PTT efficacy both in vitro and in vivo. This contribution not only proposes a promising oligomer-based PTT agent but also provides insight into developing highly efficient nanomaterials for cancer theranostics.
Collapse
Affiliation(s)
- Xiaozhen Li
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Kowloon 999077 , Hong Kong, P.R. China
| | - Lu Liu
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , No. 11, First North Road , Zhongguancun, Beijing 100190 , P.R. China
| | - Shengliang Li
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Kowloon 999077 , Hong Kong, P.R. China
| | - Yingpeng Wan
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Kowloon 999077 , Hong Kong, P.R. China
| | - Jia-Xiong Chen
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Kowloon 999077 , Hong Kong, P.R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices , Soochow University , 199 Ren'ai Road , Suzhou , Jiangsu 215123 , P.R. China
| | - Shuang Tian
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Kowloon 999077 , Hong Kong, P.R. China
| | - Zhongming Huang
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Kowloon 999077 , Hong Kong, P.R. China
| | - Ya-Fang Xiao
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Kowloon 999077 , Hong Kong, P.R. China
| | - Xiao Cui
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Kowloon 999077 , Hong Kong, P.R. China
| | - Chengyang Xiang
- Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital , Guangzhou Medical University , Guangzhou 510260 , P.R. China
| | - Qinglong Tan
- Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital , Guangzhou Medical University , Guangzhou 510260 , P.R. China
| | - Xiao-Hong Zhang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices , Soochow University , 199 Ren'ai Road , Suzhou , Jiangsu 215123 , P.R. China
| | - Weisheng Guo
- Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital , Guangzhou Medical University , Guangzhou 510260 , P.R. China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China , No. 11, First North Road , Zhongguancun, Beijing 100190 , P.R. China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry , City University of Hong Kong , 83 Tat Chee Avenue , Kowloon 999077 , Hong Kong, P.R. China
| |
Collapse
|
26
|
Zhu H, Gan Z, Li D, Qin J, Zhang H, Wan M, Wu D. Sensitive detection of dopamine with ultrasound cavitation-enhanced fluorescence method. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
27
|
Abstract
Gas-involving cancer theranostics have attracted considerable attention in recent years due to their high therapeutic efficacy and biosafety. We have reviewed the recent significant advances in the development of stimuli-responsive gas releasing molecules (GRMs) and gas nanogenerators for cancer bioimaging, targeted and controlled gas therapy, and gas-sensitized synergistic therapy. We have focused on gases with known anticancer effects, such as oxygen (O2), carbon monoxide (CO), nitric oxide (NO), hydrogen sulfide (H2S), hydrogen (H2), sulfur dioxide (SO2), carbon dioxide (CO2), and heavy gases that act via the gas-generating process. The GRMs and gas nanogenerators for each gas have been described in terms of the stimulation method, followed by their applications in ultrasound and multimodal imaging, and finally their primary and synergistic actions with other cancer therapeutic modalities. The current challenges and future possibilities of gas therapy and imaging vis-à-vis clinical translation have also been discussed.
Collapse
Affiliation(s)
- Lichan Chen
- College of Chemical Engineering , Huaqiao University , Xiamen , Fujian 361021 , P.R. China
| | - Shu-Feng Zhou
- College of Chemical Engineering , Huaqiao University , Xiamen , Fujian 361021 , P.R. China
| | - Lichao Su
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , P.R. China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , P.R. China
| |
Collapse
|
28
|
Xie Y, Wang J, Wang J, Hu Z, Hariri A, Tu N, Krug KA, Burkart MD, Gianneschi NC, Jokerst JV, Rinehart JD. Tuning the ultrasonic and photoacoustic response of polydopamine-stabilized perfluorocarbon contrast agents. J Mater Chem B 2019; 7:4833-4842. [PMID: 31389967 PMCID: PMC6690494 DOI: 10.1039/c9tb00928k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Contrast-enhanced ultrasound (CEUS) offers the exciting prospect of retaining the ease of ultrasound imaging while enhancing imaging clarity, diagnostic specificity, and theranostic capability. To advance the capabilities of CEUS, the synthesis and understanding of new ultrasound contrast agents (UCAs) is a necessity. Many UCAs are nano- or micro-scale materials composed of a perfluorocarbon (PFC) and stabilizer that synergistically induce an ultrasound response that is both information-rich and easily differentiated from natural tissue. In this work, we probe the extent to which CEUS is modulated through variation in a PFC stabilized with fluorine-modified polydopamine nanoparticles (PDA NPs). The high level of synthetic tunability in this system allows us to study signal as a function of particle aggregation and PFC volatility in a systematic manner. Separation of aggregated and non-aggregated nanoparticles lead to a fundamentally different signal response, and for this system, PFC volatility has little effect on CEUS intensity despite a range of over 50 °C in boiling point. To further explore the imaging tunability and multimodality, Fe3+-chelation was employed to generate an enhanced photoacoustic (PA) signal in addition to the US signal. In vitro and in vivo results demonstrate that PFC-loaded PDA NPs show stronger PA signal than the non-PFC ones, indicating that the PA signal can be used for in situ differentiation between PFC-loading levels. In sum, these data evince the rich role synthetic chemistry can play in guiding new directions of development for UCAs.
Collapse
Affiliation(s)
- Yijun Xie
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhang T, Ma C, Sun T, Xie Z. Unadulterated BODIPY nanoparticles for biomedical applications. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.04.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Mou C, Yang Y, Bai Y, Yuan P, Wang Y, Zhang L. Hyaluronic acid and polydopamine functionalized phase change nanoparticles for ultrasound imaging-guided photothermal-chemotherapy. J Mater Chem B 2019; 7:1246-1257. [DOI: 10.1039/c8tb03056a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hyaluronic acid and polydopamine functionalized phase change nanoparticles for ultrasound imaging-guided photothermal-chemotherapy.
Collapse
Affiliation(s)
- Chongyan Mou
- Chongqing Research Center for Pharmaceutical Engineering
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology
- College of Pharmacy
- Chongqing Medical University
- Chongqing 400016
| | - Yang Yang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging
- Institute of Ultrasound Imaging
- Chongqing Medical University
- Chongqing 400016
- P. R. China
| | - Yan Bai
- Chongqing Research Center for Pharmaceutical Engineering
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology
- College of Pharmacy
- Chongqing Medical University
- Chongqing 400016
| | - Pei Yuan
- Chongqing Research Center for Pharmaceutical Engineering
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology
- College of Pharmacy
- Chongqing Medical University
- Chongqing 400016
| | - Yiwu Wang
- Experimental Teaching and Management Center
- Chongqing Medical University
- Chongqing 400016
- P. R. China
| | - Liangke Zhang
- Chongqing Research Center for Pharmaceutical Engineering
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology
- College of Pharmacy
- Chongqing Medical University
- Chongqing 400016
| |
Collapse
|
31
|
Guan Y, Sun T, Ding J, Xie Z. Robust organic nanoparticles for noninvasive long-term fluorescence imaging. J Mater Chem B 2019; 7:6879-6889. [PMID: 31657432 DOI: 10.1039/c9tb01905g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Organic nanoparticles obtained from fluorophores with aggregation-caused quenching and aggregation-induced emission features for noninvasive long-term bioimaging are summarized and highlighted.
Collapse
Affiliation(s)
- Yuyao Guan
- Department of Radiology
- China-Japan Union Hospital of Jilin University
- Changchun
- P. R. China
| | - Tingting Sun
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Jun Ding
- Department of Radiology
- China-Japan Union Hospital of Jilin University
- Changchun
- P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| |
Collapse
|