1
|
Korell L, Lauterbach S, Timm J, Wang L, Mellin M, Kundmann A, Wu Q, Tian C, Marschall R, Hofmann JP, Osterloh FE, Einert M. On the structural evolution of nanoporous optically transparent CuO photocathodes upon calcination for photoelectrochemical applications. NANOSCALE ADVANCES 2024; 6:2875-2891. [PMID: 38817433 PMCID: PMC11134239 DOI: 10.1039/d4na00199k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/11/2024] [Indexed: 06/01/2024]
Abstract
Copper oxides are promising photocathode materials for solar hydrogen production due to their narrow optical band gap energy allowing broad visible light absorption. However, they suffer from severe photocorrosion upon illumination, mainly due to copper reduction. Nanostructuring has been proven to enhance the photoresponse of CuO photocathodes; however, there is a lack of precise structural control on the nanoscale upon sol-gel synthesis and calcination for achieving optically transparent CuO thin film photoabsorbers. In this study, nanoporous and nanocrystalline CuO networks were prepared by a soft-templating and dip-coating method utilizing poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (Pluronic® F-127) as a structure-directing agent, resulting for the first-time in uniformly structured, crack-free, and optically transparent CuO thin films. The photoelectrochemical properties of the nanoporous CuO frameworks were investigated as a function of the calcination temperature and film thickness, revealing important information about the photocurrent, photostability, and photovoltage. Based on surface photovoltage spectroscopy (SPV), the films are p-type and generate up to 60 mV photovoltage at 2.0 eV (0.050 mW cm-2) irradiation for the film annealed at 750 °C. For these high annealing temperatures, the nanocrystalline domains in the thin film structure are more developed, resulting in improved electronic quality. In aqueous electrolytes with or without methyl viologen (as a fast electron acceptor), CuO films show cathodic photocurrents of up to -2.4 mA cm-2 at 0.32 V vs. RHE (air mass (AM) 1.5). However, the photocurrents were found to be entirely due to photocorrosion of the films and decay to near zero over the course of 20 min under AM 1.5 illumination. These fundamental results on the structural and morphological development upon calcination provide a direction and show the necessity for further (surface) treatment of sol-gel derived CuO photocathodes for photoelectrochemical applications. The study demonstrates how to control the size of nanopores starting from mesopore formation at 400 °C to the evolution of macroporous frameworks at 750 °C.
Collapse
Affiliation(s)
- Lukas Korell
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt Otto-Berndt-Straße 3 64287 Darmstadt Germany
| | - Stefan Lauterbach
- Institute for Applied Geosciences, Geomaterial Science, Technical University of Darmstadt Schnittspahnstraße 9 64287 Darmstadt Germany
| | - Jana Timm
- Department of Chemistry, University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Li Wang
- Department of Chemistry, University of California One Shields Avenue Davis CA 95616 USA
| | - Maximilian Mellin
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt Otto-Berndt-Straße 3 64287 Darmstadt Germany
| | - Anna Kundmann
- Department of Chemistry, University of California One Shields Avenue Davis CA 95616 USA
| | - Qingyang Wu
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt Otto-Berndt-Straße 3 64287 Darmstadt Germany
| | - Chuanmu Tian
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt Otto-Berndt-Straße 3 64287 Darmstadt Germany
| | - Roland Marschall
- Department of Chemistry, University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| | - Jan P Hofmann
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt Otto-Berndt-Straße 3 64287 Darmstadt Germany
| | - Frank E Osterloh
- Department of Chemistry, University of California One Shields Avenue Davis CA 95616 USA
| | - Marcus Einert
- Surface Science Laboratory, Department of Materials and Earth Sciences, Technical University of Darmstadt Otto-Berndt-Straße 3 64287 Darmstadt Germany
| |
Collapse
|
2
|
Verma A, Fu YP. The prospect of Cu xO-based catalysts in photocatalysis: From pollutant degradation, CO 2 reduction, and H 2 production to N 2 fixation. ENVIRONMENTAL RESEARCH 2024; 241:117656. [PMID: 37980987 DOI: 10.1016/j.envres.2023.117656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 10/30/2023] [Accepted: 11/11/2023] [Indexed: 11/21/2023]
Abstract
The topic of photocatalysis and CuxO-based materials has been intertwined for quite a long time. Its relatively high abundance in the earth's crust makes it an important target for researchers around the globe. One of the properties exploited by researchers is its ability to exist in different oxidation states (Cu0, Cu+, Cu2+, and Cu3+) and its implications on photocatalytic efficiency improvement. Recently, they have been extensively used as photocatalytic materials for dye and pollutant degradation. However, it has almost reached saturation levels, therefore, currently, they are being mostly utilized for CO2 reduction and H2 evolution. Hence, this review will discuss the evolution (in application) of CuxO-based photocatalysts, relating to their past, present, and future. Moreover, photocatalytic efficiency improvement strategies such as doping, heterojunction formation, and carbonaceous construction with other materials will also be touched upon. Finally, the prospect of Cu2O-based photocatalysts will be discussed in the field of photocatalytic N2 fixation to ammonia. The significance of N2 chemisorption on photocatalysts to maximize ammonia production will also be given importance.
Collapse
Affiliation(s)
- Atul Verma
- Department of Materials Science and Engineering, National Dong Hwa University, Shou-Feng, Hualien 97401, Taiwan
| | - Yen-Pei Fu
- Department of Materials Science and Engineering, National Dong Hwa University, Shou-Feng, Hualien 97401, Taiwan
| |
Collapse
|
3
|
Zhao Y, Niu Z, Zhao J, Xue L, Fu X, Long J. Recent Advancements in Photoelectrochemical Water Splitting for Hydrogen Production. ELECTROCHEM ENERGY R 2023. [DOI: 10.1007/s41918-022-00153-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
4
|
Mustafa E, Dawi EA, Ibupoto ZH, Ibrahim AMM, Elsukova A, Liu X, Tahira A, Adam RE, Willander M, Nur O. Efficient CuO/Ag 2WO 4 photoelectrodes for photoelectrochemical water splitting using solar visible radiation. RSC Adv 2023; 13:11297-11310. [PMID: 37057263 PMCID: PMC10088074 DOI: 10.1039/d3ra00867c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023] Open
Abstract
Water splitting energy production relies heavily on the development of high-performance photoelectrochemical cells (PECs). Among the most highly regarded semiconductor materials, cupric oxide (CuO) is an excellent photocathode material. Pristine CuO does not perform well as a photocathode due to its tendency to recombine electrons and holes rapidly. Photocathodes with high efficiency can be produced by developing CuO-based composite systems. The aim of our research is to develop an Ag2WO4/CuO composite by incorporating silver tungstate (Ag2WO4) nanoparticles onto hydrothermally grown CuO nanoleaves (NLs) by successive ionic layer adsorption and reaction (SILAR). To prepare CuO/Ag2WO4 composites, SILAR was used in conjunction with different Ag2WO4 nanoparticle deposition cycles. Physicochemical characterization reveals well-defined nanoleaves morphologies with tailored surface compositions. Composite CuO/Ag2WO4 crystal structures are governed by the monoclinic phase of CuO and the hexagonal phase of Ag2WO4. It has been demonstrated that the CuO/Ag2WO4 composite has outstanding performance in the PEC water splitting process when used with five cycles. In the CuO/Ag2WO4 photocathode, water splitting activity is observed at low overpotential and high photocurrent density, indicating that the reaction takes place at low energy barriers. Several factors contribute to PEC performance in composites. These factors include the high density of surface active sites, the high charge separation rate, the presence of favourable surface defects, and the synergy of CuO and Ag2WO4 photoreaction. By using SILAR, silver tungstate can be deposited onto semiconducting materials with strong visible absorption, enabling the development of energy-efficient photocathodes.
Collapse
Affiliation(s)
- E Mustafa
- Department of Sciences and Technology, Linköping University, Campus Norrköping SE-601 74 Norrköping Sweden
| | - E A Dawi
- Nonlinear Dynamics Research Centre (NDRC), Ajman University P. O. Box 346 United Arab Emirates
| | - Z H Ibupoto
- Institute of Chemistry, University of Sindh 76080 Jamshoro Pakistan
| | - A M M Ibrahim
- Department of Pharmaceutical Chemistry, Jazan University P. O. Box 346 Kingdom of Saudi Arabia
| | - A Elsukova
- Department of Physics, Chemistry and Biology, Linköping University SE-58183 Linköping Sweden
| | - X Liu
- Department of Sciences and Technology, Linköping University, Campus Norrköping SE-601 74 Norrköping Sweden
| | - A Tahira
- Institute of Chemistry, Shah Abdul Latif University Khairpur Mirs 66020 Sindh Pakistan
| | - R E Adam
- Department of Sciences and Technology, Linköping University, Campus Norrköping SE-601 74 Norrköping Sweden
| | - M Willander
- Department of Sciences and Technology, Linköping University, Campus Norrköping SE-601 74 Norrköping Sweden
| | - O Nur
- Department of Sciences and Technology, Linköping University, Campus Norrköping SE-601 74 Norrköping Sweden
| |
Collapse
|
5
|
Einert M, Waheed A, Moritz DC, Lauterbach S, Kundmann A, Daemi S, Schlaad H, Osterloh FE, Hofmann JP. Mesoporous CuFe 2 O 4 Photoanodes for Solar Water Oxidation: Impact of Surface Morphology on the Photoelectrochemical Properties. Chemistry 2023; 29:e202300277. [PMID: 36823437 DOI: 10.1002/chem.202300277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 02/25/2023]
Abstract
Metal oxide-based photoelectrodes for solar water splitting often utilize nanostructures to increase the solid-liquid interface area. This reduces charge transport distances and increases the photocurrent for materials with short minority charge carrier diffusion lengths. While the merits of nanostructuring are well established, the effect of surface order on the photocurrent and carrier recombination has not yet received much attention in the literature. To evaluate the impact of pore ordering on the photoelectrochemical properties, mesoporous CuFe2 O4 (CFO) thin film photoanodes were prepared by dip-coating and soft-templating. Here, the pore order and geometry can be controlled by addition of copolymer surfactants poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (Pluronic® F-127), polyisobutylene-block-poly(ethylene oxide) (PIB-PEO) and poly(ethylene-co-butylene)-block-poly(ethylene oxide) (Kraton liquid™-PEO, KLE). The non-ordered CFO showed the highest photocurrent density of 0.2 mA/cm2 at 1.3 V vs. RHE for sulfite oxidation, but the least photocurrent density for water oxidation. Conversely, the ordered CFO presented the best photoelectrochemical water oxidation performance. These differences can be understood on the basis of the high surface area, which promotes hole transfer to sulfite (a fast hole acceptor), but retards oxidation of water (a slow hole acceptor) due to electron-hole recombination at the defective surface. This interpretation is confirmed by intensity-modulated photocurrent (IMPS) and vibrating Kelvin probe surface photovoltage spectroscopy (VKP-SPS). The lowest surface recombination rate was observed for the ordered KLE-based mesoporous CFO, which retains spherical pore shapes at the surface resulting in fewer surface defects. Overall, this work shows that the photoelectrochemical energy conversion efficiency of copper ferrite thin films is not just controlled by the surface area, but also by surface order.
Collapse
Affiliation(s)
- Marcus Einert
- Department of Materials and Earth Sciences, Surface Science Laboratory, Technical University of Darmstadt, Otto-Bernd-Strasse 3, 63287, Darmstadt, Germany
| | - Arslan Waheed
- Department of Materials and Earth Sciences, Surface Science Laboratory, Technical University of Darmstadt, Otto-Bernd-Strasse 3, 63287, Darmstadt, Germany
| | - Dominik C Moritz
- Department of Materials and Earth Sciences, Surface Science Laboratory, Technical University of Darmstadt, Otto-Bernd-Strasse 3, 63287, Darmstadt, Germany
| | - Stefan Lauterbach
- Institute for Applied Geosciences, Geomaterial Science, Technical University of Darmstadt, Schnittspahnstrasse 9, 64287, Darmstadt, Germany
| | - Anna Kundmann
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Sahar Daemi
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Helmut Schlaad
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476, Potsdam, Germany
| | - Frank E Osterloh
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Jan P Hofmann
- Department of Materials and Earth Sciences, Surface Science Laboratory, Technical University of Darmstadt, Otto-Bernd-Strasse 3, 63287, Darmstadt, Germany
| |
Collapse
|
6
|
Establishing a water-to-energy platform via dual-functional photocatalytic and photoelectrocatalytic systems: A comparative and perspective review. Adv Colloid Interface Sci 2022; 309:102793. [DOI: 10.1016/j.cis.2022.102793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/25/2022] [Accepted: 09/29/2022] [Indexed: 11/20/2022]
|
7
|
Zheng D, Zheng Z, Yang J, Xu Y, Ng KM, Huang L, Chen Y, Gao W. Ultrasensitive photoelectrochemical sensing platform based on heterostructural CuO/NCDs@Au nanocomposites with the efficient photo-induced carrier separation. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Sensitive photoelectrochemical detection of colitoxin DNA based on NCDs@CuO/ZnO heterostructured nanocomposites with efficient separation capacity of photo-induced carriers. Mikrochim Acta 2022; 189:166. [PMID: 35355135 DOI: 10.1007/s00604-022-05280-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/11/2022] [Indexed: 10/18/2022]
Abstract
A metal-organic framework (MOF) of Cu-TPA (terephthalic acid) microsphere was prepared, followed by calcinating the MOF precursor of Cu-TPA/ZIF-8 mixture to obtain the CuO/ZnO. N-doped carbon dots (NCDs) were employed to combine the CuO/ZnO composite to form a tripartite heterostructured architecture of NCDs@CuO/ZnO, which led to a fierce enlargement of the photocurrent response. This was ascribed to the thinner-shell structure of the CuO microsphere and the fact that hollow ZnO particles could sharply promote the incidence intensity of visible light. The more porous defectiveness exposed on CuO/ZnO surface was in favor of rapidly infiltrating electrolyte ions. The p-n type CuO/ZnO composite with more contact interface could abridge the transfer distance of photo-induced electron (e-1)/hole (h+) pairs and repress their recombination availably. NCDs not only could boost electron transfer rate on the electrode interface but also successfully sensitized the CuO/ZnO composite, which resulted in high conversion efficiency of photon-to-electron. The probe DNA (S1) was firmly assembled on the modified ITO electrode surface (S1/NCDs@CuO/ZnO) through an amidation reaction. Under optimal conditions, the prepared DNA biosensor displayed a wide linear range of 1.0 × 10-6 ~ 7.5 × 10-1 nM and a low limit of detection (LOD) of 1.81 × 10-7 nM for colitoxin DNA (S2) measure, which exhibited a better photoelectrochemistry (PEC) analysis performance than that obtained by differential pulse voltammetry techniques. The relative standard deviation (RSD) of the sensing platform for target DNA detection of 5.0 × 10-2 nM was 6.3%. This proposed DNA biosensor also showed good selectivity, stability, and reproducibility, demonstrating that the well-designed and synthesized photoactive materials of NCDs@CuO/ZnO are promising candidates for PEC analysis.
Collapse
|
9
|
|
10
|
Kyesmen PI, Nombona N, Diale M. A Promising Three-Step Heat Treatment Process for Preparing CuO Films for Photocatalytic Hydrogen Evolution from Water. ACS OMEGA 2021; 6:33398-33408. [PMID: 34926889 PMCID: PMC8674923 DOI: 10.1021/acsomega.1c03796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Copper (II) oxide (CuO) nanostructures were prepared on fluorine-doped tin oxide (FTO) using a three-step heat treatment process in a sol-gel dip-coating method. The precursor used for the dip-coating process was prepared using copper acetate, propan-2-ol, diethanolamine, and polyethylene glycol 400. Dip-coated films in layers of 2, 4, 6, 8, and 10 were prepared by drying each layer at 110 and 250 °C for 10 and 5 min, respectively, followed by calcination at 550 °C for 1 h. The films were applied toward photocatalytic hydrogen evolution from water. The X-ray diffraction (XRD) pattern of the films confirmed the tenorite phase of pure CuO. Raman spectroscopy revealed the 1Ag and 2Bg phonon modes of CuO, confirming the high purity of the films produced. The CuO films absorb significant photons in the visible spectrum due to their low optical band gap of 1.25-1.33 eV. The highest photocurrent of -2.0 mA/cm2 at 0.45 V vs reversible hydrogen electrode (RHE) was recorded for CuO films consisting of six layers under 1 sun illumination. A more porous surface, low charge transfer resistance, and high double-layer capacitance at the CuO/electrolyte interface observed for the films consisting of six layers contributed to the high photocurrent density attained by the films. CuO films consisting of six layers prepared using the conventional two-step heat treatment process for comparative purposes yielded 65.0% less photocurrent at 0.45 V vs RHE compared to similar films fabricated via the three-step heating method. The photocurrent response of the CuO nanostructures prepared using the three-step heat treatment process is promising and can be employed for making CuO for photovoltaic and optoelectronic applications.
Collapse
Affiliation(s)
- Pannan I. Kyesmen
- Department
of Physics, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Nolwazi Nombona
- Department
of Chemistry, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Mmantsae Diale
- Department
of Physics, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| |
Collapse
|
11
|
Water Splitting with Enhanced Efficiency Using a Nickel-Based Co-Catalyst at a Cupric Oxide Photocathode. Catalysts 2021. [DOI: 10.3390/catal11111363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Homemade non-critical raw materials such as Ni or NiCu co-catalysts were added at the photocathode of a tandem cell, constituted by photoelectrodes made of earth-abundant materials, to generate green solar hydrogen from photoelectrochemical water splitting. Oxygen evolving at the Ti-and-P-doped hematite/TCO-based photoanode and hydrogen at the cupric oxide/GDL-based photocathode are separated by an anion exchange polymer electrolyte membrane placed between them. The effect of the aforementioned co-catalysts was studied in a complete PEC cell in the presence of the ionomer dispersion and the anionic membrane to evaluate their impact under practical conditions. Notably, different amounts of Ni or NiCu co-catalysts were used to improve the hydrogen evolution reaction (HER) kinetics and the overall solar-to-hydrogen (STH) efficiency of the photoelectrochemical cells. At −0.6 V, in the bias-assisted region, the photocurrent density reaches about 2 mA cm−2 for a cell with 12 µg cm−2 of Ni loading, followed by 1.75 mA cm−2 for the cell configuration based on 8 µg cm−2 of NiCu. For the best-performing cell, enthalpy efficiency at −0.4 V reaches a first maximum value of 2.03%. In contrast, the throughput efficiency, which is a ratio between the power output and the total power input (solar + electric) provided by an external source, calculated at −1.225 V, reaches a maximum of 10.75%. This value is approximately three times higher than the best results obtained in our previous studies without the use of co-catalysts at the photocathode.
Collapse
|
12
|
Siavash Moakhar R, Hosseini‐Hosseinabad SM, Masudy‐Panah S, Seza A, Jalali M, Fallah‐Arani H, Dabir F, Gholipour S, Abdi Y, Bagheri‐Hariri M, Riahi‐Noori N, Lim Y, Hagfeldt A, Saliba M. Photoelectrochemical Water-Splitting Using CuO-Based Electrodes for Hydrogen Production: A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007285. [PMID: 34117806 PMCID: PMC11468279 DOI: 10.1002/adma.202007285] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/25/2020] [Indexed: 06/12/2023]
Abstract
The cost-effective, robust, and efficient electrocatalysts for photoelectrochemical (PEC) water-splitting has been extensively studied over the past decade to address a solution for the energy crisis. The interesting physicochemical properties of CuO have introduced this promising photocathodic material among the few photocatalysts with a narrow bandgap. This photocatalyst has a high activity for the PEC hydrogen evolution reaction (HER) under simulated sunlight irradiation. Here, the recent advancements of CuO-based photoelectrodes, including undoped CuO, doped CuO, and CuO composites, in the PEC water-splitting field, are comprehensively studied. Moreover, the synthesis methods, characterization, and fundamental factors of each classification are discussed in detail. Apart from the exclusive characteristics of CuO-based photoelectrodes, the PEC properties of CuO/2D materials, as groups of the growing nanocomposites in photocurrent-generating devices, are discussed in separate sections. Regarding the particular attention paid to the CuO heterostructure photocathodes, the PEC water splitting application is reviewed and the properties of each group such as electronic structures, defects, bandgap, and hierarchical structures are critically assessed.
Collapse
Affiliation(s)
- Roozbeh Siavash Moakhar
- Department of BioengineeringMcGill UniversityMontrealQCH3A 0E9Canada
- Non‐Metallic Materials Research GroupNiroo Research Institute (NRI)Tehran14686‐13113Iran
| | | | - Saeid Masudy‐Panah
- Electrical and Computer EngineeringNational University of SingaporeSingapore119260Singapore
- Low Energy Electronic Systems (LEES)Singapore‐MIT Alliance for Research and Technology (SMART) CentreSingapore38602Singapore
| | - Ashkan Seza
- Non‐Metallic Materials Research GroupNiroo Research Institute (NRI)Tehran14686‐13113Iran
- Department of Materials Science and EngineeringSharif University of TechnologyAzadi AveTehran11155‐9466Iran
| | - Mahsa Jalali
- Department of BioengineeringMcGill UniversityMontrealQCH3A 0E9Canada
| | - Hesam Fallah‐Arani
- Non‐Metallic Materials Research GroupNiroo Research Institute (NRI)Tehran14686‐13113Iran
| | - Fatemeh Dabir
- Non‐Metallic Materials Research GroupNiroo Research Institute (NRI)Tehran14686‐13113Iran
| | - Somayeh Gholipour
- Nanophysics Research LaboratoryDepartment of PhysicsUniversity of TehranTehran14395‐547Iran
| | - Yaser Abdi
- Nanophysics Research LaboratoryDepartment of PhysicsUniversity of TehranTehran14395‐547Iran
| | - Mohiedin Bagheri‐Hariri
- Institute for Corrosion and Multiphase flow TechnologyDepartment of Chemical and Biomedical EngineeringOhio UniversityAthensOH45701USA
| | - Nastaran Riahi‐Noori
- Non‐Metallic Materials Research GroupNiroo Research Institute (NRI)Tehran14686‐13113Iran
| | - Yee‐Fun Lim
- Institute of Materials Research and EngineeringAgency for Science Technology and Research (A*STAR)2 Fusionopolis Way, Innovis, #08‐03Singapore138634Singapore
| | - Anders Hagfeldt
- Laboratory of Photomolecular ScienceEcole Polytechnique Fédérale de LausanneEPFL SB‐ISIC‐LSPM, Station 6Lausanne1015Switzerland
| | - Michael Saliba
- Institute for PhotovoltaicsUniversity of StuttgartPfaffenwaldring 47D‐70569StuttgartGermany
- Helmholtz Young Investigator Group FRONTRUNNER IEK5‐PhotovoltaikForschungszentrumD‐52425JülichGermany
| |
Collapse
|
13
|
Eichhorn J, Jiang CM, Cooper JK, Sharp ID, Toma FM. Nanoscale Heterogeneities and Composition-Reactivity Relationships in Copper Vanadate Photoanodes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23575-23583. [PMID: 33998233 DOI: 10.1021/acsami.1c01848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The photoelectrochemical performance of thin film photoelectrodes can be impacted by deviations from the stoichiometric composition, both at the macroscale and at the nanoscale. This issue is especially pronounced for the class of ternary compounds that are currently investigated for simultaneously achieving the optoelectronic characteristics and chemical stability required for solar fuel generation. Here, we combine macroscopic photoelectrochemical testing with atomic force microscopy (AFM) and scanning transmission X-ray microscopy (STXM) to reveal relationships between photoelectrochemical activity, nanoscale morphology, and local chemical composition in copper vanadate (CVO) thin films as a model system. For films with varying Cu/(Cu + V) ratios around the ideal stoichiometry of stoiberite Cu5V2O10, AFM resolves submicrometer morphology variations, which correlate with variations of the Cu content resolved by STXM. Both stoichiometric and Cu-deficient films exhibit a clear photoresponse, which indicates electronic tolerance to reduced Cu content. While both films exhibit homogeneous O and V content, they are also characterized by local regions of Cu enrichment and depletion that extend beyond individual grains. By contrast, Cu-rich photoelectrodes exhibit a tendency toward CuO secondary phase formation and a significantly reduced photoelectrochemical activity, indicating a significantly poor electronic tolerance to Cu-enrichment. These findings highlight that the average film composition at the macroscale is insufficient for defining structure-function relationships in complex ternary compounds. Rather, correlating microscopic variations in chemical composition to macroscopic photoelectrochemical performance provides insights into photocatalytic activity and stability that are otherwise not apparent from pure macroscopic characterization.
Collapse
Affiliation(s)
- Johanna Eichhorn
- Chemical Sciences Division and Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- Walter Schottky Institute and Physics Department, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
| | - Chang-Ming Jiang
- Chemical Sciences Division and Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- Walter Schottky Institute and Physics Department, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
| | - Jason K Cooper
- Chemical Sciences Division and Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Ian D Sharp
- Walter Schottky Institute and Physics Department, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
| | - Francesca M Toma
- Chemical Sciences Division and Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| |
Collapse
|
14
|
Hao S, Zhang H, Sun X, Zhai J, Dong S. A Photoelectrochemical Fuel Cell Based on a CuO Photocathode for Sustainable Resources Utilization. ChemElectroChem 2020. [DOI: 10.1002/celc.202001309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Shuai Hao
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| | - He Zhang
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| | - Xiaoxuan Sun
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| | - Junfeng Zhai
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
- University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
15
|
Oh S, Kang H, Joo W, Joo Y. Photoelectrochemical CO
2
Reduction via Cu
2
O/CuFeO
2
Hierarchical nanorods photocatalyst. ChemCatChem 2020. [DOI: 10.1002/cctc.202000775] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sang‐Ho Oh
- Department of Materials Science & Engineering Seoul National University 1 Gwanak-ro, Gwanak-gu 151-744 Seoul Republic of Korea
| | - Ho‐Young Kang
- Department of Materials Science & Engineering Seoul National University 1 Gwanak-ro, Gwanak-gu 151-744 Seoul Republic of Korea
| | - Won‐Hyo Joo
- Department of Materials Science & Engineering Seoul National University 1 Gwanak-ro, Gwanak-gu 151-744 Seoul Republic of Korea
| | - Young‐Chang Joo
- Department of Materials Science & Engineering Seoul National University 1 Gwanak-ro, Gwanak-gu 151-744 Seoul Republic of Korea
- Research Institute of Advanced Materials Seoul National University 1 Gwanak-ro, Gwanak-gu 151-742 Seoul Republic of Korea
| |
Collapse
|
16
|
Environmentally benign production of cupric oxide nanoparticles and various utilizations of their polymeric hybrids in different technologies. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213378] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Enhanced Photoelectrochemical Water Splitting at Hematite Photoanodes by Effect of a NiFe-Oxide co-Catalyst. Catalysts 2020. [DOI: 10.3390/catal10050525] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Tandem photoelectrochemical cells (PECs), made up of a solid electrolyte membrane between two low-cost photoelectrodes, were investigated to produce “green” hydrogen by exploiting renewable solar energy. The assembly of the PEC consisted of an anionic solid polymer electrolyte membrane (gas separator) clamped between an n-type Fe2O3 photoanode and a p-type CuO photocathode. The semiconductors were deposited on fluorine-doped tin oxide (FTO) transparent substrates and the cell was investigated with the hematite surface directly exposed to a solar simulator. Ionomer dispersions obtained from the dissolution of commercial polymers in the appropriate solvents were employed as an ionic interface with the photoelectrodes. Thus, the overall photoelectrochemical water splitting occurred in two membrane-separated compartments, i.e., the oxygen evolution reaction (OER) at the anode and the hydrogen evolution reaction (HER) at the cathode. A cost-effective NiFeOx co-catalyst was deposited on the hematite photoanode surface and investigated as a surface catalytic enhancer in order to improve the OER kinetics, this reaction being the rate-determining step of the entire process. The co-catalyst was compared with other well-known OER electrocatalysts such as La0.6Sr0.4Fe0.8CoO3 (LSFCO) perovskite and IrRuOx. The Ni-Fe oxide was the most promising co-catalyst for the oxygen evolution in the anionic environment in terms of an enhanced PEC photocurrent and efficiency. The materials were physico-chemically characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM).
Collapse
|
18
|
Monllor-Satoca D, Díez-García MI, Lana-Villarreal T, Gómez R. Photoelectrocatalytic production of solar fuels with semiconductor oxides: materials, activity and modeling. Chem Commun (Camb) 2020; 56:12272-12289. [DOI: 10.1039/d0cc04387g] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transition metal oxides keep on being excellent candidates as electrode materials for the photoelectrochemical conversion of solar energy into chemical energy.
Collapse
Affiliation(s)
- Damián Monllor-Satoca
- Departament de Química Física i Institut Universitari d'Electroquímica
- Universitat d'Alacant
- Alicante
- Spain
| | - María Isabel Díez-García
- Departament de Química Física i Institut Universitari d'Electroquímica
- Universitat d'Alacant
- Alicante
- Spain
| | - Teresa Lana-Villarreal
- Departament de Química Física i Institut Universitari d'Electroquímica
- Universitat d'Alacant
- Alicante
- Spain
| | - Roberto Gómez
- Departament de Química Física i Institut Universitari d'Electroquímica
- Universitat d'Alacant
- Alicante
- Spain
| |
Collapse
|
19
|
Kunturu P, Zachariadis C, Witczak L, Nguyen MD, Rijnders G, Huskens J. Tandem Si Micropillar Array Photocathodes with Conformal Copper Oxide and a Protection Layer by Pulsed Laser Deposition. ACS APPLIED MATERIALS & INTERFACES 2019; 11:41402-41414. [PMID: 31618576 PMCID: PMC6838789 DOI: 10.1021/acsami.9b14408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/16/2019] [Indexed: 05/22/2023]
Abstract
This work demonstrates the influence of high-quality protection layers on Si-Cu2O micropillar arrays created by pulsed laser deposition (PLD), with the goal to overcome photodegradation and achieve long-term operation during photoelectrochemical (PEC) water splitting. Sequentially, we assessed planar and micropillar device designs with various design parameters and their influence on PEC hydrogen evolution reaction. On the planar device substrates, a Cu2O film thickness of 600 nm and a Cu2O/CuO heterojunction layer with a 5:1 thickness ratio between Cu2O to CuO were found to be optimal. The planar Si/Cu2O/CuO heterostructure showed a higher PV performance (Jsc = 20 mA/cm2) as compared to the planar Si/Cu2O device, but micropillar devices did not show this improvement. Multifunctional overlayers of ZnO (25 nm) and TiO2 (100 nm) were employed by PLD on Si/Cu2O planar and micropillar arrays to provide a hole-selective passivation layer that acts against photocorrosion. A micropillar Si/ITO-Au/Cu2O/ZnO/TiO2/Pt stack was compared to a planar device. Under optimized conditions, the Si/Cu2O photocathode with Pt as a HER catalyst displayed a photocurrent of 7.5 mA cm-2 at 0 V vs RHE and an onset potential of 0.85 V vs RHE, with a stable operation for 75 h.
Collapse
Affiliation(s)
- Pramod
Patil Kunturu
- Molecular
Nanofabrication Group, MESA+ Institute for Nanotechnology,
Faculty of Science and Technology, and Inorganic Materials Science, MESA+
Institute for Nanotechnology, University
of Twente, P.O. Box 217, Enschede 7500 AE, The Netherlands
| | - Christos Zachariadis
- Molecular
Nanofabrication Group, MESA+ Institute for Nanotechnology,
Faculty of Science and Technology, and Inorganic Materials Science, MESA+
Institute for Nanotechnology, University
of Twente, P.O. Box 217, Enschede 7500 AE, The Netherlands
| | - Lukasz Witczak
- Molecular
Nanofabrication Group, MESA+ Institute for Nanotechnology,
Faculty of Science and Technology, and Inorganic Materials Science, MESA+
Institute for Nanotechnology, University
of Twente, P.O. Box 217, Enschede 7500 AE, The Netherlands
| | - Minh D. Nguyen
- Molecular
Nanofabrication Group, MESA+ Institute for Nanotechnology,
Faculty of Science and Technology, and Inorganic Materials Science, MESA+
Institute for Nanotechnology, University
of Twente, P.O. Box 217, Enschede 7500 AE, The Netherlands
| | - Guus Rijnders
- Molecular
Nanofabrication Group, MESA+ Institute for Nanotechnology,
Faculty of Science and Technology, and Inorganic Materials Science, MESA+
Institute for Nanotechnology, University
of Twente, P.O. Box 217, Enschede 7500 AE, The Netherlands
| | - Jurriaan Huskens
- Molecular
Nanofabrication Group, MESA+ Institute for Nanotechnology,
Faculty of Science and Technology, and Inorganic Materials Science, MESA+
Institute for Nanotechnology, University
of Twente, P.O. Box 217, Enschede 7500 AE, The Netherlands
- E-mail:
| |
Collapse
|
20
|
Basu M. Porous Cupric Oxide: Efficient Photocathode for Photoelectrochemical Water Splitting. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900103] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Mrinmoyee Basu
- Department of ChemistryBITS Pilani, Pilani Campus Rajasthan- 333031 India
| |
Collapse
|
21
|
Verma A, Jaihindh DP, Fu YP. Photocatalytic 4-nitrophenol degradation and oxygen evolution reaction in CuO/g-C3N4 composites prepared by deep eutectic solvent-assisted chlorine doping. Dalton Trans 2019; 48:8594-8610. [DOI: 10.1039/c9dt01046g] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heterostructured Cl-CuO/g-C3N4 composite for OER and photocatalytic 4-nitrophenol degradation.
Collapse
Affiliation(s)
- Atul Verma
- Department of Materials Science and Engineering
- National Dong Hwa University
- Hualien-97401
- R.O.C
| | | | - Yen-Pei Fu
- Department of Materials Science and Engineering
- National Dong Hwa University
- Hualien-97401
- R.O.C
| |
Collapse
|
22
|
Xing H, E L, Guo Z, Zhao D, Li X, Liu Z. Exposing the photocorrosion mechanism and control strategies of a CuO photocathode. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00780f] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A CuO photocathode modified with TiO2 and Pt displays superior photocorrosion stability in PEC water splitting.
Collapse
Affiliation(s)
- Haiyang Xing
- School of Materials Science and Engineering
- Tianjin Chengjian University
- Tianjin
- China
| | - Lei E
- School of Materials Science and Engineering
- Tianjin Chengjian University
- Tianjin
- China
- Tianjin Key Laboratory of Building Green Functional Materials
| | - Zhengang Guo
- School of Materials Science and Engineering
- Tianjin Chengjian University
- Tianjin
- China
- Tianjin Key Laboratory of Building Green Functional Materials
| | - Dan Zhao
- School of Materials Science and Engineering
- Tianjin Chengjian University
- Tianjin
- China
| | - Xifei Li
- Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering
- Xi'an University of Technology
- Xi'an
- China
| | - Zhifeng Liu
- School of Materials Science and Engineering
- Tianjin Chengjian University
- Tianjin
- China
- Tianjin Key Laboratory of Building Green Functional Materials
| |
Collapse
|
23
|
Xing H, E L, Zhao D, Li X, Ruan M, Liu Z. A high-efficiency and stable cupric oxide photocathode coupled with Al surface plasmon resonance and Al2O3 self-passivation. Chem Commun (Camb) 2019; 55:15093-15096. [DOI: 10.1039/c9cc07978e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A high-efficiency and stable CuO/Al/Al2O3 photocathode for photoelectrochemical water splitting has been successfully synthesized by a facile magnetron sputtering combined with spontaneous oxidation method.
Collapse
Affiliation(s)
- Haiyang Xing
- School of Materials Science and Engineering
- Tianjin Chengjian University
- Tianjin
- China
| | - Lei E
- School of Materials Science and Engineering
- Tianjin Chengjian University
- Tianjin
- China
- Tianjin Key Laboratory of Building Green Functional Materials
| | - Dan Zhao
- School of Materials Science and Engineering
- Tianjin Chengjian University
- Tianjin
- China
- Tianjin Key Laboratory of Building Green Functional Materials
| | - Xifei Li
- Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering
- Xi’an University of Technology
- Xi’an
- China
| | - Mengnan Ruan
- School of Materials Science and Engineering
- Tianjin Chengjian University
- Tianjin
- China
- Tianjin Key Laboratory of Building Green Functional Materials
| | - Zhifeng Liu
- School of Materials Science and Engineering
- Tianjin Chengjian University
- Tianjin
- China
- Tianjin Key Laboratory of Building Green Functional Materials
| |
Collapse
|
24
|
Cots A, Bonete P, Sebastián D, Baglio V, Aricò AS, Gómez R. Toward Tandem Solar Cells for Water Splitting Using Polymer Electrolytes. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25393-25400. [PMID: 30024728 DOI: 10.1021/acsami.8b06826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Tandem photoelectrochemical cells, formed by two photoelectrodes with complementary light absorption, have been proposed to be a viable approach for obtaining clean hydrogen. This requires the development of new designs that allow for upscaling, which would be favored by the use of transparent polymer electrolyte membranes (PEMs) instead of conventional liquid electrolytes. This article focuses on the photoelectrochemical performance of a water-splitting tandem cell based on a phosphorus-modified α-Fe2O3 photoanode and on an iron-modified CuO photocathode, with the employment of an alkaline PEM. Such a photoelectrochemical cell works even in the absence of bias, although significant effort should be directed to the optimization of the photoelectrode/PEM interface. In addition, the results reveal that the employment of polymer electrolytes increases the stability of the device, especially in the case of the photocathode.
Collapse
Affiliation(s)
- Ainhoa Cots
- Departament de Química Física i Institut Universitari d'Electroquímica , Universitat d'Alacant , Apartat 99 , E-03080 Alicante , Spain
| | - Pedro Bonete
- Departament de Química Física i Institut Universitari d'Electroquímica , Universitat d'Alacant , Apartat 99 , E-03080 Alicante , Spain
| | - David Sebastián
- Consiglio Nazionale delle Ricerche-Instituto di Tecnologie Avanzate per l'Energia "Nicola Giordano", CNR-ITAE , Via Salita Santa Lucia sopra Contesse 5 , 98126 Messina , Italy
| | - Vincenzo Baglio
- Consiglio Nazionale delle Ricerche-Instituto di Tecnologie Avanzate per l'Energia "Nicola Giordano", CNR-ITAE , Via Salita Santa Lucia sopra Contesse 5 , 98126 Messina , Italy
| | - Antonino S Aricò
- Consiglio Nazionale delle Ricerche-Instituto di Tecnologie Avanzate per l'Energia "Nicola Giordano", CNR-ITAE , Via Salita Santa Lucia sopra Contesse 5 , 98126 Messina , Italy
| | - Roberto Gómez
- Departament de Química Física i Institut Universitari d'Electroquímica , Universitat d'Alacant , Apartat 99 , E-03080 Alicante , Spain
| |
Collapse
|