1
|
Więcławik J, Brzęczek-Szafran A, Jurczyk S, Matuszek K, Swadźba-Kwaśny M, Chrobok A. Al(III) and Ga(III) triflate complexes as solvate ionic liquids: speciation and application as soluble and recyclable Lewis acidic catalysts. Dalton Trans 2024. [PMID: 39420748 DOI: 10.1039/d4dt02314e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
This work reports on the first solvate ionic liquids (SILs) based on aluminium(III) and gallium(III) triflates, M(OTf)3, and triglyme (G3). Liquid-phase speciation of these new SILs was studied by multinuclear NMR spectroscopy. Across the compositional range of G3 : M(OTf)3 mixtures, both metals were found to be in a hexacoordinate environment, with both G3 and [OTf]- ligands present in the first coordination sphere, and apparently exchanging through a dynamic equilibrium. The Lewis acidity was quantified by the Gutmann acceptor number (AN) and compared to the performance of SILs as Lewis acidic catalysts in model [3 + 3] cycloadditions. Despite saturated coordination, AN values were relatively high, reaching AN = ca. 71-83 for Al-SILs and ca. 80-93 for Ga-SILs, corroborating the labile nature of the metal-ligand bonding. In a model catalytic reaction, SILs were fully soluble in the reaction mixtures, in contrast to the corresponding triflate salts. The catalytic performance of SILs exceeded that of the corresponding triflate salts, and Ga-SILs were more active than Al-SILs, in agreement with AN measurements. In conclusion, the new Group 13 SILs can be considered as soluble and catalytically active forms of their corresponding metal triflates, with potential uses in catalysis.
Collapse
Affiliation(s)
- Justyna Więcławik
- Department of Organic Chemical Technology and Petrochemistry, Faculty of Chemistry, Silesian University of Technology, Bolesława Krzywoustego 4, 44-100 Gliwice, Poland.
| | - Alina Brzęczek-Szafran
- Department of Organic Chemical Technology and Petrochemistry, Faculty of Chemistry, Silesian University of Technology, Bolesława Krzywoustego 4, 44-100 Gliwice, Poland.
| | - Sebastian Jurczyk
- Institute for Engineering of Polymer Materials and Dyes, Lukasiewicz Research Network, Sklodowskiej-Curie 55, PL-87100 Torun, Poland
| | - Karolina Matuszek
- Address School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Małgorzata Swadźba-Kwaśny
- The QUILL Research Centre, School of Chemistry and Chemical Engineering, Queen's University of Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, UK.
| | - Anna Chrobok
- Department of Organic Chemical Technology and Petrochemistry, Faculty of Chemistry, Silesian University of Technology, Bolesława Krzywoustego 4, 44-100 Gliwice, Poland.
| |
Collapse
|
2
|
Ono S. Recent Advanced Applications of Ionic Liquid for Future Iontronics. CHEM REC 2023; 23:e202300045. [PMID: 37098877 DOI: 10.1002/tcr.202300045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/29/2023] [Indexed: 04/27/2023]
Abstract
Recently, electronic devices that make use of a state called the electric double layers (EDL) of ion have opened up a wide range of research opportunities, from novel physical phenomena in solid-state materials to next-generation low-power consumption devices. They are considered to be the future iontronics devices. EDLs behave as nanogap capacitors, resulting the high density of charge carriers is induced at semiconductor/electrolyte by applying only a few volts of the bias voltage. This enables the low-power operation of electronic devices as well as new functional devices. Furthermore, by controlling the motion of ions, ions can be used as semi-permanent charge to form electrets. In this article, we are going to introduce the recent advanced application of iontronics devices as well as energy harvesters making use of ion-based electrets, leading to the future iontronics research.
Collapse
Affiliation(s)
- Shimpei Ono
- Energy Transformation Research Laboratory, Central Research Institute of Electric Power Industry, 2-6-1 Nagasaka, Yokosuka, Kanagawa, 240-0196, Japan
| |
Collapse
|
3
|
Yao N, Chen X, Fu ZH, Zhang Q. Applying Classical, Ab Initio, and Machine-Learning Molecular Dynamics Simulations to the Liquid Electrolyte for Rechargeable Batteries. Chem Rev 2022; 122:10970-11021. [PMID: 35576674 DOI: 10.1021/acs.chemrev.1c00904] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rechargeable batteries have become indispensable implements in our daily life and are considered a promising technology to construct sustainable energy systems in the future. The liquid electrolyte is one of the most important parts of a battery and is extremely critical in stabilizing the electrode-electrolyte interfaces and constructing safe and long-life-span batteries. Tremendous efforts have been devoted to developing new electrolyte solvents, salts, additives, and recipes, where molecular dynamics (MD) simulations play an increasingly important role in exploring electrolyte structures, physicochemical properties such as ionic conductivity, and interfacial reaction mechanisms. This review affords an overview of applying MD simulations in the study of liquid electrolytes for rechargeable batteries. First, the fundamentals and recent theoretical progress in three-class MD simulations are summarized, including classical, ab initio, and machine-learning MD simulations (section 2). Next, the application of MD simulations to the exploration of liquid electrolytes, including probing bulk and interfacial structures (section 3), deriving macroscopic properties such as ionic conductivity and dielectric constant of electrolytes (section 4), and revealing the electrode-electrolyte interfacial reaction mechanisms (section 5), are sequentially presented. Finally, a general conclusion and an insightful perspective on current challenges and future directions in applying MD simulations to liquid electrolytes are provided. Machine-learning technologies are highlighted to figure out these challenging issues facing MD simulations and electrolyte research and promote the rational design of advanced electrolytes for next-generation rechargeable batteries.
Collapse
Affiliation(s)
- Nan Yao
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiang Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhong-Heng Fu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Wen X, Yu Z, Zhao Y, Zhang J, Qiao R, Cheng L, Ban C, Guo J. Enabling Magnesium Anodes by Tuning the Electrode/Electrolyte Interfacial Structure. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52461-52468. [PMID: 34719233 DOI: 10.1021/acsami.1c10446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A new deposition mechanism is presented in this study to achieve highly reversible plating and stripping of magnesium (Mg) anodes for Mg-ion batteries. It is known that the reduction of electrolyte anions such as bis(trifluoromethanesulfonyl)imide (TFSI-) causes Mg surface passivation, resulting in poor electrochemical performance for Mg-ion batteries. We reveal that the addition of sodium cations (Na+) in Mg-ion electrolytes can fundamentally alter the interfacial chemistry and structure at the Mg anode surface. The molecular dynamics simulation suggests that Na+ cations contribute to a significant population in the interfacial double layer so that TFSI- anions are excluded from the immediate interface adjacent to the Mg anode. As a result, the TFSI- decomposition is largely suppressed so does the formation of passivation layers at the Mg surface. This mechanism is supported by our electrochemical, microscopic, and spectroscopic analyses. The resultant Mg deposition demonstrates smooth surface morphology and lowered overpotential compared to the pure Mg(TFSI)2 electrolyte.
Collapse
Affiliation(s)
- Xiaoyu Wen
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Zhou Yu
- Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Yifan Zhao
- Materials Science and Engineering Program, University of California, Riverside, California 92521, United States
| | - Jian Zhang
- Materials Science and Engineering Program, University of California, Riverside, California 92521, United States
| | - Rui Qiao
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Lei Cheng
- Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Chunmei Ban
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Juchen Guo
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
- Materials Science and Engineering Program, University of California, Riverside, California 92521, United States
| |
Collapse
|
5
|
Motobayashi K, Matsumoto K, Tsuzuki S, Ikeda K. Competing characters of Li
+
‐Glyme complex in a solvate ionic liquid: High stability in the bulk and rapid desolvation on an electrode surface. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Kenta Motobayashi
- Department of Physical Science and Engineering Nagoya Institute of Technology Nagoya Japan
| | - Kosuke Matsumoto
- Department of Physical Science and Engineering Nagoya Institute of Technology Nagoya Japan
| | - Seiji Tsuzuki
- Advanced Chemical Energy Research Center Institute of Advanced Sciences Yokohama National University Yokohama Kanagawa Japan
| | - Katsuyoshi Ikeda
- Department of Physical Science and Engineering Nagoya Institute of Technology Nagoya Japan
- Frontier Research Institute for Materials Science (FRIMS) Nagoya Institute of Technology Nagoya Japan
| |
Collapse
|
6
|
Chen M, Feng G, Qiao R. Water-in-salt electrolytes: An interfacial perspective. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2019.12.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Prabakar SJR, Sohn KS, Pyo M. Ca 2+-Based Dual-Carbon Batteries in Ternary Ionic Liquid Electrolytes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:16481-16489. [PMID: 32186364 DOI: 10.1021/acsami.0c01354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Herein, we propose Ca2+-based dual-carbon batteries (DCBs) that undergo a simultaneous occurrence of reversible accommodations of Ca2+ in a graphite anode (mesocarbon microbeads) and of bis(trifluoromethanesulfonyl)imide (TFSI-) in a graphite cathode (KS6L). For this purpose, we precisely tune electrolytes composed of Ca2+ complexed with a single tetraglyme molecule ([Ca:G4]) in N-butyl-N-methylpyrrolidinium TFSI (Pyr14TFSI) ionic liquid (IL). This ternary electrolyte is required for the enhancement of anodic stability that is needed to accomplish maximal TFSI- intercalation into KS6L at a high potential. A solution of 0.5 M [Ca:G4] in IL ([Ca:G4]/IL) is found to be optimal for DCBs. First, the electrochemical properties and the structural evolution of each graphite in a half-cell configuration are described to demonstrate excellent electrochemical performance. Second, the negligible intercalation of Pyr14+ into an MCMB anode is ascertained in 0.5 M [Ca:G4]/IL. Finally, DCBs are constructed by coupling two electrodes to show high capacity (54.0 mA h g-1 at 200 mA g-1) and reasonable cyclability (capacity fading of 0.022 mA h g-1 cycle-1 at 200 mA g-1 during 300 charge/discharge cycles). This work is the first to examine DCBs based on Ca2+ intercalation and helps pave the way for the development of a new type of next-generation batteries.
Collapse
Affiliation(s)
- S J Richard Prabakar
- Department of Printed Electronics Engineering, Sunchon National University, Suncheon, Chonnam 57922, Republic of Korea
| | - Kee-Sun Sohn
- Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Myoungho Pyo
- Department of Printed Electronics Engineering, Sunchon National University, Suncheon, Chonnam 57922, Republic of Korea
| |
Collapse
|
8
|
Kemmizaki Y, Katayama Y, Tsutsumi H, Ueno K. Redox-active glyme-Li tetrahalogenoferrate(iii) solvate ionic liquids for semi-liquid lithium secondary batteries. RSC Adv 2020; 10:4129-4136. [PMID: 35492641 PMCID: PMC9048989 DOI: 10.1039/c9ra10149g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/17/2020] [Indexed: 11/21/2022] Open
Abstract
Solvate ionic liquids (SILs), comprising long-lived, Li solvate cations and counter anions, serve as highly Li-ion-conductive and non-flammable electrolytes for use in lithium secondary batteries. In this work, we synthesized a series of novel redox-active glyme(oligoether)–Li salt-based SILs, consisting of a symmetric ([Li(G3)]+) or asymmetric ([Li(G3Bu)]+) triglyme–Li salt complex and redox-active tetrahalogenoferrate ([FeX]− (X = Br4, Cl3Br, Cl4)), for use as the catholyte in semi-liquid lithium secondary batteries. The successful formation of stable molten complexes of [Li(G3/G3Bu)][FeX] was confirmed by Raman spectroscopy and thermogravimetry. The melting point (Tm) depended on both the molecular weights of the complex anions and the structures of the complex cations. [Li(G3)][FeCl4] comprised complex cations with a symmetric structure, and the smallest complex anions showed the lowest Tm of 28.2 °C. The redox properties of the [FeX]−/[FeX]2− couple strongly suggested the suitability of [Li(G3/G3Bu)][FeX] as a catholyte. The discharge capacities of semi-liquid lithium secondary batteries utilizing the [Li(G3/G3Bu)][FeX] catholyte depended on the structure of the SILs, and the cell with [Li(G3)][FeCl4] showed the highest capacity with relatively good capacity retention. This study confirmed the feasibility of the glyme-based redox-active SILs as catholytes for scalable redox-flow type batteries. Solvate ionic liquids (SILs), comprising long-lived, Li solvate cations and counter anions, serve as highly Li-ion-conductive and non-flammable electrolytes for use in lithium secondary batteries.![]()
Collapse
Affiliation(s)
- Yuta Kemmizaki
- Department of Applied Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University Tokiwadai Ube 755-8611 Japan +81-836-85-9285 +81-836-85-9285
| | - Yu Katayama
- Department of Applied Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University Tokiwadai Ube 755-8611 Japan +81-836-85-9285 +81-836-85-9285
| | - Hiromori Tsutsumi
- Department of Applied Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University Tokiwadai Ube 755-8611 Japan +81-836-85-9285 +81-836-85-9285
| | - Kazuhide Ueno
- Department of Chemistry and Biotechnology, Yokohama National University 79-5 Tokiwadai, Hodogaya-ku Yokohama 240-8501 Japan +81-45-339-3951 +81-45-339-3951
| |
Collapse
|
9
|
Zhao W, Bi S, Balke N, Rack PD, Ward TZ, Kalinin SV, Dai S, Feng G. Understanding Electric Double-Layer Gating Based on Ionic Liquids: from Nanoscale to Macroscale. ACS APPLIED MATERIALS & INTERFACES 2018; 10:43211-43218. [PMID: 30422617 DOI: 10.1021/acsami.8b15199] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In electric double-layer transistors (EDLTs), it is well known that the EDL formed by ionic liquids (ILs) can induce an ultrahigh carrier density at the semiconductor surface, compared to solid dielectric. However, the mechanism of device performance is still not fully understood, especially at a molecular level. Here, we evaluate the gating performance of amorphous indium gallium zinc oxide (a-IGZO) transistor coupled with a series of imidazolium-based ILs, using an approach combining of molecular dynamics simulation and finite element modeling. Results reveal that the EDL with different ion structures could produce inhomogeneous electric fields at the solid-electrolyte interface, and the heterogeneity of electric field-induced charge distributions at semiconductor surface could reduce the electrical conductance of a-IGZO during gating process. Meanwhile, a resistance network analysis was adopted to bridge the nanoscopic data with the macroscopic transfer characteristics of IL-gated transistor, and showed that our theoretical results could well estimate the gating performance of practical devices. Thereby, our findings could provide both new concepts and modeling techniques for IL-gated transistors.
Collapse
Affiliation(s)
- Wei Zhao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Sheng Bi
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China
| | | | | | | | | | | | - Guang Feng
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China
| |
Collapse
|