1
|
Lai Q, Long Y, Yin P, Shreeve JM, Pang S. Thinking Outside the Energetic Box: Stabilizing and Greening High-Energy Materials with Reticular Chemistry. Acc Chem Res 2024; 57:2790-2803. [PMID: 39264352 DOI: 10.1021/acs.accounts.4c00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
ConspectusReticular chemistry has provided intriguing opportunities for systematically designing porous materials with different pores by adjusting the building blocks. Among them, framework materials have demonstrated outstanding performance for the design of new functional materials used in a broad range of fields, including energetic materials. Energetic materials are widely used for rockets, satellites, mining, and tunneling. In terms of energetic materials, explosophores and nitrogen-rich heterocycles are fundamental building blocks for high-energy compounds. However, the traditional strategy of synthesizing HEDMs (high energy density materials) at the molecular level has faced the long-term challenge of balancing energy and stability. Inspired by reticular chemistry, nitrogen-rich heterocycles offer diverse nitrogen sites for designing diversified coordination interactions. Ionic bond interactions exist in a wide range of energetic salts. Furthermore, most metastable explosophores, e.g., nitro, nitramino, and amino groups, can form strong hydrogen-bonding networks. Based on these noncovalent interactions (such as coordination, ionic, and/or hydrogen bonds (HBs)) and/or covalent interactions can determine intermolecular packing/linkage of the energetic fuel and oxidizer components, reticular chemistry provides a new platform evolving from single-molecular design to various energetic frameworks (E of the energetic frameworks with superior comprehensive properties. For example, to achieve coordination with metals or introduce sufficient hydrogen bond donor/acceptor structural units, the host structure of energetic framework materials usually contains less oxygen-rich substituents such as nitro, so the host molecules of the framework, F) at the crystal level, which can enhance the integrated stabilities of EFs.Along with growing concerns about the environment and safety issues, considerable effort has been devoted to pursuing environmentally friendly and insensitive energetic materials. The newly emerging EFs are conducive to introducing explosophores into a green chemical pathway. Benefiting from these cross-disciplinary achievements, taming metastable energetic molecules in specific porous frameworks is a green strategy to desensitize energetic materials while concomitantly retaining excellent energetic properties, which has become one of the most forward and promising investigations. In the past decade, EFs have achieved further results in stabilizing and greening energetic materials using HBs, covalent bonds, and alkaline earth metal-involving coordination bonds to avoid heavy metal toxicity and to employ halogen-free oxidizers. Because this field is still expanding rapidly, it is of great value for researchers and possible users of the work to be able to view all the progress.Through this Account, we intend that more readers will become knowledgeable about EFs, including their definition, history, synthesis, properties, and possible applications. The aim of this Account is to present the latest advances in EFs in recent years and to offer a perspective on the future direction of this field.
Collapse
Affiliation(s)
- Qi Lai
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yangyang Long
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ping Yin
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jean'ne M Shreeve
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844-2343, United States
| | - Siping Pang
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
2
|
Jayaramulu K, Mukherjee S, Morales DM, Dubal DP, Nanjundan AK, Schneemann A, Masa J, Kment S, Schuhmann W, Otyepka M, Zbořil R, Fischer RA. Graphene-Based Metal-Organic Framework Hybrids for Applications in Catalysis, Environmental, and Energy Technologies. Chem Rev 2022; 122:17241-17338. [PMID: 36318747 PMCID: PMC9801388 DOI: 10.1021/acs.chemrev.2c00270] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Indexed: 11/06/2022]
Abstract
Current energy and environmental challenges demand the development and design of multifunctional porous materials with tunable properties for catalysis, water purification, and energy conversion and storage. Because of their amenability to de novo reticular chemistry, metal-organic frameworks (MOFs) have become key materials in this area. However, their usefulness is often limited by low chemical stability, conductivity and inappropriate pore sizes. Conductive two-dimensional (2D) materials with robust structural skeletons and/or functionalized surfaces can form stabilizing interactions with MOF components, enabling the fabrication of MOF nanocomposites with tunable pore characteristics. Graphene and its functional derivatives are the largest class of 2D materials and possess remarkable compositional versatility, structural diversity, and controllable surface chemistry. Here, we critically review current knowledge concerning the growth, structure, and properties of graphene derivatives, MOFs, and their graphene@MOF composites as well as the associated structure-property-performance relationships. Synthetic strategies for preparing graphene@MOF composites and tuning their properties are also comprehensively reviewed together with their applications in gas storage/separation, water purification, catalysis (organo-, electro-, and photocatalysis), and electrochemical energy storage and conversion. Current challenges in the development of graphene@MOF hybrids and their practical applications are addressed, revealing areas for future investigation. We hope that this review will inspire further exploration of new graphene@MOF hybrids for energy, electronic, biomedical, and photocatalysis applications as well as studies on previously unreported properties of known hybrids to reveal potential "diamonds in the rough".
Collapse
Affiliation(s)
- Kolleboyina Jayaramulu
- Department
of Chemistry, Indian Institute of Technology
Jammu, Jammu
and Kashmir 181221, India
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
| | - Soumya Mukherjee
- Inorganic
and Metal−Organic Chemistry, Department of Chemistry and Catalysis
Research Centre, Technical University of
Munich, Garching 85748, Germany
| | - Dulce M. Morales
- Analytical
Chemistry, Center for Electrochemical Sciences (CES), Faculty of Chemistry
and Biochemistry, Ruhr-Universität
Bochum, Universitätsstrasse 150, Bochum D-44780, Germany
- Nachwuchsgruppe
Gestaltung des Sauerstoffentwicklungsmechanismus, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, Berlin 14109, Germany
| | - Deepak P. Dubal
- School
of Chemistry and Physics, Queensland University
of Technology (QUT), 2 George Street, Brisbane, Queensland 4001, Australia
| | - Ashok Kumar Nanjundan
- School
of Chemistry and Physics, Queensland University
of Technology (QUT), 2 George Street, Brisbane, Queensland 4001, Australia
| | - Andreas Schneemann
- Lehrstuhl
für Anorganische Chemie I, Technische
Universität Dresden, Bergstrasse 66, Dresden 01067, Germany
| | - Justus Masa
- Max
Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, Mülheim an der Ruhr D-45470, Germany
| | - Stepan Kment
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
- Nanotechnology
Centre, CEET, VŠB-Technical University
of Ostrava, 17 Listopadu
2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Wolfgang Schuhmann
- Analytical
Chemistry, Center for Electrochemical Sciences (CES), Faculty of Chemistry
and Biochemistry, Ruhr-Universität
Bochum, Universitätsstrasse 150, Bochum D-44780, Germany
| | - Michal Otyepka
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
- IT4Innovations, VŠB-Technical University of Ostrava, 17 Listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Radek Zbořil
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute (CATRIN), Palacký
University Olomouc, Šlechtitelů 27, Olomouc 783 71, Czech Republic
- Nanotechnology
Centre, CEET, VŠB-Technical University
of Ostrava, 17 Listopadu
2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Roland A. Fischer
- Inorganic
and Metal−Organic Chemistry, Department of Chemistry and Catalysis
Research Centre, Technical University of
Munich, Garching 85748, Germany
| |
Collapse
|
3
|
Synthesis and applications of metal-organic frameworks and graphene-based composites: A review. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115645] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Nasrollahzadeh M, Nezafat Z, Bidgoli NSS, Shafiei N. Use of tetrazoles in catalysis and energetic applications: Recent developments. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111788] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Yang S, Zhang J, Bai C, Deng K. Gold nanoparticle decorated rGO-encapsulated metal-organic framework composite sensor for the detection of dopamine. CAN J CHEM 2021. [DOI: 10.1139/cjc-2020-0292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In this study, by encapsulation of reduced graphene oxide (rGO) into Ni-based metal–organic framework (Ni-MOF) structure, the composite rGO@Ni-MOF was first prepared. Then, gold nanoparticle (AuNP) decorated rGO@Ni-MOF (rGO@Ni-MOF/AuNP) were obtained through the electrodeposition. The morphology and structure of rGO@Ni-MOF/AuNP were characterized by SEM, FTIR, and XRD. The rGO@Ni-MOF/AuNP modified electrode was used for the detection of dopamine. Combining the catalysis from Ni-MOF and AuNP with the conductivity of rGO endowed rGO@Ni-MOF/AuNP with synergetic high catalytic activity to the electrochemical oxidation of dopamine. The developed modified electrode had a good linear relationship with dopamine in the concentration range of 0.5∼120 μM, and the detection limit was 0.33 μM (S/N = 3). Additionally, the potential interferents, electrode stability, reproducibility, and practical applications were also studied and satisfactory results were obtained.
Collapse
Affiliation(s)
- Shaoming Yang
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, Jiangxi 330013, China
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, Jiangxi 330013, China
| | - Jian Zhang
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, Jiangxi 330013, China
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, Jiangxi 330013, China
| | - Chaopeng Bai
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, Jiangxi 330013, China
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, Jiangxi 330013, China
| | - Kaiqiang Deng
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, Jiangxi 330013, China
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, Jiangxi 330013, China
| |
Collapse
|
6
|
Perfecto-Irigaray M, Beobide G, Calero S, Castillo O, da Silva I, Gutierrez Sevillano JJ, Luque A, Pérez-Yáñez S, Velasco LF. Metastable Zr/Hf-MOFs: the hexagonal family of EHU-30 and their water-sorption induced structural transformation. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00997d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Four new EHU-30 isoreticular compounds, based on amino-functionalized linkers and Zr and Hf metal centres are reported, in which H2O adsorption isotherms show an anomalous behaviour due to a localized structural transformation from EHU-30 to UiO-66.
Collapse
Affiliation(s)
- Maite Perfecto-Irigaray
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
| | - Garikoitz Beobide
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Sofia Calero
- Materials Simulation & Modeling, Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Ctra. Utrera Km. 1, 41013 Seville, Spain
| | - Oscar Castillo
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Ivan da Silva
- ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Oxfordshire OX11 0QX, UK
| | - J. José Gutierrez Sevillano
- Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Ctra. Utrera Km. 1, 41013 Seville, Spain
| | - Antonio Luque
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Sonia Pérez-Yáñez
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- Departamento de Química Orgánica e Inorgánica, Facultad de Farmacia, Universidad del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, E-01006 Vitoria-Gasteiz, Spain
| | - Leticia F. Velasco
- Department of Chemistry, Royal Military Academy, Renaissancelaan 30, 1000 Brussels, Belgium
| |
Collapse
|
7
|
Synthesis and Microwave Absorption Properties of Sulfur-Free Expanded Graphite/Fe 3O 4 Composites. Molecules 2020; 25:molecules25133044. [PMID: 32635346 PMCID: PMC7411745 DOI: 10.3390/molecules25133044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 11/20/2022] Open
Abstract
In this study, sulfur-free expanded graphite (EG) was obtained by using flake graphite as the raw material, and EG/Fe3O4 composites with excellent microwave absorption properties were prepared by a facile one-pot co-precipitation method. The structure and properties of as-prepared EG/Fe3O4 were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR), X-ray diffraction (XRD), Raman, X-ray photoelectron spectrometry (XPS), thermogravimetric (TG), and vibrating sample magnetometry (VSM) characterizations. The Fe3O4 intercalated between the layers of expanded graphite forms a sandwich-like structure which is superparamagnetic and porous. When applied as a microwave absorber, the reflection loss (RL) of EG/Fe3O4 reaches −40.39 dB with a thickness of 3.0 mm (10 wt% loading), and the effective absorption bandwidth (EAB < −10 dB) with RL exceeding −10 dB is 4.76–17.66 GHz with the absorber thickness of 1.5–4.0 mm. Considering its non-toxicity, easy operation, low cost, suitability for large-scale industrial production, and excellent microwave absorbing performance, EG/Fe3O4 is expected to be a promising candidate for industrialized electromagnetic absorbing materials.
Collapse
|
8
|
Geng W, Jia Y, Chen Y, Ma Q, Fan G, Liao L. Superior thermally robust energetic materials featuring Z– E isomeric bis(3,4-diamino-1,2,4-triazol-5-yl)-1 H-pyrazole: self-assembly nitrogen-rich tubes and templates with Hofmeister anion capture architecture. CrystEngComm 2020. [DOI: 10.1039/d0ce00278j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A super thermally robust nitrogen-rich framework was synthesized, and Z → E isomerization as well as supramolecular assembly inclusion strategy gave rise to two different nitrogen-rich tubes and templates with Hofmeister anions capture architecture.
Collapse
Affiliation(s)
- Wenjing Geng
- Institute of Chemical Materials
- Chinese Academy of Engineering Physics
- Mianyang 621900
- China
| | - Yunfei Jia
- Institute of Chemical Materials
- Chinese Academy of Engineering Physics
- Mianyang 621900
- China
| | - Ya Chen
- Institute of Chemical Materials
- Chinese Academy of Engineering Physics
- Mianyang 621900
- China
| | - Qing Ma
- Institute of Chemical Materials
- Chinese Academy of Engineering Physics
- Mianyang 621900
- China
| | - Guijuan Fan
- Institute of Chemical Materials
- Chinese Academy of Engineering Physics
- Mianyang 621900
- China
| | - Longyu Liao
- Institute of Chemical Materials
- Chinese Academy of Engineering Physics
- Mianyang 621900
- China
| |
Collapse
|
9
|
Fang D, Li X, Zou M, Guo X, Zhang A. Carbazole-functionalized hyper-cross-linked polymers for CO 2 uptake based on Friedel-Crafts polymerization on 9-phenylcarbazole. Beilstein J Org Chem 2019; 15:2856-2863. [PMID: 31839831 PMCID: PMC6902873 DOI: 10.3762/bjoc.15.279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/15/2019] [Indexed: 01/27/2023] Open
Abstract
To systematically explore the effects of the synthesis conditions on the porosity of hyper-cross-linked polymers (HCPs), a series of 9-phenylcarbazole (9-PCz) HCPs (P1-P11) has been made by changing the molar ratio of cross-linker to monomer, the reaction temperature T 1, the used amount of catalyst and the concentration of reactants. Fourier transform infrared spectroscopy was utilized to characterize the structure of the obtained polymers. The TG analysis of the HCPs showed good thermal stability. More importantly, a comparative study on the porosity revealed that: the molar ratio of cross-linker to monomer was the main influence factor of the BET specific surface area. Increasing the reaction temperature T 1 or changing the used amount of catalyst could improve the total pore volume greatly but sacrificed a part of the BET specific surface area. Fortunately changing the concentration of reactants could remedy this situation. Slightly changing the concentration of reactants could simultaneously obtain a high surface area and a high total pore volume. The BET specific surface areas of P3 was up to 769 m2 g-1 with narrow pore size distribution and the CO2 adsorption capacity of P11 was up to 52.4 cm3 g-1 (273 K/1.00 bar).
Collapse
Affiliation(s)
- Dandan Fang
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaodong Li
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Meishuai Zou
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoyan Guo
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Aijuan Zhang
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
10
|
Zeng T, Li D, Lan Y, Gao W, Li J, Yang R. Study on Interaction between Propargyl-Terminated Polybutadiene and Plasticizers Based on Simulation and Experiments. J Phys Chem A 2019; 123:6370-6377. [PMID: 31310124 DOI: 10.1021/acs.jpca.9b03673] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular dynamics (MD) simulation and experimental methods are used to explore the interaction between the propargyl-terminated polybutadiene (PTPB) binder and plasticizers bis(2,2-dinitropropyl) formal/acetal (BDNPF/A) and dioctyl sebacate (DOS). Flory-Huggins parameters, radial distribution functions, and binding energies between PTPB and plasticizers are calculated using MD simulations. The solubility parameters of PTPB and the plasticizers are calculated by both MD and group contribution method. The mesoscopic dynamics (MesoDyn) is used to simulate the meso-morphology of PTPB and plasticizer blends by converting the results of MD simulation into MesoDyn simulation parameters. The results of simulations and calculations show that PTPB has better compatibility with DOS than with BDNPF/A, and DOS is more suitable as a plasticizer for PTPB. The results of dynamic rheological experiments show that BDNPF/A has little effect on the dynamic viscosity of PTPB, and DOS can significantly reduce the dynamic viscosity of PTPB and has better plasticizing effect on PTPB. Differential scanning calorimetry and dynamic mechanical analysis tests indicate that the DOS and PTPB blend has only one glass transition temperature, while the PTPB and BDNPF/A blend has two glass transition temperatures. Both simulations and experimental results show that the PTPB binder have better compatibility with DOS than with BDNPF/A, and DOS has better plasticization effects on the PTPB binder.
Collapse
Affiliation(s)
- Tao Zeng
- School of Materials Science and Engineering , Beijing Institute of Technology , Beijing 100081 , China.,State Key Laboratory of Explosion Science and Technology , Beijing 100081 , China
| | - Dinghua Li
- School of Materials Science and Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Yanhua Lan
- School of Environment and Safety Engineering , North University of China , Taiyuan 030051 , China
| | - Wenbo Gao
- School of Materials Science and Engineering , Beijing Institute of Technology , Beijing 100081 , China
| | - Jianmin Li
- State Key Laboratory of Explosion Science and Technology , Beijing 100081 , China
| | - Rongjie Yang
- School of Materials Science and Engineering , Beijing Institute of Technology , Beijing 100081 , China.,State Key Laboratory of Explosion Science and Technology , Beijing 100081 , China
| |
Collapse
|