1
|
Diez-Cabanes V, Granados-Tavera K, Shere I, Cárdenas-Jirón G, Maurin G. Engineering MOF/carbon nitride heterojunctions for effective dual photocatalytic CO 2 conversion and oxygen evolution reactions. Chem Sci 2024:d4sc03630a. [PMID: 39246361 PMCID: PMC11376056 DOI: 10.1039/d4sc03630a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/21/2024] [Indexed: 09/10/2024] Open
Abstract
Photocatalysis appears as one of the most promising avenues to shift towards sustainable sources of energy, owing to its ability to transform solar light into chemical energy, e.g. production of chemical fuels via oxygen evolution (OER) and CO2 reduction (CO2RR) reactions. Ti metal-organic frameworks (MOFs) and graphitic carbon nitride derivatives, i.e. poly-heptazine imides (PHI) are appealing CO2RR and OER photo-catalysts respectively. Engineering of an innovative Z-scheme heterojunction by assembling a Ti-MOF and PHI offers an unparalleled opportunity to mimick an artificial photosynthesis device for dual CO2RR/OER catalysis. Along this path, understanding of the photophysical processes controlling the MOF/PHI interfacial charge recombination is vital to fine tune the electronic and chemical features of the two components and devise the optimum heterojunction. To address this challenge, we developed a modelling approach integrating force field Molecular Dynamics (MD), Time-Dependent Density Functional Theory (TD-DFT) and Non-Equilibrium Green Function DFT (NEGF-DFT) tools with the aim of systematically exploring the structuring, the opto-electronic and transport properties of MOF/PHI heterojunctions. We revealed that the nature of the MOF/PHI interactions, the interfacial charge transfer directionality and the absorption energy windows of the resulting heterojunctions can be fine tuned by incorporating Cu species in the MOF and/or doping PHI with mono- or divalent cations. Interestingly, we demonstrated that the interfacial charge transfer can be further boosted by engineering MOF/PHI device junctions and application of negative bias. Overall, our generalizable computational methodology unravelled that the performance of CO2RR/OER photoreactors can be optimized by chemical and electronic tuning of the components but also by device design based on reliable structure-property rules, paving the way towards practical exploitation.
Collapse
Affiliation(s)
| | - Kevin Granados-Tavera
- ICGM, Univ. Montpellier, CNRS, ENSCM Montpellier 34293 France
- Laboratory of Theoretical Chemistry, Faculty of Chemistry and Biology, University of Santiago de Chile (USACH) 9170022 Santiago Chile
| | - Inderdip Shere
- ICGM, Univ. Montpellier, CNRS, ENSCM Montpellier 34293 France
| | - Gloria Cárdenas-Jirón
- Laboratory of Theoretical Chemistry, Faculty of Chemistry and Biology, University of Santiago de Chile (USACH) 9170022 Santiago Chile
| | | |
Collapse
|
2
|
Yao D, Feng C, Jin L, Zheng J, Fan R, Ming P. Improving Interfacial Adhesion of Graphite/Epoxy Composites by Surface Functionalization. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39008-39016. [PMID: 37550802 DOI: 10.1021/acsami.3c08100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Graphite/epoxy resin (G/EP) composites are extensively utilized in bipolar plates for fuel cells owing to their outstanding electrical and mechanical properties. However, the mechanical strength of these composites declines notably due to the inadequate bonding interface between graphite and epoxy resin. To address this issue, we used molecular dynamics (MD) simulations to study the influence of graphite surface functionalization on the interfacial structures of composites. The results of this study revealed that the functionalization of the graphite surface led to an increase in the interface thickness of the composite. This phenomenon can be attributed to the interdiffusion and hydrogen bond formation between functionalized graphite and epoxy molecular chains. And all four types of functional groups demonstrated a promoting effect on the adsorption process. Additionally, the adsorption and contact angle results provided further evidence that the adsorption rate of graphite to the epoxy resin significantly improved after functionalization. These findings contribute to a more comprehensive understanding of the microscopic process of forming interfaces in G/EP composites. In addition, these insights provide valuable guidance for improving the interface bonding of composite bipolar plates, which can ultimately increase their mechanical strength.
Collapse
Affiliation(s)
- Dongmei Yao
- Clean Energy Automotive Engineering Center and School of Automotive Studies, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Cong Feng
- College of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Liming Jin
- Clean Energy Automotive Engineering Center and School of Automotive Studies, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Junsheng Zheng
- Clean Energy Automotive Engineering Center and School of Automotive Studies, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Runlin Fan
- Clean Energy Automotive Engineering Center and School of Automotive Studies, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Pingwen Ming
- Clean Energy Automotive Engineering Center and School of Automotive Studies, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
3
|
Lo R, Pykal M, Schneemann A, Zbořil R, Fischer RA, Jayaramulu K, Otyepka M. Lewis Acid Catalyzed Amide Bond Formation in Covalent Graphene-MOF Hybrids. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:15454-15460. [PMID: 37588814 PMCID: PMC10426341 DOI: 10.1021/acs.jpcc.3c01821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/01/2023] [Indexed: 08/18/2023]
Abstract
Covalent hybrids of graphene and metal-organic frameworks (MOFs) hold immense potential in various technologies, particularly catalysis and energy applications, due to the advantageous combination of conductivity and porosity. The formation of an amide bond between carboxylate-functionalized graphene acid (GA) and amine-functionalized UiO-66-NH2 MOF (Zr6O4(OH)4(NH2-bdc)6, with NH2-bdc2- = 2-amino-1,4-benzenedicarboxylate and UiO = Universitetet i Oslo) is a highly efficient strategy for creating such covalent hybrids. Previous experimental studies have demonstrated exceptional properties of these conductive networks, including significant surface area and functionalized hierarchical pores, showing promise as a chemiresistive CO2 sensor and electrode materials for asymmetric supercapacitors. However, the molecular-level origin of the covalent linkages between pristine MOF and GA layers remains unclear. In this study, density functional theory (DFT) calculations were conducted to elucidate the mechanism of amide bond formation between GA and UiO-66-NH2. The theoretical calculations emphasize the crucial role of zirconium within UiO-66, which acts as a catalyst in the reaction cycle. Both commonly observed hexa-coordinated and less common hepta-coordinated zirconium complexes are considered as intermediates. By gaining detailed insights into the binding interactions between graphene derivatives and MOFs, strategies for tailored syntheses of such nanocomposite materials can be developed.
Collapse
Affiliation(s)
- Rabindranath Lo
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, v.v.i., Flemingovo nám. 2, 160
00 Prague 6, Czech
Republic
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University
Olomouc, Křížkovského
511/8, Olomouc 77900, Czech Republic
| | - Martin Pykal
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University
Olomouc, Křížkovského
511/8, Olomouc 77900, Czech Republic
| | - Andreas Schneemann
- Lehrstuhl
für Anorganische Chemie I, Technische
Universität Dresden, Bergstr. 66, 01069 Dresden, Germany
| | - Radek Zbořil
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University
Olomouc, Křížkovského
511/8, Olomouc 77900, Czech Republic
- Nanotechnology
Centre, CEET, VSB, Technical University
of Ostrava, 17. listopadu
2172/15, 70800 Ostrava-Poruba, Czech Republic
| | - Roland A. Fischer
- Chair
of Inorganic and Metal−Organic Chemistry, Department of Chemistry
and Catalysis Research Centre, Technical
University of Munich, 85748 Garching, Germany
| | - Kolleboyina Jayaramulu
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University
Olomouc, Křížkovského
511/8, Olomouc 77900, Czech Republic
- Hybrid
Porous Materials Lab, Department of Chemistry, Indian Institute of Technology Jammu, Jammu & Kashmir 181221, India
| | - Michal Otyepka
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University
Olomouc, Křížkovského
511/8, Olomouc 77900, Czech Republic
- IT4Innovations, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 70800 Ostrava-Poruba, Czech Republic
| |
Collapse
|
4
|
Liu KK, Guan ZJ, Ke M, Fang Y. Bridging the Gap between Charge Storage Site and Transportation Pathway in Molecular-Cage-Based Flexible Electrodes. ACS CENTRAL SCIENCE 2023; 9:805-815. [PMID: 37122452 PMCID: PMC10141610 DOI: 10.1021/acscentsci.3c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Indexed: 05/03/2023]
Abstract
Porous materials have been widely applied for supercapacitors; however, the relationship between the electrochemical behaviors and the spatial structures has rarely been discussed before. Herein, we report a series of porous coordination cage (PCC) flexible supercapacitors with tunable three-dimensional (3D) cavities and redox centers. PCCs exhibit excellent capacitor performances with a superior molecular capacitance of 2510 F mmol-1, high areal capacitances of 250 mF cm-2, and unique cycle stability. The electrochemical behavior of PCCs is dictated by the size, type, and open-close state of the cavities. Both the charge binding site and the charge transportation pathway are unambiguously elucidated for PCC supercapacitors. These findings provide central theoretical support for the "structure-property relationship" for designing powerful electrode materials for flexible energy storage devices.
Collapse
Affiliation(s)
- Kang-Kai Liu
- State
Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of
Chemistry and Chemical Engineering, Hunan
University, Changsha, Hunan 410082, People’s Republic of China
| | - Zong-Jie Guan
- State
Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of
Chemistry and Chemical Engineering, Hunan
University, Changsha, Hunan 410082, People’s Republic of China
| | - Mengting Ke
- State
Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of
Chemistry and Chemical Engineering, Hunan
University, Changsha, Hunan 410082, People’s Republic of China
| | - Yu Fang
- State
Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of
Chemistry and Chemical Engineering, Hunan
University, Changsha, Hunan 410082, People’s Republic of China
- Innovation
Institute of Industrial Design and Machine Intelligence Quanzhou-Hunan
University, Quanzhou, Fujian 362801, People’s Republic of China
- Email
for Y.F.:
| |
Collapse
|
5
|
Yang W, Cao M. Synthesis of ZIF-8@GO-COOH and its adsorption for Cu(II) and Pb(II) from water: capability and mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Mukherjee D, Das P, Prasad GN, Katha AR, Gumma S, Mandal B. Hierarchical graphite oxide decorated UiO-66 for ultrahigh adsorption of dye with synergistic effect of ultrasonication: Experimental and density functional theory study. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
7
|
Lv C, Kang W, Liu S, Yang P, Nishina Y, Ge S, Bianco A, Ma B. Growth of ZIF-8 Nanoparticles In Situ on Graphene Oxide Nanosheets: A Multifunctional Nanoplatform for Combined Ion-Interference and Photothermal Therapy. ACS NANO 2022; 16:11428-11443. [PMID: 35816172 DOI: 10.1021/acsnano.2c05532] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The regulation of intracellular ions' overload to interrupt normal bioprocesses and cause cell death has been developed as an efficient strategy (named as ion-interference therapy/IIT) to treat cancer. In this study, we design a multifunctional nanoplatform (called BSArGO@ZIF-8 NSs) by in situ growth of metal organic framework nanoparticles (ZIF-8 NPs) onto the graphene oxide (GO) surface, subsequently reduced by ascorbic acid and modified by bovine serum albumin. This nanocomplex causes the intracellular overload of Zn2+, an increase of reactive oxygen species (ROS), and exerts a broad-spectrum lethality to different kinds of cancer cells. BSArGO@ZIF-8 NSs can promote cell apoptosis by initiating bim (a pro-apoptotic protein)-mediated mitochondrial apoptotic events, up-regulating PUMA/NOXA expression, and down-regulating the level of Bid/p53AIP1. Meanwhile, Zn2+ excess triggers cellular dysfunction and mitochondria damage by activating the autophagy signaling pathways and disturbing the intracellular environmental homeostasis. Combined with the photothermal effect of reduced GO (rGO), BSArGO@ZIF-8 NSs mediated ion-interference and photothermal combined therapy leads to effective apoptosis and inhibits cell proliferation and angiogenesis, bringing a higher efficacy in tumor suppression in vivo. This designed Zn-based multifunctional nanoplatform will allow promoting further the development of IIT and the corresponding combined cancer therapy strategy.
Collapse
Affiliation(s)
- Chunxu Lv
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Wenyan Kang
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Shuo Liu
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Pishan Yang
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Yuta Nishina
- Graduate School of Natural Science and Technology, Okayama University, Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
- Research Core for Interdisciplinary Sciences, Okayama University, Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Shaohua Ge
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Baojin Ma
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| |
Collapse
|
8
|
Zhao Q, Zhao Z, Rao R, Yang Y, Ling S, Bi F, Shi X, Xu J, Lu G, Zhang X. Universitetet i Oslo-67 (UiO-67)/graphite oxide composites with high capacities of toluene: Synthesis strategy and adsorption mechanism insight. J Colloid Interface Sci 2022; 627:385-397. [PMID: 35863197 DOI: 10.1016/j.jcis.2022.07.059] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/20/2022] [Accepted: 07/09/2022] [Indexed: 01/18/2023]
Abstract
In this paper, a simple solvothermal synthesis method was proposed for the preparation of metal organic framework/graphene oxide hybrid nanocomposite (UiO-67/GO). A series of UiO-67/GO composites were prepared by varying the addition forms and amounts of GO, and the optimal synthesis conditions were screened. The composites were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), transmission Electron Microscope (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopic (XPS), water contact angles (CA) and thermogravimetric analysis (TGA). The adsorption capacity and the adsorption process of toluene were investigated by dynamic adsorption and adsorption kinetics, respectively. The results indicated that 67/GO-0.5% reached the maximum adsorption capacity (876 mg g-1), which far exceeded the other adsorbents. Kinetic model and the Weber-Morris model correlated satisfactorily to the experimental data. The improved adsorption performance was attributed to GO, which enhanced π-π interaction, promoted defect generation and provided more adsorption sites. Finally, the excellent regeneration performance of the adsorbent was verified by temperature programmed desorption (TPD) and cyclic adsorption-desorption experiments. Moreover, the adsorption mechanism was further revealed. Combined with the related adsorption experiments and the density functional theory (DFT) analysis, the efficient removal of toluene by UiO-67/GO was attributed to the cooperation of defects, π-π interaction and hydrogen bonding.
Collapse
Affiliation(s)
- Qiangyu Zhao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhenyuan Zhao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Renzhi Rao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yang Yang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Songyuan Ling
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Fukun Bi
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiaoyu Shi
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jingcheng Xu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, 516 Jun Gong Road, Shanghai 200093, China
| | - Guang Lu
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun, Liaoning 113001, China
| | - Xiaodong Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
9
|
Zhou W, Zhou X, Rao Y, Lin R, Ge L, Yang P, Zhang H, Zhu C, Ying H, Zhuang W. Stabilizing bienzymatic cascade catalysis via immobilization in ZIF-8/GO composites obtained by GO assisted co-growth. Colloids Surf B Biointerfaces 2022; 217:112585. [PMID: 35667201 DOI: 10.1016/j.colsurfb.2022.112585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
Abstract
Enzyme catalysis has clear advantages in the process of oxidizing glucose to produce gluconic acid. In the enzyme cascade, the improvement of the cascade efficiency is desired but challenging. Graphene oxide (GO) and ZIF-8 composites as enzyme support offer the promising opportunity that not only the cascade efficiency can be improved by control the distance between two enzymes, but also the stability can be improved. Here, a new strategy of GO assisted co-growth of ZIF-8 and enzyme was carried in a one-pot synthesis. Glucose oxidase&catalase immobilized in the ZIF-8/GO composites can obtain 98% residual activity after 15 days of storage with almost no enzyme shedding. The residual activity is still higher than 75% after 5 repeated uses. The presented method of controllable growth of metal organic frameworks on 2D nanosheet can also be extended for renewable energy devices, gas storage and separation of small molecules.
Collapse
Affiliation(s)
- Wenfeng Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Xiaohong Zhou
- School of Chemistry and Molecular Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Yuan Rao
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Rijia Lin
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Lei Ge
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia; Centre for Future Materials, University of Southern Queensland, Springfield Central, QLD 4300, Australia
| | - Pengpeng Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Hongman Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Chenjie Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China; Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Hanjie Ying
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China; Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Wei Zhuang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China; Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China.
| |
Collapse
|
10
|
Hao S, Yuling L, Yang J. Construction of Cu-BTC by carboxylic acid organic ligand and its application in low temperature SCR denitration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:152984. [PMID: 35026239 DOI: 10.1016/j.scitotenv.2022.152984] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
The removal of NO has always been a hot issue in the treatment of coal-fired flue gas. In this paper, a hydrothermal synthesis method was used to prepare porous denitration catalysts with polycarboxyl organic isomers (trimellitic acid, phthalic acid, and benzoic acid). And then developed as the NO removing catalysts for low temperature selective catalytic reduction (SCR) with NH3. XRD, BET, SEM, FTIR, XPS, Raman, H2-TPR, NH3-TPD and TG were used to analyze the crystallinity, microscopic morphology, surface functional groups and metal content. The results showed that: (1) From the crystal structure analysis, the catalyst prepared with 1,3,5 and 1,2,4-benzenetricarboxylic acid as ligands (1,3,5-A and 1,2,4-B) was Cu-BTC. (2) 1,3,5-A catalyst had a huge specific surface area, up to 1421.32 m2/g, and a pore volume up to 0.5798 cm3/g. (3) The prepared catalysts were applied to NH3-SCR denitration, and the catalyst with Cu-BTC structure had relatively high catalytic performance, and the overall catalytic capacity showed an increasing trend with the temperature. (4) 1,3,5-A catalyst had stability and catalytic activity. When the temperature was 270 °C, the denitration efficiency reached 83.87%. And within 8 h, the denitration efficiency was stable up to 82%.
Collapse
Affiliation(s)
- Shu Hao
- Institute of Water Resources and Hydro-electric Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Liu Yuling
- Institute of Water Resources and Hydro-electric Engineering, Xi'an University of Technology, Xi'an 710048, China.
| | - Jia Yang
- Institute of Water Resources and Hydro-electric Engineering, Xi'an University of Technology, Xi'an 710048, China
| |
Collapse
|
11
|
The Growth of Metal–Organic Frameworks in the Presence of Graphene Oxide: A Mini Review. MEMBRANES 2022; 12:membranes12050501. [PMID: 35629825 PMCID: PMC9143871 DOI: 10.3390/membranes12050501] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 11/17/2022]
Abstract
Integrated metal–organic frameworks (MOFs) with graphene oxide (GO) have aroused huge interest in recent years due to their unique properties and excellent performance compared to MOFs or GO alone. While a lot of attention has been focused on the synthesis methodologies and the performance analysis of the composite materials in recent years, the fundamental formation/crystallization mechanism(s) is (are) still not fully understood. Ascribed to the distinctive structural and functional properties of GO, the nucleation and crystallization process of MOFs could be altered/promoted, forming MOF/GO composite materials with different nanostructures. Furthermore, the MOF’s parental structure could also influence how the GO and MOF bond together. Thus, this short review attempted to provide critical and indepth discussions of recent research results with a particular focus on the factors that influence the directional growth of parent MOFs in the presence of graphene oxide. Due to the unique structure and enhanced properties, the derived MOF/GO composites have a wide range of applications including gas separation, electrochemistry, and photocatalysis. We hope this review will be of interest to researchers working on MOF design, crystal structure control (e.g., orientation), and composite materials development.
Collapse
|
12
|
Synthesis and applications of metal-organic frameworks and graphene-based composites: A review. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Li S, Zhang L, Yin X, Wang Y, Guo X, He Y. Efficient photocatalysis improves the self-cleaning property of the superwetting nanofibrous membrane toward emulsified oily wastewater. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Hao S, Yuling L, Yang J. Synthesis of Cu-BTC by room temperature hydrothermal and its low temperature SCR denitration. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132046] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Liu JH, Yu MY, Pei WY, Wang T, Ma JF. Self-Assembly of Polyoxometalate-Resorcin[4]arene-Based Inorganic-Organic Complexes: Metal Ion Effects on the Electrochemical Performance of Lithium Ion Batteries. Chemistry 2021; 27:10123-10133. [PMID: 34015862 DOI: 10.1002/chem.202100780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 01/10/2023]
Abstract
With their adjustable structures and diverse functions, polyoxometalate (POM)-resorcin[4]arene-based inorganic-organic complexes are a kind of potential multifunctional material. They have potential applications for lithium ion batteries (LIBs). However, the relationship between different coordinated metal ions and electrochemical performance has rarely been investigated. Here, three functionalized POM-resorcin[4]arene-based inorganic-organic materials, [Co2 (TMR4 A)2 (H2 O)10 ][SiW12 O40 ]⋅2 EtOH⋅4.5 H2 O (1), [Ni2 (TMR4 A)2 (H2 O)10 ][SiW12 O40 ]⋅4 EtOH⋅13 H2 O (2), and [Zn2 (TMR4 A)2 (H2 O)10 ][SiW12 O40 ]⋅2 EtOH⋅2 H2 O (3), have been synthesized. Furthermore, to enhance the conductivities of these compounds, 1-3 were doped with reduced graphene oxide (RGO) to give composites 1@RGO-3@RGO, respectively. As anode materials for LIBs, 1@RGO-3@RGO can deliver very high discharge capacities (1445.9, 1285.0 and 1095.3 mAh g-1 , respectively) in the initial run, and show discharge capacities of 898, 665 and 651 mAh g-1 , respectively, at a current density of 0.1 A g-1 over 100 runs. More importantly, the discharge capacities of 319, 283 and 329 mAh g-1 were maintained for 1@RGO-3@RGO even after 400 cycles at large current density (1 A g-1 ).
Collapse
Affiliation(s)
- Jin-Hua Liu
- Key Lab of Polyoxometalate and Reticular Material Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Ming-Yue Yu
- Key Lab of Polyoxometalate and Reticular Material Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Wen-Yuan Pei
- Key Lab of Polyoxometalate and Reticular Material Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Tianqi Wang
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun, 130022, P. R. China
| | - Jian-Fang Ma
- Key Lab of Polyoxometalate and Reticular Material Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| |
Collapse
|
16
|
Liu B, Taheri M, Torres JF, Fusco Z, Lu T, Liu Y, Tsuzuki T, Yu G, Tricoli A. Janus Conductive/Insulating Microporous Ion-Sieving Membranes for Stable Li-S Batteries. ACS NANO 2020; 14:13852-13864. [PMID: 32886499 DOI: 10.1021/acsnano.0c06221] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lithium-sulfur batteries are one of the most promising next-generation high-density energy storage systems. Despite progress, the poor electrical conductivity and cycling stability of sulfur cathodes still hinder their practical implementation. Here, we developed a facile approach for the engineering of Janus double-sided conductive/insulating microporous ion-sieving membranes that significantly enhance recharge efficiency and long-term stability of Li-S batteries. Our membrane consists of an insulating Li-anode side and an electrically conductive S-cathode side. The insulating side consists of a standard polypropylene separator, while the conductive side is made of closely packed multilayers of high-aspect-ratio MOF/graphene nanosheets having a thickness of few nanometers and a specific surface area of 996 m2 g-1 (MOF, metal-organic framework). Our models and experiments reveal that this electrically conductive microporous nanosheet architecture enables the reuse of polysulfide trapped in the membrane and decreases the polysulfide flux and concentration on the anode side by a factor of 250× over recent microporous membranes made of granular MOFs and standard battery separators. Notably, Li-S batteries using our Janus microporous membranes achieve an outstanding rate capability and long-term stability with 75.3% capacity retention over 1700 cycles. We demonstrate the broad applicability of our high-aspect-ratio MOF/graphene nanosheet preparation strategy by the synthesis of a diverse range of MOFs, including ZIF-67, ZIF-8, HKUST-1, NiFe-BTC, and Ni-NDC, providing a flexible approach for the design of Janus microporous membranes and electrically conductive microporous building blocks for energy storage and various other electrochemical applications.
Collapse
Affiliation(s)
- Borui Liu
- Nanotechnology Research Laboratory, Research School of Electrical, Energy and Materials Engineering, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Mahdiar Taheri
- Laboratory of Advanced Nanomaterials for Sustainability, Research School of Electrical, Energy and Materials Engineering, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Juan F Torres
- Nanotechnology Research Laboratory, Research School of Electrical, Energy and Materials Engineering, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Zelio Fusco
- Nanotechnology Research Laboratory, Research School of Electrical, Energy and Materials Engineering, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Teng Lu
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Yun Liu
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Takuya Tsuzuki
- Laboratory of Advanced Nanomaterials for Sustainability, Research School of Electrical, Energy and Materials Engineering, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Guihua Yu
- Materials Science and Engineering Program and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Antonio Tricoli
- Nanotechnology Research Laboratory, Research School of Electrical, Energy and Materials Engineering, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
17
|
Zhong Y, Wang R, Wang X, Lin Z, Jiang G, Yang M, Xu D. A Ti-MOF Decorated With a Pt Nanoparticle Cocatalyst for Efficient Photocatalytic H 2 Evolution: A Theoretical Study. Front Chem 2020; 8:660. [PMID: 32850672 PMCID: PMC7427410 DOI: 10.3389/fchem.2020.00660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 06/25/2020] [Indexed: 12/03/2022] Open
Abstract
Pt nanoparticles (NPs) are often used as cocatalysts to enhance the photocatalytic hydrogen production catalyzed by the metal organic framework (MOF) materials. The catalytic efficiency of many Pt/MOF systems can be greatly improved when Pt NPs are used as cocatalysts. In this work, the Pt/20%-MIL-125-(SCH3)2 was chosen as the template material to understand the functional role of a Pt metal cocatalyst in the catalytic process. Experimentally, the catalytic activity of Pt/20%-MIL-125-(SCH3)2 is more than 100 times that of the system without the help of Pt NPs. Firstly, we proposed a searching algorithm, which is based on the combined Monte Carlo (MC) method and principal component analysis (PCA) algorithm, to find that the most probable adsorption site of the Pt13 nanocluster loaded on the (001) surface of 20%-MIL-125-(SCH3)2. Next, by using density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods, we revealed that the accumulation of some positive charges on the Pt13 cluster and proton adsorbed on the Pt13 cluster, which can promote the separation of photogenerated electrons and holes, thus improving the photocatalytic efficiency. This work not only provides a method to obtain the adsorption configuration of metal clusters on various MOFs but also provides a new insight into increasing photocatalytic efficiency for H2 production in Pt/MOF systems.
Collapse
Affiliation(s)
- Yeshuang Zhong
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Chengdu, China
| | - Ruihan Wang
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Chengdu, China
| | - Xin Wang
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Chengdu, China
| | - Zhien Lin
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Chengdu, China
| | - Gang Jiang
- Institute of Atomic and Molecular Physics, MOE Key Laboratory of High Energy Density Physics and Technology, Sichuan University, Chengdu, China
| | - Mingli Yang
- Institute of Atomic and Molecular Physics, MOE Key Laboratory of High Energy Density Physics and Technology, Sichuan University, Chengdu, China.,Research Center for Material Genome Engineering, Sichuan University, Chengdu, China
| | - Dingguo Xu
- College of Chemistry, MOE Key Laboratory of Green Chemistry and Technology, Sichuan University, Chengdu, China.,Research Center for Material Genome Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Ma W, Li Y, Zhang M, Gao S, Cui J, Huang C, Fu G. Biomimetic Durable Multifunctional Self-Cleaning Nanofibrous Membrane with Outstanding Oil/Water Separation, Photodegradation of Organic Contaminants, and Antibacterial Performances. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34999-35010. [PMID: 32663393 DOI: 10.1021/acsami.0c09059] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Wastewater pollution has always been one of the most severe worldwide environmental problems. In addition, in light of the frequent oil spills that have occurred in recent years, the treatment of oily wastewater is particularly important. In this work, a novel zeolitic imidazolate framework-8@thiolated graphene (ZIF-8@GSH) composites-based polyimide (PI) nanofibrous membrane was developed via a facile electrospinning and in situ hydrothermal synthesis approaches for effective purification of oily wastewater. The membrane showed superhydrophobicity/superoleophilicity and high separation efficiency (>99.9%) for a wide range of oil/water mixtures and water-in-oil emulsions. Besides, the membrane demonstrated excellent photocatalytic dye degradation, antibacterial, self-cleaning, and mechanochemical durable abilities, showing high potential in oily wastewater treatment and water remediation.
Collapse
Affiliation(s)
- Wenjing Ma
- College of Chemistry and Chemical Engineering, Southeast University (SEU), Nanjing, 211189, P. R. China
| | - Yuansheng Li
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University (NFU), Nanjing, 210037, P. R. China
| | - Mengjie Zhang
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University (NFU), Nanjing, 210037, P. R. China
| | - Shuting Gao
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University (NFU), Nanjing, 210037, P. R. China
| | - Jiaxin Cui
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University (NFU), Nanjing, 210037, P. R. China
| | - Chaobo Huang
- College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University (NFU), Nanjing, 210037, P. R. China
| | - Guodong Fu
- College of Chemistry and Chemical Engineering, Southeast University (SEU), Nanjing, 211189, P. R. China
| |
Collapse
|
19
|
Muschi M, Lalitha A, Sene S, Aureau D, Fregnaux M, Esteve I, Rivier L, Ramsahye N, Devautour‐Vinot S, Sicard C, Menguy N, Serre C, Maurin G, Steunou N. Formation of a Single‐Crystal Aluminum‐Based MOF Nanowire with Graphene Oxide Nanoscrolls as Structure‐Directing Agents. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mégane Muschi
- Institut des Matériaux Poreux de Paris UMR 8004 CNRS-ENS-ESPCI PSL research university Paris France
| | - Anusha Lalitha
- Institut Charles Gerhardt Montpellier Univ. Montpellier, CNRS, ENSCM Montpellier France
| | - Saad Sene
- Institut des Matériaux Poreux de Paris UMR 8004 CNRS-ENS-ESPCI PSL research university Paris France
| | - Damien Aureau
- Institut Lavoisier de Versailles UMR CNRS 8180 Université de Versailles St Quentin en Yvelines Université Paris Saclay Versailles France
| | - Mathieu Fregnaux
- Institut Lavoisier de Versailles UMR CNRS 8180 Université de Versailles St Quentin en Yvelines Université Paris Saclay Versailles France
| | - Imène Esteve
- Sorbonne Université UMR CNRS 7590 MNHN IRD Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie IMPMC 75005 Paris France
| | - Lucie Rivier
- Institut Lavoisier de Versailles UMR CNRS 8180 Université de Versailles St Quentin en Yvelines Université Paris Saclay Versailles France
| | - Naseem Ramsahye
- Institut Charles Gerhardt Montpellier Univ. Montpellier, CNRS, ENSCM Montpellier France
| | | | - Clémence Sicard
- Institut Lavoisier de Versailles UMR CNRS 8180 Université de Versailles St Quentin en Yvelines Université Paris Saclay Versailles France
| | - Nicolas Menguy
- Sorbonne Université UMR CNRS 7590 MNHN IRD Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie IMPMC 75005 Paris France
| | - Christian Serre
- Institut des Matériaux Poreux de Paris UMR 8004 CNRS-ENS-ESPCI PSL research university Paris France
| | - Guillaume Maurin
- Institut Charles Gerhardt Montpellier Univ. Montpellier, CNRS, ENSCM Montpellier France
| | - Nathalie Steunou
- Institut des Matériaux Poreux de Paris UMR 8004 CNRS-ENS-ESPCI PSL research university Paris France
- Institut Lavoisier de Versailles UMR CNRS 8180 Université de Versailles St Quentin en Yvelines Université Paris Saclay Versailles France
| |
Collapse
|
20
|
Muschi M, Lalitha A, Sene S, Aureau D, Fregnaux M, Esteve I, Rivier L, Ramsahye N, Devautour‐Vinot S, Sicard C, Menguy N, Serre C, Maurin G, Steunou N. Formation of a Single‐Crystal Aluminum‐Based MOF Nanowire with Graphene Oxide Nanoscrolls as Structure‐Directing Agents. Angew Chem Int Ed Engl 2020; 59:10353-10358. [DOI: 10.1002/anie.202000795] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/16/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Mégane Muschi
- Institut des Matériaux Poreux de Paris UMR 8004 CNRS-ENS-ESPCI PSL research university Paris France
| | - Anusha Lalitha
- Institut Charles Gerhardt Montpellier Univ. Montpellier, CNRS, ENSCM Montpellier France
| | - Saad Sene
- Institut des Matériaux Poreux de Paris UMR 8004 CNRS-ENS-ESPCI PSL research university Paris France
| | - Damien Aureau
- Institut Lavoisier de Versailles UMR CNRS 8180 Université de Versailles St Quentin en Yvelines Université Paris Saclay Versailles France
| | - Mathieu Fregnaux
- Institut Lavoisier de Versailles UMR CNRS 8180 Université de Versailles St Quentin en Yvelines Université Paris Saclay Versailles France
| | - Imène Esteve
- Sorbonne Université UMR CNRS 7590 MNHN IRD Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie IMPMC 75005 Paris France
| | - Lucie Rivier
- Institut Lavoisier de Versailles UMR CNRS 8180 Université de Versailles St Quentin en Yvelines Université Paris Saclay Versailles France
| | - Naseem Ramsahye
- Institut Charles Gerhardt Montpellier Univ. Montpellier, CNRS, ENSCM Montpellier France
| | | | - Clémence Sicard
- Institut Lavoisier de Versailles UMR CNRS 8180 Université de Versailles St Quentin en Yvelines Université Paris Saclay Versailles France
| | - Nicolas Menguy
- Sorbonne Université UMR CNRS 7590 MNHN IRD Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie IMPMC 75005 Paris France
| | - Christian Serre
- Institut des Matériaux Poreux de Paris UMR 8004 CNRS-ENS-ESPCI PSL research university Paris France
| | - Guillaume Maurin
- Institut Charles Gerhardt Montpellier Univ. Montpellier, CNRS, ENSCM Montpellier France
| | - Nathalie Steunou
- Institut des Matériaux Poreux de Paris UMR 8004 CNRS-ENS-ESPCI PSL research university Paris France
- Institut Lavoisier de Versailles UMR CNRS 8180 Université de Versailles St Quentin en Yvelines Université Paris Saclay Versailles France
| |
Collapse
|
21
|
Zhu T, Xu S, Yu F, Yu X, Wang Y. ZIF-8@GO composites incorporated polydimethylsiloxane membrane with prominent separation performance for ethanol recovery. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117681] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
22
|
Vergadou N, Theodorou DN. Molecular Modeling Investigations of Sorption and Diffusion of Small Molecules in Glassy Polymers. MEMBRANES 2019; 9:E98. [PMID: 31398889 PMCID: PMC6723301 DOI: 10.3390/membranes9080098] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 11/16/2022]
Abstract
With a wide range of applications, from energy and environmental engineering, such as in gas separations and water purification, to biomedical engineering and packaging, glassy polymeric materials remain in the core of novel membrane and state-of the art barrier technologies. This review focuses on molecular simulation methodologies implemented for the study of sorption and diffusion of small molecules in dense glassy polymeric systems. Basic concepts are introduced and systematic methods for the generation of realistic polymer configurations are briefly presented. Challenges related to the long length and time scale phenomena that govern the permeation process in the glassy polymer matrix are described and molecular simulation approaches developed to address the multiscale problem at hand are discussed.
Collapse
Affiliation(s)
- Niki Vergadou
- Molecular Thermodynamics and Modelling of Materials Laboratory, Institute of Nanoscience and Nanotechnology, National Center for Scientific Research Demokritos, Aghia Paraskevi Attikis, GR-15310 Athens, Greece.
| | - Doros N Theodorou
- School of Chemical Engineering, National Technical University of Athens, GR 15780 Athens, Greece
| |
Collapse
|
23
|
|