1
|
Wei K, Shi Y, Tan X, Shalash M, Ren J, Faheim AA, Jia C, Huang R, Sheng Y, Guo Z, Ge S. Recent development of metal-organic frameworks and their composites in electromagnetic wave absorption and shielding applications. Adv Colloid Interface Sci 2024; 332:103271. [PMID: 39146581 DOI: 10.1016/j.cis.2024.103271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/07/2024] [Accepted: 08/03/2024] [Indexed: 08/17/2024]
Abstract
With the rapid development of information and communication industries, the usage of electromagnetic waves has caused the hazard of human health and misfunction of devices. The adsorption and shielding of electromagnetic waves have been achieved in various materials. The unique adjustable spatial structure makes metal-organic frameworks (MOFs) promising for electromagnetic shielding and adsorbing. As MOFs research advances, various large-scale MOF-based materials have been developed. For instance, MOFs spatial structure has been expanded from 2D to 3D to load more ligands. Progress in synthetic methods for MOFs and their derivatives is advancing, with priority on large-scale preparation and green synthesis. This review summarizes the methods for synthesizing MOFs and their derivatives, and explores the effects of MOFs spatial structure on electromagnetic interference (EMI) shielding and electromagnetic wave absorption capabilities. At the same time, detailed examples are used to focus on the applications of five different MOFs composites in electromagnetic shielding and electromagnetic wave absorption. Finally, the current challenges and prospects of MOFs in the electromagnetic field are introduced, providing a useful reference for the preparation and design of MOFs and their composites for electromagnetic wave processing applications.
Collapse
Affiliation(s)
- Kexin Wei
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yang Shi
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xin Tan
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Marwan Shalash
- Department of Chemistry, College of Sciences and Arts Turaif, Northern Border University, Arar 91431, Saudi Arabia
| | - Juanna Ren
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China; Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Abeer A Faheim
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Chong Jia
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Runzhou Huang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Yequan Sheng
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| | - Zhanhu Guo
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Shengbo Ge
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
2
|
Liu Y, Zhao W, Gao Y, Zhuo Q, Chu T, Zhou C, Huang W, Zheng Y, Li Y. Colorimetric and electrochemical dual-mode uric acid determination utilizing peroxidase-mimicking activity of CoCu bimetallic nanoclusters. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1102-1110. [PMID: 38289093 DOI: 10.1039/d3ay02026f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
We present the preparation of CoCu bimetallic nanoclusters (Co@Cu-BNCs) by a hydrothermal and one-step pyrolysis method to build a colorimetric and electrochemical dual-mode sensing platform for uric acid (UA) detection. In the presence of H2O2, Co@Cu-BNCs with peroxidase-mimicking activity may convert colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue-colored oxidized TMB (oxTMB). However, due to the inhibitory effect of uric acid (UA) on the oxidation process of TMB, the characteristic absorption peak intensity of oxTMB decreased when UA was added into a mixed solution. In this approach, a colorimetric assay platform for the detection of UA was demonstrated, with a linear range of 0.1-195 μM and a low limit of detection of 0.06 μM (S/N ratio of 3). In addition, an even wider detection range is achieved in the electrochemical method, due to the pronounced electrocatalytic activity of Co@Cu-BNCs. The surface of the glassy carbon electrode was modified with Co@Cu-BNCs to build an electrochemical sensor for detecting UA. The sensor achieves a wider linear range from 2 to 1000 μM and a limit of detection of 0.61 μM (S/N ratio of 3). Moreover, the detection of UA in a human serum sample showed satisfactory results. The results proved that the colorimetric and electrochemical dual-mode detection platform was sensitive, convenient and accurate.
Collapse
Affiliation(s)
- Yaopeng Liu
- Institute of Selenium Science and Industry, Hubei Minzu University, Enshi, Hubei 445000, P. R. China.
- Hubei Key Laboratory of Selenium Resources Research and Biological Applications, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
- College of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
| | - Wei Zhao
- College of Intelligent Systems Science and Engineering, Hubei Minzu University, Enshi, Hubei 445000, P. R. China.
- Key Laboratory of Green Manufacturing of Super-light Elastomer Materials of State Ethnic Affairs Commission, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
| | - Yi Gao
- Institute of Selenium Science and Industry, Hubei Minzu University, Enshi, Hubei 445000, P. R. China.
- Hubei Key Laboratory of Selenium Resources Research and Biological Applications, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
- College of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
| | - Qing Zhuo
- College of Intelligent Systems Science and Engineering, Hubei Minzu University, Enshi, Hubei 445000, P. R. China.
- Key Laboratory of Green Manufacturing of Super-light Elastomer Materials of State Ethnic Affairs Commission, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
| | - Tingting Chu
- Institute of Selenium Science and Industry, Hubei Minzu University, Enshi, Hubei 445000, P. R. China.
- Hubei Key Laboratory of Selenium Resources Research and Biological Applications, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
- College of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
| | - Chengyu Zhou
- Institute of Selenium Science and Industry, Hubei Minzu University, Enshi, Hubei 445000, P. R. China.
- Hubei Key Laboratory of Selenium Resources Research and Biological Applications, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
- College of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
| | - Wensheng Huang
- Institute of Selenium Science and Industry, Hubei Minzu University, Enshi, Hubei 445000, P. R. China.
- Hubei Key Laboratory of Selenium Resources Research and Biological Applications, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
- College of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
| | - Yin Zheng
- Institute of Selenium Science and Industry, Hubei Minzu University, Enshi, Hubei 445000, P. R. China.
- Hubei Key Laboratory of Selenium Resources Research and Biological Applications, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
- College of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
| | - Yingru Li
- College of Intelligent Systems Science and Engineering, Hubei Minzu University, Enshi, Hubei 445000, P. R. China.
- Key Laboratory of Green Manufacturing of Super-light Elastomer Materials of State Ethnic Affairs Commission, Hubei Minzu University, Enshi, Hubei 445000, P. R. China
| |
Collapse
|
3
|
Huang Y, Tian K, Zhang C, Wang J, Shu R, Chen Z, Liu X, Li Y, Xu L. Lightweight and efficient luffa sponge carbon/Co composites with adjustable electromagnetic wave absorption properties. J Colloid Interface Sci 2023; 652:1138-1147. [PMID: 37657214 DOI: 10.1016/j.jcis.2023.08.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023]
Abstract
Biomass material has gained significant popularity due to its potential to meet the requirements of green and sustainable development in modern times. It is widely used in various fields, especially for absorbing electromagnetic waves (EMW). In this study, we used luffa sponge carbon (CLS) as a lightweight and porous carbon source. Through a static reaction and heat treatment process, we successfully loaded coral sheet cobalt onto the surface of CLS to create lightweight and efficient luffa sponge carbon/cobalt (CLS/Co) composites for EMW absorption. We controlled the microstructure and electromagnetic properties of the CLS/Co composites by adjusting the pyrolysis temperature. At 700 °C, the CLS/Co composites showed a minimum reflection loss (RLmin) of -60.81 dB and an effective absorption bandwidth (EAB) of 5.56 GHz at a very thin thickness of 1.68 mm. Moreover, at a pyrolysis temperature of 800 °C, the absorption strength of the CLS/Co composites reached -50 dB at various thicknesses.
Collapse
Affiliation(s)
- Yanan Huang
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Konghu Tian
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China; Analysis and Test Center, Anhui University of Science and Technology, Huainan 232001, China.
| | - Chao Zhang
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Jing Wang
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China; Pinghu Institute of Advanced Materials, Zhejiang University of Technology, Pinghu 314200, China.
| | - Ruiwen Shu
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, China.
| | - Zhihong Chen
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Xiaowei Liu
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Yufei Li
- Pinghu Institute of Advanced Materials, Zhejiang University of Technology, Pinghu 314200, China
| | - Lixin Xu
- Pinghu Institute of Advanced Materials, Zhejiang University of Technology, Pinghu 314200, China
| |
Collapse
|
4
|
Zhang X, Tian X, Qiao J, Fang X, Liu K, Liu C, Lin J, Li L, Liu W, Liu J, Zeng Z. In-Situ Fabrication of Sustainable-N-Doped-Carbon-Nanotube-Encapsulated CoNi Heterogenous Nanocomposites for High-Efficiency Electromagnetic Wave Absorption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302686. [PMID: 37208798 DOI: 10.1002/smll.202302686] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/30/2023] [Indexed: 05/21/2023]
Abstract
Developing carbon encapsulated magnetic composites with rational design of microstructure for achieving high-performance electromagnetic wave (EMW) absorption in a facile, sustainable, and energy-efficiency approach is highly demanded yet remains challenging. Here, a type of N-doped carbon nanotube (CNT) encapsulated CoNi alloy nanocomposites with diverse heterostructures are synthesized via the facile, sustainable autocatalytic pyrolysis of porous CoNi-layered double hydroxide/melamine. Specifically, the formation mechanism of the encapsulated structure and the effects of heterogenous microstructure and composition on the EMW absorption performance are ascertained. With the presence of melamine, CoNi alloy emerges its autocatalysis effect to generate N-doped CNTs, leading to unique heterostructure and high oxidation stability. The abundant heterogeneous interfaces induce strong interfacial polarization to EMWs and optimize impedance matching characteristic. Combined with the inherent high conductive and magnetic loss capabilities, the nanocomposites accomplish a high-efficiency EMW absorption performance even at a low filling ratio. The minimum reflection loss of -84.0 dB at the thickness of 3.2 mm and a maximum effective bandwidth of 4.3 GHz are obtained, comparable to the best EMW absorbers. Integrated with the facile, controllable, and sustainable preparation approach of the heterogenous nanocomposites, the work shows a great promise of the nanocarbon encapsulation protocol for achieving lightweight, high-performance EMW absorption materials.
Collapse
Affiliation(s)
- Xue Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| | - Xuelei Tian
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| | - Jing Qiao
- School of Mechanical Engineering, Shandong University, Jinan, 250061, P. R. China
| | - Xinrui Fang
- Jinan Institute of Special Structures of Aviation Industry of China (Jinan 637 Institute of Aviation Industry of China), Jinan, 250000, P. R. China
| | - Kaiye Liu
- Jinan Institute of Special Structures of Aviation Industry of China (Jinan 637 Institute of Aviation Industry of China), Jinan, 250000, P. R. China
| | - Chang Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| | - Jingpeng Lin
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| | - Lutong Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| | - Wei Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Jiurong Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| | - Zhihui Zeng
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| |
Collapse
|
5
|
An B, Wu M, Yang X, Man Z, Feng C, Liang X. Lightweight Co 3O 4/CC Composites with High Microwave Absorption Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1903. [PMID: 37446419 DOI: 10.3390/nano13131903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023]
Abstract
With the rapid development of electronic and communication technology for military radars, the demand for microwave-absorbing materials in the low-frequency range with thin layers is growing. In this study, flexible Co3O4/CC (carbon cloth) composites derived from Co-MOFs (metal-organic frameworks) and CC are prepared using hydrothermal and thermal treatment processes. The flexible precursors of the Co-MOFs/CC samples are calcined with different calcination temperatures, for which the material structure, dielectric properties, and microwave absorption performance are changed. With the increases in calcination temperature, the minimum reflection loss of the corresponding Co3O4/CC composites gradually moves to the lower frequency with a thinner thickness. In addition, the Co3O4/CC composites with the 25 wt% filler loading ratio exhibit the minimum reflection loss (RL) of -46.59 dB at 6.24 GHz with a 4.2 mm thickness. When the thickness is 3.70 mm, the effective absorption bandwidth is 3.04 GHz from 5.84 to 8.88 GHz. This study not only proves that the Co3O4/CC composite is an outstanding microwave-absorbing material with better flexibility but also provides useful inspiration for research on wideband microwave absorption materials below 10 GHz.
Collapse
Affiliation(s)
- Bing An
- Hangzhou Dianzi University, Hangzhou 310018, China
- Xiamen University, Xiamen 361005, China
| | - Mei Wu
- Hangzhou Dianzi University, Hangzhou 310018, China
| | | | - Zengming Man
- National Engineering Laboratory for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | | | | |
Collapse
|
6
|
Luo H, Wan Y, Li J, Cai Y, Dang Z, Yin H. Mg xCu-biochar activated peroxydisulfate triggers reductive species for the reduction and enhanced electron-transfer degradation of electron-deficient aromatic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131267. [PMID: 36989783 DOI: 10.1016/j.jhazmat.2023.131267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/05/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
In wastewater treatment by persulfate-based advanced oxidation processes (PS-AOPs), electron-deficient aromatic pollutants (EDAPs) are refractory to nonradical pathway. To explore an efficient degradation pathway for EDAPs, MgxCu-biochar (BC) (x = 0.5, 1, 1.5) activated peroxydisulfate (PDS) was developed, which could trigger reductive species (•H) to reduce EDAPs first, and subsequently facilitate electron-transfer degradation of reduced intermediates. The roles of Mg-doping in MgxCu-BC to promote PDS activation and 2,4-dibromophenol (DBP) degradation were investigated. The mechanisms were then explored via electron paramagnetic resonance (EPR), chemical probes and Density Functional Theory (DFT) calculations. The results showed that Mg-doping improved metal-support interactions (MSIs) of MgxCu-BC, inducing •H formation via electron transfer from Cu atoms during PDS activation, which was thermodynamically favorable. The degradation rate of DBP (kobs, 0.0494 min-1) and Br- release (5.35 mg L-1) in Mg1Cu-BC systems were more 31 and 33 times than that in Cu-BC/PDS system, respectively. The degradation mechanism of •H-enhanced electron transfer processes was that •H attacked one Br group of DBP, and then debrominated intermediates were mineralized by electron transfer processes in the Mg1Cu-BC/PDS system. Overall, this study reports a novel pathway in PS-AOPs for selective degradation of EDAPs in wastewaters.
Collapse
Affiliation(s)
- Haoyu Luo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yi Wan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jie Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yuhao Cai
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China
| | - Hua Yin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China.
| |
Collapse
|
7
|
Zhao H, Jin C, Yang X, Lu P, Cheng Y. Synthesis of a one-dimensional carbon nanotube-decorated three-dimensional crucifix carbon architecture embedded with Co 7Fe 3/Co 5.47N nanoparticles for high-performance microwave absorption. J Colloid Interface Sci 2023; 645:22-32. [PMID: 37137275 DOI: 10.1016/j.jcis.2023.04.110] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/05/2023]
Abstract
Low-dimensional cell-decorated three-dimensional (3D) hierarchical structures are considered excellent candidates for achieving remarkable microwave absorption. In the present work, a one-dimensional (1D) carbon nanotube (CNT)-decorated 3D crucifix carbon framework embedded with Co7Fe3/Co5.47N nanoparticles (NPs) was fabricated by the in-situ pyrolysis of a trimetallic metal-organic framework (MOF) precursor (ZIF-ZnFeCo). Co7Fe3/Co5.47N NPs were uniformly dispersed on the carbon matrix. The 1D CNT nanostructure was well regulated on the 3D crucifix surface by changing the pyrolysis temperature. The synergistic effect of 1D CNT and the 3D crucifix carbon framework increased the conductive loss, and Co7Fe3/Co5.47N NPs induced interfacial polarization and magnetic loss; thus, the composite manifested superior microwave absorption performance. The optimum absorption intensity was -54.0 dB, and the effective absorption frequency bandwidth reached 5.4 GHz at a thickness of 1.65 mm. The findings of this work could provide significant guidance for the fabrication of MOF-derived hybrids for high-performance microwave absorption applications.
Collapse
Affiliation(s)
- Huanqin Zhao
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an, Shaanxi 710021, China.
| | - Changqing Jin
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an, Shaanxi 710021, China.
| | - Xin Yang
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an, Shaanxi 710021, China
| | - Ping Lu
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an, Shaanxi 710021, China
| | - Yan Cheng
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| |
Collapse
|
8
|
Li W, Guo F, Zhao Y, Liu Y. A Sustainable and Low-Cost Route to Design NiFe 2O 4 Nanoparticles/Biomass-Based Carbon Fibers with Broadband Microwave Absorption. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4063. [PMID: 36432351 PMCID: PMC9693991 DOI: 10.3390/nano12224063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Carbon-based microwave-absorbing materials with a low cost, simple preparation process, and excellent microwave absorption performance have important application value. In this paper, biomass-based carbon fibers were prepared using cotton fiber, hemp fiber, and bamboo fiber as carbon sources. Then, the precise loading of NiFe2O4 nanoparticles on biomass-based carbon fibers with the loading amount in a wide range was successfully realized through a sustainable and low-cost route. The effects of the composition and structure of NiFe2O4/biomass-based carbon fibers on electromagnetic parameters and electromagnetic absorption properties were systematically studied. The results show that the impedance matching is optimized, and the microwave absorption performance is improved after loading NiFe2O4 nanoparticles on biomass-based carbon fibers. In particular, when the weight percentage of NiFe2O4 nanoparticles in NiFe2O4/carbonized cotton fibers is 42.3%, the effective bandwidth of NiFe2O4/carbonized cotton fibers can reach 6.5 GHz with a minimum reflection loss of -45.3 dB. The enhancement of microwave absorption performance is mainly attributed to the appropriate electromagnetic parameters with the ε' ranging from 9.2 to 4.8, and the balance of impedance matching and electromagnetic loss. Given the simple synthesis method, low cost, high output, and excellent microwave absorption performance, the NiFe2O4/biomass-based carbon fibers have broad application prospects as an economic and broadband microwave absorbent.
Collapse
|
9
|
Li W, Guo F, Zhao Y, Liu Y, Du Y. Facile Synthesis of Metal Oxide Decorated Carbonized Bamboo Fibers with Wideband Microwave Absorption. ACS OMEGA 2022; 7:39019-39027. [PMID: 36340137 PMCID: PMC9631727 DOI: 10.1021/acsomega.2c04767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Aiming at the disadvantages of high cost, complex processes, low yield, and narrow bandwidth of carbon-based microwave absorbing materials, this paper provides a novel and efficient method for synthesizing metal oxide/carbonized bamboo fibers using renewable natural bamboo fibers as a carbon source. The results suggested that the metal oxides such as NiO and Fe3O4 were uniformly dispersed on the carbonized bamboo fibers and proved that the dielectric component NiO and magnetic component Fe3O4 can significantly improve the microwave absorption performance of the carbonized bamboo fibers. As expected, the NiO/carbonized bamboo fibers showed excellent microwave absorption performance due to the appropriate complex permittivity, high impedance matching, and attenuation coefficient. A wide effective bandwidth of 6.4 GHz with 2.2 mm thickness is achieved, covering the entire Ku-band. Remarkably, the reflection loss (RL) values less than -10 dB covered the whole X-band at a thickness of 3.0 mm. This work reveals the potential of carbonized bamboo fibers-based composite as an economic and broadband microwave absorbent and offers a new strategy for designing promising microwave absorption materials.
Collapse
Affiliation(s)
- Wanxi Li
- Department
of Materials Science and Engineering, Jinzhong
University, Jinzhong030619, P.R. China
| | - Fang Guo
- Department
of Materials Science and Engineering, Jinzhong
University, Jinzhong030619, P.R. China
| | - Yali Zhao
- Department
of Materials Science and Engineering, Jinzhong
University, Jinzhong030619, P.R. China
| | - Yanyun Liu
- Department
of Materials Science and Engineering, Jinzhong
University, Jinzhong030619, P.R. China
| | - Yien Du
- Department
of Chemistry and Chemical Engineering, Jinzhong
University, Jinzhong030619, P.R. China
| |
Collapse
|
10
|
Li J, Wu Q, Wang X, Wang B, Liu T. Metal-organic framework-derived Co/CoO nanoparticles with tunable particle size for strong low-frequency microwave absorption in the S and C bands. J Colloid Interface Sci 2022; 628:10-21. [PMID: 35908427 DOI: 10.1016/j.jcis.2022.07.138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 10/16/2022]
Abstract
Nowadays, constructing strong absorption materials addressing the low-frequency electromagnetic radiation (S and C bands) from electronic devices remains a significant challenge. In this work, size-tunable Co/CoO nanoparticles (NPs) are fabricated by decomposing zeolitic imidazolate framework (ZIF-67) precursors and subsequent hydrogen reduction. All samples show obvious low-frequency attenuation in the S and C bands. At a thin thickness of 2.3 mm, the minimum reflection loss (RL) value for the Co/CoO NPs of 30 nm reaches up to -90.3 dB at 4.4 GHz, and the corresponding effective absorption bandwidth (EAB) of RL ≤ -10 dB ranges from 3.8 to 5.4 GHz. Notably, 90 % of the electromagnetic waves can be absorbed in the frequency range of 2.3-13.2 GHz, covering almost the entire S, C, and X bands at a thickness of 1.0-4.0 mm. The strong low-frequency absorption performance is attributed to the nano-porous structure, high conduction loss, tunable dielectric/magnetic loss, as well as optimized impedance matching. These Co/CoO NPs are promising candidates for high-efficient microwave absorbers in the low-frequency application.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Aerospace Materials and Performance (Ministry of Education) School of Materials Science and Engineering, Beihang University, No. 37 Xueyuan Road, Beijing 100191, PR China
| | - Qian Wu
- Key Laboratory of Aerospace Materials and Performance (Ministry of Education) School of Materials Science and Engineering, Beihang University, No. 37 Xueyuan Road, Beijing 100191, PR China
| | - Xiangyu Wang
- Key Laboratory of Aerospace Materials and Performance (Ministry of Education) School of Materials Science and Engineering, Beihang University, No. 37 Xueyuan Road, Beijing 100191, PR China
| | - Baolei Wang
- Key Laboratory of Aerospace Materials and Performance (Ministry of Education) School of Materials Science and Engineering, Beihang University, No. 37 Xueyuan Road, Beijing 100191, PR China
| | - Tong Liu
- Key Laboratory of Aerospace Materials and Performance (Ministry of Education) School of Materials Science and Engineering, Beihang University, No. 37 Xueyuan Road, Beijing 100191, PR China.
| |
Collapse
|
11
|
Low-Frequency Broadband Absorbing Coatings Based on MOFs: Design, Fabrication, Microstructure and Properties. COATINGS 2022. [DOI: 10.3390/coatings12060766] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Although most microwave absorbing materials (MAMs) have good absorption ability above 8 GHz, they perform poorly in the low-frequency range (1–8 GHz). Metal–organic frameworks (MOFs) derived carbon-based composites have been highly sought after in electromagnetic materials and functional devices, due to their high specific area, high porosity, high thermal stability, low reflection loss, and adjustable composition. In this review, we first introduce the three loss types of MAMs and argue that composite materials are effective ways to achieve broadband absorption. Secondly, the absorbing properties of traditional materials and MOF materials in the literature are compared, followed by a discussion of the promising strategies for designing MAMs with broadband absorption in low frequencies based on the recent progress. Finally, the main problems, fabrication methods, and applications are discussed for their future prospects.
Collapse
|
12
|
Huan X, Wang H, Deng W, Yan J, Xu K, Geng H, Guo X, Jia X, Zhou J, Yang X. Integrating Multi-Heterointerfaces in a 1D@2D@1D Hierarchical Structure via Autocatalytic Pyrolysis for Ultra-Efficient Microwave Absorption Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105411. [PMID: 35138032 DOI: 10.1002/smll.202105411] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Developing microwave absorption (MA) materials with ultrahigh efficiency and facile preparation method remains a challenge. Herein, a superior 1D@2D@1D hierarchical structure integrated with multi-heterointerfaces via self-assembly and an autocatalytic pyrolysis is designed to fully unlock the microwave attenuation potential of materials, realizing ultra-efficient MA performance. By precisely regulating the morphology of the metal organic framework precursor toward improved impedance matching and intelligently integrating multi-heterointerfaces to boosted dielectric polarization, the specific return loss value of composites can be effectively tuned and optimized to -1002 dB at a very thin thickness of 1.8 mm. These encouraging achievements shed fresh insights into the precise design of ultra-efficient MA materials.
Collapse
Affiliation(s)
- Xianhua Huan
- State Key Laboratory of Organic-Inorganic Composites, Key Laboratory of Carbon Fibre and Functional Polymer, Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Hongtao Wang
- State Key Laboratory of Organic-Inorganic Composites, Key Laboratory of Carbon Fibre and Functional Polymer, Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Wenchao Deng
- State Key Laboratory of Organic-Inorganic Composites, Key Laboratory of Carbon Fibre and Functional Polymer, Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jiqiang Yan
- State Key Laboratory of Organic-Inorganic Composites, Key Laboratory of Carbon Fibre and Functional Polymer, Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Ke Xu
- Inner Mongolia Aerospace Hong Gang Machinery Corporation Limited, Inner Mongolia, 010076, P. R. China
| | - Hongbo Geng
- Inner Mongolia Aerospace Hong Gang Machinery Corporation Limited, Inner Mongolia, 010076, P. R. China
| | - Xiaodong Guo
- Inner Mongolia Aerospace Hong Gang Machinery Corporation Limited, Inner Mongolia, 010076, P. R. China
| | - Xiaolong Jia
- State Key Laboratory of Organic-Inorganic Composites, Key Laboratory of Carbon Fibre and Functional Polymer, Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jisheng Zhou
- State Key Laboratory of Organic-Inorganic Composites, Key Laboratory of Carbon Fibre and Functional Polymer, Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites, Key Laboratory of Carbon Fibre and Functional Polymer, Ministry of Education, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
13
|
Deng W, Li T, Li H, Liu X, Dang A, Liu Y, Wu H. Controllable graphitization degree of carbon foam bulk toward electromagnetic wave attenuation loss behavior. J Colloid Interface Sci 2022; 618:129-140. [PMID: 35334361 DOI: 10.1016/j.jcis.2022.03.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 01/17/2023]
Abstract
The graphitization degree is of great importance for determining the electromagnetic (EM) wave attenuation loss behavior. The conductive loss is considered to be the mechanism resulting from tailoring the graphitization degree. There is a lack of in-depth research on the dipole polarization caused by defects and functional groups and the interface polarization caused by graphite/amorphous carbon. Herein, lightweight carbon foam (CF) bulk derived from mesophase pitch was prepared to clarify the effect of the graphitization degree systematically. The results demonstrate that with an increase graphitization degree, the interfacial polarization improves and dipole polarization decreases. The synergistic effect of conduction loss and dipole and interfacial polarization dominates the impedance matching and further changes the EM loss behavior of CFs. Particularly, the minimum reflection loss is - 16.69 dB and effective absorption bandwidth is 3.63 GHz, the EM interference shielding effectiveness attains 35.13 dB and the compressive strength is up to 11.73 MPa when the optimal graphitization degree is achieved. Therefore, this work elucidates the effect of the interface polarization of graphite/amorphous carbon, thus providing a valuable insight into the design of advanced carbon-based materials for EM wave absorption and shielding.
Collapse
Affiliation(s)
- Weibin Deng
- Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Tiehu Li
- Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| | - Hao Li
- Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| | - Xin Liu
- Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Alei Dang
- Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Yifei Liu
- School of History Classics and Archaeology, University of Edinburgh, Edinburgh EH8 9YL, United Kingdom
| | - Hongjing Wu
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, PR China; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
14
|
Hu Q, Yang R, Yang S, Huang W, Zeng Z, Gui X. Metal-Organic Framework-Derived Core-Shell Nanospheres Anchored on Fe-Filled Carbon Nanotube Sponge for Strong Wideband Microwave Absorption. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10577-10587. [PMID: 35188369 DOI: 10.1021/acsami.1c25019] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Metal-organic frameworks (MOFs) are booming as a promising precursor for constructing lightweight, high-efficiency microwave absorbing (MA) material. However, it is still a challenge to rationally design three-dimensional (3D), porous MOF-derived MA materials with a stable structure and strong and wideband MA performance. Herein, a 3D hybrid nanostructure (CNT/FeCoNi@C) comprising MOF-derived magnetic nanospheres and Fe-filled carbon nanotube (CNT) sponge has been controllably fabricated to enhance the absorption ability and broaden the effective absorption bandwidth (EAB). The magnetic nanospheres are uniformly anchored on the CNT skeleton, forming hybrid network structures, which enhance interface polarization, electron transportation, and impedance matching. The minimum reflection loss (RL) and EAB of the as-prepared CNT/FeCoNi@C sponges reach -51.7 dB and 6.0 GHz, respectively, outperforming most reported MOF-based wave absorbers. This work provides not only a novel design of MOF-derived 3D nanostructures but also an effective guide for the optimization of electromagnetic properties and absorbing performance in MA material.
Collapse
Affiliation(s)
- Qingmei Hu
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Rongliang Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Shaodian Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Weibo Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhiping Zeng
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xuchun Gui
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
15
|
Ren S, Yu H, Wang L, Huang Z, Lin T, Huang Y, Yang J, Hong Y, Liu J. State of the Art and Prospects in Metal-Organic Framework-Derived Microwave Absorption Materials. NANO-MICRO LETTERS 2022; 14:68. [PMID: 35217977 PMCID: PMC8881588 DOI: 10.1007/s40820-022-00808-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/14/2022] [Indexed: 05/12/2023]
Abstract
Microwave has been widely used in many fields, including communication, medical treatment and military industry; however, the corresponding generated radiations have been novel hazardous sources of pollution threating human's daily life. Therefore, designing high-performance microwave absorption materials (MAMs) has become an indispensable requirement. Recently, metal-organic frameworks (MOFs) have been considered as one of the most ideal precursor candidates of MAMs because of their tunable structure, high porosity and large specific surface area. Usually, MOF-derived MAMs exhibit excellent electrical conductivity, good magnetism and sufficient defects and interfaces, providing obvious merits in both impedance matching and microwave loss. In this review, the recent research progresses on MOF-derived MAMs were profoundly reviewed, including the categories of MOFs and MOF composites precursors, design principles, preparation methods and the relationship between mechanisms of microwave absorption and microstructures of MAMs. Finally, the current challenges and prospects for future opportunities of MOF-derived MAMs are also discussed.
Collapse
Affiliation(s)
- Shuning Ren
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China.
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Zhikun Huang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Tengfei Lin
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Yudi Huang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Jian Yang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Yichuan Hong
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Jinyi Liu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| |
Collapse
|
16
|
Ferromagnetic Ti 3CNCl 2-decorated RGO aerogel: From 3D interconnecting conductive network construction to ultra-broadband microwave absorber with thermal insulation property. J Colloid Interface Sci 2021; 604:402-414. [PMID: 34271492 DOI: 10.1016/j.jcis.2021.05.166] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/02/2021] [Accepted: 05/27/2021] [Indexed: 11/22/2022]
Abstract
It remains urgent challenges to adopt suitable strategies to consume unwanted microwave pollution emitted by high-tech electronic devices satisfactorily. Confronted with narrow effective absorption bandwidth (EAB) and high filler loading bottlenecks of MXene-Based microwave absorber, herein, we employ Lewis molten salt etching approach to both exfoliate Ti3AlCN powders into Ti3CNCl2 suspension and intercalate ferromagnetic composition into interlamination simultaneously. By utilizing the crosslinking effect of dopamine, the Ti3CNCl2 are anchored on the surfaces of graphene oxide (GO) nanosheets, constructing interconnecting microstructure. Both the 3D conductive network and the modification of MXene manifest crucial impacts on enhancing microwave absorption performance of the resulting ultra-lightweight reduced GO (RGO)-based aerogel. The minimum intensity of reflection loss achieves -62.62 dB with the absorber mass loading of 0.7 wt%. Remarkably, more than 90% of the incident microwave is qualified to be absorbed over the whole Ku band. The EAB is broadened while tailoring the thickness to 3 mm, ranging from 10.2 to 18 GHz. Besides, the aerogel presents valuable thermal insulation properties. Our methodology of synthesizing MXene/RGO aerogel not only provides promising insights into microstructural construction but also endows the possibility for integrating thermal insulation property towards next-generation high-performance microwave absorption devices.
Collapse
|
17
|
Cheng R, Wang Y, Di X, Lu Z, Wang P, Ma M, Ye J. Construction of MOF-derived plum-like NiCo@C composite with enhanced multi-polarization for high-efficiency microwave absorption. J Colloid Interface Sci 2021; 609:224-234. [PMID: 34896826 DOI: 10.1016/j.jcis.2021.11.197] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022]
Abstract
Nowadays, facing the inevitable electromagnetic (EM) pollution caused by many electronic products, it is urgent to develop high-performance microwave absorbing materials. In particular, the bimetallic carbon-based composites derived from MOFs exhibit excellent microwave absorption potential due to their simple preparation, low cost, adjustable morphology and magnetoelectric synergy mechanism. In this work, we successfully prepared plum-like NiCo@C composite by simple solvothermal method and carbonization treatment, which displays strong absorption (-55.4 dB) and wide effective absorption band (EAB, 7.2 GHz) when the loading is 20 wt%. The plum-like structure greatly enriches the non-uniform interface and the structural anisotropy contributes to the dissipation of electromagnetic waves. At the same time, the band hybridization and magnetic coupling of NiCo@C contribute to the coordination of EM characteristics. Overall, this work proves the feasibility of NiCo@C hierarchical composite in the field of microwave absorbing, and provides insight for the development of high-performance absorbers.
Collapse
Affiliation(s)
- Runrun Cheng
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, PR China
| | - Yan Wang
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, PR China.
| | - Xiaochuang Di
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, PR China
| | - Zhao Lu
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, PR China
| | - Ping Wang
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, PR China
| | - Mingliang Ma
- School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Jinrui Ye
- Institute of Science and Technology of Beihang University, Beijing 100191, PR China
| |
Collapse
|
18
|
Zhao H, Wang F, Cui L, Xu X, Han X, Du Y. Composition Optimization and Microstructure Design in MOFs-Derived Magnetic Carbon-Based Microwave Absorbers: A Review. NANO-MICRO LETTERS 2021; 13:208. [PMID: 34633562 PMCID: PMC8505592 DOI: 10.1007/s40820-021-00734-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/08/2021] [Indexed: 05/19/2023]
Abstract
Magnetic carbon-based composites are the most attractive candidates for electromagnetic (EM) absorption because they can terminate the propagation of surplus EM waves in space by interacting with both electric and magnetic branches. Metal-organic frameworks (MOFs) have demonstrated their great potential as sacrificing precursors of magnetic metals/carbon composites, because they provide a good platform to achieve high dispersion of magnetic nanoparticles in carbon matrix. Nevertheless, the chemical composition and microstructure of these composites are always highly dependent on their precursors and cannot promise an optimal EM state favorable for EM absorption, which more or less discount the superiority of MOFs-derived strategy. It is hence of great importance to develop some accompanied methods that can regulate EM properties of MOFs-derived magnetic carbon-based composites effectively. This review comprehensively introduces recent advancements on EM absorption enhancement in MOFs-derived magnetic carbon-based composites and some available strategies therein. In addition, some challenges and prospects are also proposed to indicate the pending issues on performance breakthrough and mechanism exploration in the related field.
Collapse
Affiliation(s)
- Honghong Zhao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Fengyuan Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Liru Cui
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Xianzhu Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Xijiang Han
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
| | - Yunchen Du
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
| |
Collapse
|
19
|
Huang M, Wang L, You W, Che R. Single Zinc Atoms Anchored on MOF-Derived N-Doped Carbon Shell Cooperated with Magnetic Core as an Ultrawideband Microwave Absorber. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101416. [PMID: 34159720 DOI: 10.1002/smll.202101416] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Indexed: 05/26/2023]
Abstract
Polarization behaviors of no-magnetic shell dominate the dielectric properties for core-shell magnetic-carbon composites, which faces a huge challenge. Herein, a single atom-doping strategy is established to adjust local electric potential in the metal-organic framework (MOF)-derived carbon shell. Benefiting from the confined transformation, single Zn atoms and N atoms are evenly distributed in the porous carbon shell using ZIF-8 as a template. Dielectric assembled carbon layers with functionalized Fe3 O4 core construct unique magnetic-dielectric synergy system. The electromagnetic parameters of Fe3 O4 @Zn-N-Carbon composites can be modified by tuning the pod-like Zn-N-doping carbon shell via repeating ZIF-8 growth cycles. Surprisingly, the core-shell Fe3 O4 @Zn-N-Carbon exhibits superior microwave absorption (MA) performance both in the reflection loss ability and wide-frequency responding feature. The reflection loss value of Fe3 O4 @Zn-N-Carbon microspheres reach -61.9 dB and the effective absorption bandwidth up to 11.5 GHz at only 2.5 mm thickness. The excellent MA mechanism is ascribed to following reasons. High-density stacking Zn-N doping carbon layers boost the interfacial polarization and plentiful Zn single atoms maximize the dipole polarization because of maximum atom utilization efficiency. Enhanced magnetic loss ability results from the compulsory magnetic coupling responding among Fe3 O4 cores. Magnetic-dielectric synergy of core-shell Fe3 O4 @Zn-N-Carbon microspheres can build ultrawide MA frequency.
Collapse
Affiliation(s)
- Mengqiu Huang
- Laboratory of Advanced Materials, Department of Materials Science and Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Lei Wang
- Laboratory of Advanced Materials, Department of Materials Science and Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Wenbin You
- Laboratory of Advanced Materials, Department of Materials Science and Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Renchao Che
- Laboratory of Advanced Materials, Department of Materials Science and Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
20
|
Zhang X, Qiao J, Jiang Y, Wang F, Tian X, Wang Z, Wu L, Liu W, Liu J. Carbon-Based MOF Derivatives: Emerging Efficient Electromagnetic Wave Absorption Agents. NANO-MICRO LETTERS 2021; 13:135. [PMID: 34138364 PMCID: PMC8180543 DOI: 10.1007/s40820-021-00658-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 04/28/2021] [Indexed: 05/19/2023]
Abstract
To tackle the aggravating electromagnetic wave (EMW) pollution issues, high-efficiency EMW absorption materials are urgently explored. Metal-organic framework (MOF) derivatives have been intensively investigated for EMW absorption due to the distinctive components and structures, which is expected to satisfy diverse application requirements. The extensive developments on MOF derivatives demonstrate its significantly important role in this research area. Particularly, MOF derivatives deliver huge performance superiorities in light weight, broad bandwidth, and robust loss capacity, which are attributed to the outstanding impedance matching, multiple attenuation mechanisms, and destructive interference effect. Herein, we summarized the relevant theories and evaluation methods, and categorized the state-of-the-art research progresses on MOF derivatives in EMW absorption field. In spite of lots of challenges to face, MOF derivatives have illuminated infinite potentials for further development as EMW absorption materials.
Collapse
Affiliation(s)
- Xue Zhang
- School of Materials Science and Engineering, Shandong University, Jinan, 250061, People's Republic of China
| | - Jing Qiao
- School of Materials Science and Engineering, Shandong University, Jinan, 250061, People's Republic of China
| | - Yanyan Jiang
- School of Materials Science and Engineering, Shandong University, Jinan, 250061, People's Republic of China
| | - Fenglong Wang
- School of Materials Science and Engineering, Shandong University, Jinan, 250061, People's Republic of China.
| | - Xuelei Tian
- School of Materials Science and Engineering, Shandong University, Jinan, 250061, People's Republic of China.
| | - Zhou Wang
- School of Materials Science and Engineering, Shandong University, Jinan, 250061, People's Republic of China
| | - Lili Wu
- School of Materials Science and Engineering, Shandong University, Jinan, 250061, People's Republic of China
| | - Wei Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, People's Republic of China
| | - Jiurong Liu
- School of Materials Science and Engineering, Shandong University, Jinan, 250061, People's Republic of China.
| |
Collapse
|
21
|
Liu W, Duan P, Mei C, Wan K, Zhang B, Su H, Zhang X, Wang J, Zou Z. Melamine-induced formation of carbon nanotubes assembly on metal-organic framework-derived Co/C composites for lightweight and broadband microwave absorption. Dalton Trans 2021; 50:6222-6231. [PMID: 33871527 DOI: 10.1039/d1dt00655j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Extending effective absorption bandwidth at a low filling ratio is still a challenge for metal-organic framework-derived microwave absorbing materials. Herein, varied complex structures based on CNTs have been built on Co/C particles derived from ZIF-67 via melamine-involved annealing routes. It was found that cobalt nanoparticles derived from ZIF-67 act as catalysts for the growth of CNTs, effectively promoting and controlling the content of melamine. Due to the effective control of the CNT-containing complex structure, excellent microwave absorption performance was achieved at a rather low filling ratio of 20 wt%, which can be attributed to improved attenuation ability and ameliorated impedance matching. Results show that highly graphitic CNTs benefit the formation of the electron transport network and enhancement of conduction loss. Unique one-dimensional complex structure and abundant Co/C interfaces strengthen the polarization loss. When the dielectric loss was optimized at different frequencies, appropriate impedance matching was also gained to realize a broad effective absorption bandwidth of 5.6 and 4.4 GHz in Ku and X bands, respectively. This work may provide novel insights into the synthesis and design of CNT-containing metal-organic framework-derived materials with lightweight features and wide frequency response.
Collapse
Affiliation(s)
- Wei Liu
- School of Materials Science and Engineering and Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, 230009, China. and Huaian Engineering Research Center of Soft Magnetic Powder Cores and Devices, Jiangsu Red Magnetic Materials Incorporation, Huaian, 211700, China and Anhui Red Magneto-electric Technology Co., Ltd., Wuhu, 241002, China
| | - Pengtao Duan
- School of Materials Science and Engineering and Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, 230009, China. and Huaian Engineering Research Center of Soft Magnetic Powder Cores and Devices, Jiangsu Red Magnetic Materials Incorporation, Huaian, 211700, China
| | - Chao Mei
- School of Materials Science and Engineering and Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, 230009, China. and Huaian Engineering Research Center of Soft Magnetic Powder Cores and Devices, Jiangsu Red Magnetic Materials Incorporation, Huaian, 211700, China
| | - Kun Wan
- School of Materials Science and Engineering and Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, 230009, China. and Huaian Engineering Research Center of Soft Magnetic Powder Cores and Devices, Jiangsu Red Magnetic Materials Incorporation, Huaian, 211700, China
| | - Bowei Zhang
- School of Materials Science and Engineering and Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, 230009, China. and Huaian Engineering Research Center of Soft Magnetic Powder Cores and Devices, Jiangsu Red Magnetic Materials Incorporation, Huaian, 211700, China and Anhui Red Magneto-electric Technology Co., Ltd., Wuhu, 241002, China
| | - Hailin Su
- School of Materials Science and Engineering and Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, 230009, China. and Huaian Engineering Research Center of Soft Magnetic Powder Cores and Devices, Jiangsu Red Magnetic Materials Incorporation, Huaian, 211700, China and Anhui Red Magneto-electric Technology Co., Ltd., Wuhu, 241002, China and School of Materials and Chemistry Engineering, Ningbo University of Technology, Ningbo, 315211, China.
| | - Xuebin Zhang
- School of Materials Science and Engineering and Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, 230009, China. and Huaian Engineering Research Center of Soft Magnetic Powder Cores and Devices, Jiangsu Red Magnetic Materials Incorporation, Huaian, 211700, China and Anhui Red Magneto-electric Technology Co., Ltd., Wuhu, 241002, China
| | - Jinzhi Wang
- School of Materials and Chemistry Engineering, Ningbo University of Technology, Ningbo, 315211, China.
| | - Zhongqiu Zou
- Huaian Engineering Research Center of Soft Magnetic Powder Cores and Devices, Jiangsu Red Magnetic Materials Incorporation, Huaian, 211700, China and Anhui Red Magneto-electric Technology Co., Ltd., Wuhu, 241002, China
| |
Collapse
|
22
|
Sanad MF, Puente Santiago AR, Tolba SA, Ahsan MA, Fernandez-Delgado O, Shawky Adly M, Hashem EM, Mahrous Abodouh M, El-Shall MS, Sreenivasan ST, Allam NK, Echegoyen L. Co-Cu Bimetallic Metal Organic Framework Catalyst Outperforms the Pt/C Benchmark for Oxygen Reduction. J Am Chem Soc 2021; 143:4064-4073. [PMID: 33661615 DOI: 10.1021/jacs.1c01096] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Platinum (Pt)-based-nanomaterials are currently the most successful catalysts for the oxygen reduction reaction (ORR) in electrochemical energy conversion devices such as fuel cells and metal-air batteries. Nonetheless, Pt catalysts have serious drawbacks, including low abundance in nature, sluggish kinetics, and very high costs, which limit their practical applications. Herein, we report the first rationally designed nonprecious Co-Cu bimetallic metal-organic framework (MOF) using a low-temperature hydrothermal method that outperforms the electrocatalytic activity of Pt/C for ORR in alkaline environments. The MOF catalyst surpassed the ORR performance of Pt/C, exhibiting an onset potential of 1.06 V vs RHE, a half-wave potential of 0.95 V vs RHE, and a higher electrochemical stability (ΔE1/2 = 30 mV) after 1000 ORR cycles in 0.1 M NaOH. Additionally, it outperformed Pt/C in terms of power density and cyclability in zinc-air batteries. This outstanding behavior was attributed to the unique electronic synergy of the Co-Cu bimetallic centers in the MOF network, which was revealed by XPS and PDOS.
Collapse
Affiliation(s)
- Mohamed Fathi Sanad
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W. University Avenue, El Paso, Texas 79968, United States.,Department of Environmental Sciences and Engineering, University of Texas at El Paso, 500 W. University Avenue, El Paso, Texas 79968, United States
| | - Alain R Puente Santiago
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W. University Avenue, El Paso, Texas 79968, United States
| | - Sarah A Tolba
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Md Ariful Ahsan
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W. University Avenue, El Paso, Texas 79968, United States
| | - Olivia Fernandez-Delgado
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W. University Avenue, El Paso, Texas 79968, United States
| | - Mina Shawky Adly
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, United States.,Department of Chemistry, Faculty of Science, Mansoura University, Al-Mansoura 35516, Egypt
| | - Elhussein M Hashem
- FabLab, Centre for Emerging Learning Technologies (CELT), The British University in Egypt (BUE), Elshrouk City, Cairo Egypt
| | - Mohamed Mahrous Abodouh
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - M Samy El-Shall
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, United States
| | - Sreeprasad T Sreenivasan
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W. University Avenue, El Paso, Texas 79968, United States
| | - Nageh K Allam
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Luis Echegoyen
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W. University Avenue, El Paso, Texas 79968, United States
| |
Collapse
|
23
|
Song Z, Sun X, Li Y, Tang W, Liu G, Shui J, Liu X, Yu R. Carbon Fibers Embedded with Aligned Magnetic Particles for Efficient Electromagnetic Energy Absorption and Conversion. ACS APPLIED MATERIALS & INTERFACES 2021; 13:5266-5274. [PMID: 33491442 DOI: 10.1021/acsami.0c20522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Harvesting electromagnetic (EM) energy from the environment and converting it into useful micropower is a new and ideal way to eliminate EM radiation and while providing power for microelectronic devices. The key material of this technology is broadband, ultralight, and ultrathin EM-wave-absorbing materials, whose preparation remains challenging. Herein, a high magnetic field (HMF) strategy is proposed to prepare a biomass-derived CoFe/carbon fiber (CoFe/CF) composite, in which CoFe magnetic particles are aligned in CFs, creating magnetic coupling and fast electron transmission channels. The graphitization degree of CFs is improved via the "migration catalysis" of CoFe particles under HMF. The HMF-derived CoFe/CF shows a largely broadened EM wave absorption bandwidth under ultralight and ultrathin conditions (1.5 mm). Its absorption bandwidth increases 5-10 times compared with conventional CoFe/CF that has randomly distributed CoFe particles and surpasses the reported analogues. A device model for EM energy absorption and reuse is designed based on the HMF-derived CoFe/CF membrane, which exhibits a 300% higher capability than conventional CoFe/CF membrane in converting EM energy to thermal energy. This work offers a new strategy for the design and fabrication of broadband, ultrathin, and ultralight EM wave absorption materials and demonstrates a potential conversion approach of the waste EM energy.
Collapse
Affiliation(s)
- Zhiming Song
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
| | - Xin Sun
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
- Science and Technology on Electromagnetic Scattering Laboratory, Beijing 100854, P. R. China
| | - Ya Li
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
| | - Wukui Tang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
| | - Guiliang Liu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
| | - Jianglan Shui
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
| | - Xiaofang Liu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
| | - Ronghai Yu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
| |
Collapse
|
24
|
Zhang Z, Cai Z, Wang Z, Peng Y, Xia L, Ma S, Yin Z, Huang Y. A Review on Metal-Organic Framework-Derived Porous Carbon-Based Novel Microwave Absorption Materials. NANO-MICRO LETTERS 2021; 13:56. [PMID: 34138258 PMCID: PMC8187524 DOI: 10.1007/s40820-020-00582-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 11/30/2020] [Indexed: 05/02/2023]
Abstract
The development of microwave absorption materials (MAMs) is a considerable important topic because our living space is crowed with electromagnetic wave which threatens human's health. And MAMs are also used in radar stealth for protecting the weapons from being detected. Many nanomaterials were studied as MAMs, but not all of them have the satisfactory performance. Recently, metal-organic frameworks (MOFs) have attracted tremendous attention owing to their tunable chemical structures, diverse properties, large specific surface area and uniform pore distribution. MOF can transform to porous carbon (PC) which is decorated with metal species at appropriate pyrolysis temperature. However, the loss mechanism of pure MOF-derived PC is often relatively simple. In order to further improve the MA performance, the MOFs coupled with other loss materials are a widely studied method. In this review, we summarize the theories of MA, the progress of different MOF-derived PC‑based MAMs, tunable chemical structures incorporated with dielectric loss or magnetic loss materials. The different MA performance and mechanisms are discussed in detail. Finally, the shortcomings, challenges and perspectives of MOF-derived PC‑based MAMs are also presented. We hope this review could provide a new insight to design and fabricate MOF-derived PC-based MAMs with better fundamental understanding and practical application.
Collapse
Affiliation(s)
- Zhiwei Zhang
- National Institute for Advanced Materials Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Key Laboratory of Functional Polymer Materials, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Materials Science and Engineering, Nankai University, Tianjin, 300350, People's Republic of China
| | - Zhihao Cai
- National Institute for Advanced Materials Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Key Laboratory of Functional Polymer Materials, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Materials Science and Engineering, Nankai University, Tianjin, 300350, People's Republic of China
| | - Ziyuan Wang
- National Institute for Advanced Materials Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Key Laboratory of Functional Polymer Materials, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Materials Science and Engineering, Nankai University, Tianjin, 300350, People's Republic of China
| | - Yaling Peng
- National Institute for Advanced Materials Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Key Laboratory of Functional Polymer Materials, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Materials Science and Engineering, Nankai University, Tianjin, 300350, People's Republic of China
| | - Lun Xia
- National Institute for Advanced Materials Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Key Laboratory of Functional Polymer Materials, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Materials Science and Engineering, Nankai University, Tianjin, 300350, People's Republic of China
| | - Suping Ma
- National Institute for Advanced Materials Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Key Laboratory of Functional Polymer Materials, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Materials Science and Engineering, Nankai University, Tianjin, 300350, People's Republic of China
| | - Zhanzhao Yin
- National Institute for Advanced Materials Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Key Laboratory of Functional Polymer Materials, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Materials Science and Engineering, Nankai University, Tianjin, 300350, People's Republic of China
| | - Yi Huang
- National Institute for Advanced Materials Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Key Laboratory of Functional Polymer Materials, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Materials Science and Engineering, Nankai University, Tianjin, 300350, People's Republic of China.
| |
Collapse
|
25
|
Xu C, Wang L, Li X, Qian X, Wu Z, You W, Pei K, Qin G, Zeng Q, Yang Z, Jin C, Che R. Hierarchical Magnetic Network Constructed by CoFe Nanoparticles Suspended Within "Tubes on Rods" Matrix Toward Enhanced Microwave Absorption. NANO-MICRO LETTERS 2021; 13:47. [PMID: 34138216 PMCID: PMC8187526 DOI: 10.1007/s40820-020-00572-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/19/2020] [Indexed: 05/23/2023]
Abstract
Hierarchical magnetic-dielectric composites are promising functional materials with prospective applications in microwave absorption (MA) field. Herein, a three-dimension hierarchical "nanotubes on microrods," core-shell magnetic metal-carbon composite is rationally constructed for the first time via a fast metal-organic frameworks-based ligand exchange strategy followed by a carbonization treatment with melamine. Abundant magnetic CoFe nanoparticles are embedded within one-dimensional graphitized carbon/carbon nanotubes supported on micro-scale Mo2N rod (Mo2N@CoFe@C/CNT), constructing a special multi-dimension hierarchical MA material. Ligand exchange reaction is found to determine the formation of hierarchical magnetic-dielectric composite, which is assembled by dielectric Mo2N as core and spatially dispersed CoFe nanoparticles within C/CNTs as shell. Mo2N@CoFe@C/CNT composites exhibit superior MA performance with maximum reflection loss of - 53.5 dB at 2 mm thickness and show a broad effective absorption bandwidth of 5.0 GHz. The Mo2N@CoFe@C/CNT composites hold the following advantages: (1) hierarchical core-shell structure offers plentiful of heterojunction interfaces and triggers interfacial polarization, (2) unique electronic migration/hop paths in the graphitized C/CNTs and Mo2N rod facilitate conductive loss, (3) highly dispersed magnetic CoFe nanoparticles within "tubes on rods" matrix build multi-scale magnetic coupling network and reinforce magnetic response capability, confirmed by the off-axis electron holography.
Collapse
Affiliation(s)
- Chunyang Xu
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai, 200438, People's Republic of China
| | - Lei Wang
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai, 200438, People's Republic of China
| | - Xiao Li
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai, 200438, People's Republic of China
| | - Xiang Qian
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai, 200438, People's Republic of China
| | - Zhengchen Wu
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai, 200438, People's Republic of China
| | - Wenbin You
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai, 200438, People's Republic of China
| | - Ke Pei
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai, 200438, People's Republic of China
| | - Gang Qin
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai, 200438, People's Republic of China
| | - Qingwen Zeng
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai, 200438, People's Republic of China
| | - Ziqi Yang
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai, 200438, People's Republic of China
| | - Chen Jin
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai, 200438, People's Republic of China
| | - Renchao Che
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai, 200438, People's Republic of China.
| |
Collapse
|
26
|
Liu W, Duan P, Mei C, Wan K, Zhang B, Su H, Zhang X, Zou Z. Optimizing the size-dependent dielectric properties of metal–organic framework-derived Co/C composites for highly efficient microwave absorption. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01502d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The size-dependent electromagnetic properties of MOF-derived Co/C composites have been optimized to significantly extend the effective microwave absorption bandwidth.
Collapse
Affiliation(s)
- Wei Liu
- Engineering Research Center of High Performance Copper Alloy Materials and Processing
- Ministry of Education
- Hefei University of Technology
- Hefei
- China
| | - Pengtao Duan
- School of Materials Science and Engineering and Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices
- Hefei University of Technology
- Hefei
- China
| | - Chao Mei
- School of Materials Science and Engineering and Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices
- Hefei University of Technology
- Hefei
- China
| | - Kun Wan
- School of Materials Science and Engineering and Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices
- Hefei University of Technology
- Hefei
- China
| | - Bowei Zhang
- School of Materials Science and Engineering and Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices
- Hefei University of Technology
- Hefei
- China
| | - Hailin Su
- Engineering Research Center of High Performance Copper Alloy Materials and Processing
- Ministry of Education
- Hefei University of Technology
- Hefei
- China
| | - Xuebin Zhang
- Engineering Research Center of High Performance Copper Alloy Materials and Processing
- Ministry of Education
- Hefei University of Technology
- Hefei
- China
| | - Zhongqiu Zou
- Huaian Engineering Research Center of Soft Magnetic Powder Cores and Devices
- Jiangsu Red Magnetic Materials Incorporation
- Xuyi
- China
- Anhui Red Magneto-electric Technology Co
| |
Collapse
|
27
|
Chen J, Liang X, Zheng J, Gu W, Pei C, Fan F, Ji G. Modulating dielectric loss of mesoporous carbon fibers with radar cross section reduction performance via computer simulation technology. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01237h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mesoporous carbon fibers, a kind of light weight microwave absorbing material, are prepared by electrospinning, through which the pore structure and microwave absorbing properties are influenced by the addition of tetraethyl orthosilicate.
Collapse
Affiliation(s)
- Jiabin Chen
- College of Materials Science and Technology
- Nanjing University of Aeronautics and Astronautics
- Nanjing 210016
- P. R. China
| | - Xiaohui Liang
- College of Materials Science and Technology
- Nanjing University of Aeronautics and Astronautics
- Nanjing 210016
- P. R. China
| | - Jing Zheng
- Department of Chemistry and Materials Science
- College of Science
- Nanjing Forestry University
- Nanjing 210037
- P. R. China
| | - Weihua Gu
- College of Materials Science and Technology
- Nanjing University of Aeronautics and Astronautics
- Nanjing 210016
- P. R. China
| | - Chunchuan Pei
- Jiangsu Wanhua Tycho Materials Technology Co. Ltd
- Taixing 225411
- P. R. China
| | - Feiyue Fan
- Jiangsu Wanhua Tycho Materials Technology Co. Ltd
- Taixing 225411
- P. R. China
| | - Guangbin Ji
- College of Materials Science and Technology
- Nanjing University of Aeronautics and Astronautics
- Nanjing 210016
- P. R. China
| |
Collapse
|
28
|
Ma M, Bi Y, Tong Z, Liu Y, Lyu P, Wang R, Ma Y, Wu G, Liao Z, Chen Y. Recent progress of MOF-derived porous carbon materials for microwave absorption. RSC Adv 2021; 11:16572-16591. [PMID: 35479149 PMCID: PMC9032547 DOI: 10.1039/d1ra01880a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/26/2021] [Indexed: 11/21/2022] Open
Abstract
Microwave absorbing materials (MAM) have attracted considerable attention over the years in stealth and information technologies. Metal–organic framework (MOF) with a unique microstructure and electronic state has become an attractive focus as self-sacrificing precursors of microwave absorbers. The MOF-derived porous carbon (PC) materials exhibit a high absorbing performance due to the stable three-dimensional structure and homogeneous distribution of metal particles. MOF-derived PC materials are promising for ideal MAM via tuning of the structure and composition, resulting in appropriate impedance matching and the synergistic effect between magnetic and dielectric loss. In this review, the MOF-derived PC materials and their basic absorption mechanisms (dielectric loss, magnetic loss and impedance matching) are introduced, as well as the characters of various MOF-derived PC materials. In addition, this review provides a comprehensive introduction and tabulates the recent progress based on the classification of the MOF-derived metallic state, such as pure PC (without reduced metals), mono-metal/PC, multi-metal/PC, metal oxides/PC and other derived PC composites. Finally, the challenges faced by MOF-derived PC materials are overviewed, and their further development is mentioned. MOF-derived PC materials with unique characteristic have been widely concerned as microwave absorbers over the years.![]()
Collapse
Affiliation(s)
- Mingliang Ma
- School of Civil Engineering
- Qingdao University of Technology
- Qingdao 266033
- People's Republic of China
| | - Yuxin Bi
- School of Civil Engineering
- Qingdao University of Technology
- Qingdao 266033
- People's Republic of China
| | - Zhouyu Tong
- School of Civil Engineering
- Qingdao University of Technology
- Qingdao 266033
- People's Republic of China
| | - Yanyan Liu
- School of Civil Engineering
- Qingdao University of Technology
- Qingdao 266033
- People's Republic of China
| | - Ping Lyu
- School of Civil Engineering
- Qingdao University of Technology
- Qingdao 266033
- People's Republic of China
| | - Rongzhen Wang
- School of Civil Engineering
- Qingdao University of Technology
- Qingdao 266033
- People's Republic of China
| | - Yong Ma
- School of Material Science and Engineering
- Shandong University of Science and Technology
- Qingdao 266590
- People's Republic of China
| | - Guanglei Wu
- Institute of Materials for Energy and Environment
- State Key Laboratory of Bio-fibers and Eco-textiles
- College of Materials Science and Engineering
- Qingdao University
- Qingdao 266071
| | - Zijian Liao
- School of Civil Engineering
- Qingdao University of Technology
- Qingdao 266033
- People's Republic of China
| | - Yan Chen
- School of Civil Engineering
- Qingdao University of Technology
- Qingdao 266033
- People's Republic of China
| |
Collapse
|
29
|
Liang LL, Song G, Liu Z, Chen JP, Xie LJ, Jia H, Kong QQ, Sun GH, Chen CM. Constructing Ni 12P 5/Ni 2P Heterostructures to Boost Interfacial Polarization for Enhanced Microwave Absorption Performance. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52208-52220. [PMID: 33146990 DOI: 10.1021/acsami.0c16287] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Heterostructures with a rich phase boundary are attractive for surface-mediated microwave absorption (MA) materials. However, understanding the MA mechanisms behind the heterogeneous interface remains a challenge. Herein, a phosphine (PH3) vapor-assisted phase and structure engineering strategy was proposed to construct three-dimensional (3D) porous Ni12P5/Ni2P heterostructures as microwave absorbers and explore the role of the heterointerface in MA performance. The results indicated that the heterogeneous interface between Ni12P5 and Ni2P not only creates sufficient lattice defects for inducing dipolar polarization but also triggers uneven spatial charge distribution for enhancing interface polarization. Furthermore, the porous structure and proper component could provide an abundant heterogeneous interface to strengthen the above polarization relaxation process, thereby greatly optimizing the electromagnetic parameters and improving the MA performance. Profited by 3D porous heterostructure design, P400 could achieve the maximum reflection loss of -50.06 dB and an absorption bandwidth of 3.30 GHz with an ultrathin thickness of 1.20 mm. Furthermore, simulation results confirmed its superior ability (14.97 dB m2 at 90°) to reduce the radar cross section in practical applications. This finding may shed light on the understanding and design of advanced heterogeneous MA materials.
Collapse
Affiliation(s)
- Lei-Lei Liang
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 Taoyuan South Road, Taiyuan 030001, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Ge Song
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 Taoyuan South Road, Taiyuan 030001, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Zhuo Liu
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 Taoyuan South Road, Taiyuan 030001, China
| | - Jing-Peng Chen
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 Taoyuan South Road, Taiyuan 030001, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Li-Jing Xie
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 Taoyuan South Road, Taiyuan 030001, China
| | - Hui Jia
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 Taoyuan South Road, Taiyuan 030001, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Qing-Qiang Kong
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 Taoyuan South Road, Taiyuan 030001, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Guo-Hua Sun
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 Taoyuan South Road, Taiyuan 030001, China
| | - Cheng-Meng Chen
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 Taoyuan South Road, Taiyuan 030001, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
30
|
Snake-like ZnO nanorods encapsulated by carbon shell self-assembled on the porous N-doped carbon nanocages with Co3O4 and ZnO nanoparticles embedded for superior lithium storage. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136924] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
Hussein MI, Jehangir SS, Rajmohan IJ, Haik Y, Abdulrehman T, Clément Q, Vukadinovic N. Microwave Absorbing properties of metal functionalized-CNT-polymer composite for stealth applications. Sci Rep 2020; 10:16013. [PMID: 32994532 PMCID: PMC7524837 DOI: 10.1038/s41598-020-72928-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 09/04/2020] [Indexed: 11/16/2022] Open
Abstract
In this study, we report on the electrical properties of multi-wall carbon nanotubes (MWCNT) composites functionalized with metal or metal alloy oxides and embedded in a polyurethane matrix to develop a lightweight material for microwave absorption and shielding. The CNT nanoparticles are functionalized with metallic oxides such as Cobalt oxide, Iron oxide, and Cobalt Iron oxide, at three different concentrations. Metallic oxides are used at 5%, 10%, and 20% concentration of the total CNT percentage weight. The resulting functionalized CNT is mixed with polyurethane polymer at 5% wt of the total composite weight. Three sets of cylindrical samples are developed, and each set contains three different metal oxide concentrations. The dielectric properties of the nine developed samples are obtained by measuring their permittivity spectra using an open-ended coaxial probe technique in the spectral range 5-50 GHz. The absorption efficiency of the composites is then obtained by calculating the reflection loss at normal incidence. The results show that the spectral range of absorption can be tuned by changing the CNT concentration, and the material thickness. Functionalized CNT with different alloyed metal oxides enhanced the absorption efficiency of the polyurethane/CNT composites. Such functionalized composites can be used to replace the common heavyweight materials used for microwave applications.
Collapse
Affiliation(s)
| | | | - I J Rajmohan
- United Arab Emirates University (UAEU), Al Ain, 15551, UAE
| | - Y Haik
- Texas A & M University-Kingsville, Kingsville, TX, 78363, USA
| | | | - Q Clément
- Dassault Aviation, 92552, Saint-Cloud, France
| | | |
Collapse
|
32
|
Wang L, Huang M, Yu X, You W, Zhang J, Liu X, Wang M, Che R. MOF-Derived Ni 1-xCo x@Carbon with Tunable Nano-Microstructure as Lightweight and Highly Efficient Electromagnetic Wave Absorber. NANO-MICRO LETTERS 2020; 12:150. [PMID: 34138180 PMCID: PMC7770844 DOI: 10.1007/s40820-020-00488-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/15/2020] [Indexed: 05/26/2023]
Abstract
Intrinsic electric-magnetic property and special nano-micro architecture of functional materials have a significant effect on its electromagnetic wave energy conversion, especially in the microwave absorption (MA) field. Herein, porous Ni1-xCox@Carbon composites derived from metal-organic framework (MOF) were successfully synthesized via solvothermal reaction and subsequent annealing treatments. Benefiting from the coordination, carbonized bimetallic Ni-Co-MOF maintained its initial skeleton and transformed into magnetic-carbon composites with tunable nano-micro structure. During the thermal decomposition, generated magnetic particles/clusters acted as a catalyst to promote the carbon sp2 arrangement, forming special core-shell architecture. Therefore, pure Ni@C microspheres displayed strong MA behaviors than other Ni1-xCox@Carbon composites. Surprisingly, magnetic-dielectric Ni@C composites possessed the strongest reflection loss value - 59.5 dB and the effective absorption frequency covered as wide as 4.7 GHz. Meanwhile, the MA capacity also can be boosted by adjusting the absorber content from 25% to 40%. Magnetic-dielectric synergy effect of MOF-derived Ni1-xCox@Carbon microspheres was confirmed by the off-axis electron holography technology making a thorough inquiry in the MA mechanism.
Collapse
Affiliation(s)
- Lei Wang
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai, 200438, People's Republic of China
| | - Mengqiu Huang
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai, 200438, People's Republic of China
| | - Xuefeng Yu
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai, 200438, People's Republic of China
| | - Wenbin You
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai, 200438, People's Republic of China
| | - Jie Zhang
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai, 200438, People's Republic of China
| | - Xianhu Liu
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou, 450002, People's Republic of China
| | - Min Wang
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai, 200438, People's Republic of China
| | - Renchao Che
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai, 200438, People's Republic of China.
| |
Collapse
|
33
|
Wu Z, Yang Z, Pei K, Qian X, Jin C, Che R. Dandelion-like carbon nanotube assembly embedded with closely separated Co nanoparticles for high-performance microwave absorption materials. NANOSCALE 2020; 12:10149-10157. [PMID: 32352132 DOI: 10.1039/d0nr01447h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Enhancing the magnetic loss capacity by microstructure design remains a considerable challenge in the microwave absorption field. Herein, a high-performance microwave absorbent is developed by dispersing a considerable amount of magnetic nanoparticles within the dandelion-like carbon nanotube assembly. A controllable fabrication method is further exploited to adjust the distribution feature of these embedded nanomagnets. In such a hierarchical composite, parts of the interaction network among the coupled closely spaced nanomagnets can be frequently broken and rebuilt to intensively dissipate the microwave energy, which is confirmed by electron holography and micromagnetic simulation for the first time. By virtue of this dynamic magnetic coupling network mechanism, the hierarchical C/Co composite acquires the first-rate microwave absorption performance. The maximum reflection loss value reaches as much as -52.9 dB (absorbance >0.99999) and the effective absorption bandwidth (absorbance >0.9) occupies the entire X band. It is believed that the above insightful mechanism provides a new opportunity to lower the density of the magnet-based microwave absorbent as much as possible. Besides, the unique method for dispersing magnetic nanoparticles also broadens the pathway to assemble the hierarchical architecture.
Collapse
Affiliation(s)
- Zhengchen Wu
- Laboratory of Advanced Materials, Department of Materials Science and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai 200438, P. R. China.
| | | | | | | | | | | |
Collapse
|
34
|
Zhang X, Wang J, Dong XX, Lv YK. Functionalized metal-organic frameworks for photocatalytic degradation of organic pollutants in environment. CHEMOSPHERE 2020; 242:125144. [PMID: 31669994 DOI: 10.1016/j.chemosphere.2019.125144] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/12/2019] [Accepted: 10/17/2019] [Indexed: 05/28/2023]
Abstract
Currently, many kinds of organic pollutants in air and water have a negative impact on humans and the environment. Notably, as a type of new functional materials, metal-organic frameworks (MOFs) with well-ordered porous structures and numerous active sites have been proven to be ideal photocatalysts for the degradation of organic pollutants. In the past few years, many encouraging achievements have been made in the research field of MOFs for photocatalysis. And a large number of functionalized MOFs have been constructed to improve photocatalytic activity. In this review, recent progress in the photocatalytic degradation of organic pollutants in both air and water using functionalized MOFs are summarized in detail. The focus is on photocatalytic mechanisms and some strategies employed to achieve higher degradation efficiency. Furthermore, the challenges and outlooks in this promising filed are also discussed. We hope this review would be useful for designing more functionalized MOFs with greater photocatalytic performance for the degradation of organic pollutants in the environment.
Collapse
Affiliation(s)
- Xi Zhang
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Environmental Science, Hebei University,Baoding, 071002, China
| | - Jing Wang
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Environmental Science, Hebei University,Baoding, 071002, China.
| | - Xing-Xing Dong
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Environmental Science, Hebei University,Baoding, 071002, China
| | - Yun-Kai Lv
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Chemistry and Environmental Science, Hebei University,Baoding, 071002, China.
| |
Collapse
|
35
|
Wang X, Geng Q, Shi G, Zhang Y, Li D. MOF-derived yolk–shell Ni/C architectures assembled with Ni@C core–shell nanoparticles for lightweight microwave absorbents. CrystEngComm 2020. [DOI: 10.1039/d0ce01242d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The yolk–shell Ni/C microspheres assembled by Ni@C core–shell nanoparticles with excellent microwave absorption performance can be simply fabricated by decomposition of a Ni-based metal–organic framework (Ni-MOF).
Collapse
Affiliation(s)
- Xiaolei Wang
- School of Environmental and Chemical Engineering
- Shenyang University of Technology
- Shenyang 110870
- PR China
| | - Qiyao Geng
- School of Environmental and Chemical Engineering
- Shenyang University of Technology
- Shenyang 110870
- PR China
| | - Guimei Shi
- School of Environmental and Chemical Engineering
- Shenyang University of Technology
- Shenyang 110870
- PR China
| | - Yajing Zhang
- College of Chemical Engineering
- Shenyang University of Chemical Technology
- Shenyang 110142
- PR China
| | - Da Li
- Shenyang National Laboratory for Materials Science
- Institute of Metal Research, and International Centre for Materials Physics
- Chinese Academy of Sciences
- Shenyang 110016
- PR China
| |
Collapse
|
36
|
Ouyang J, He Z, Zhang Y, Yang H, Zhao Q. Trimetallic FeCoNi@C Nanocomposite Hollow Spheres Derived from Metal-Organic Frameworks with Superior Electromagnetic Wave Absorption Ability. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39304-39314. [PMID: 31554393 DOI: 10.1021/acsami.9b11430] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Organic ligands and metal ions in the metal-organic frameworks (MOFs, a type of porous magnetic metal/carbon nanocomposites obtained through high-temperature carbonization) have caused widespread concerns in the field of microwave absorption because of the existence of various microwave loss mechanisms in these materials. However, MOF-driven microwave absorbing materials with high absorption intensity and wide absorption band still require further research and development. In this work, hollow sphere trimetallic FeCoNi@C microwave absorbing materials via high-temperature carbonization were obtained using FeCoNi-based MOF-74 (FeCoNi-MOF) as the precursor. The effects of different carbonization conditions on the microwave absorption properties of the materials were studied. FeCoNi-MOF-74 annealed at 700 °C showed superior microwave absorption capacity, where the RL value reached -64.75 dB at 15.44 GHz corresponding to the actual application thickness of the absorber (only 2.1 mm), and the minimum RL values reached -69.03 dB at 5.52 GHz. Furthermore, the as-prepared sample can fully cover the Ku band and X band at only 2.1 and 3.1 mm, respectively. The maximum EAB reached 8.08 GHz (9.92-18 GHz) when the thickness of the absorber was 2.47 mm. Such remarkable absorption performance is attributed to the synergetic effects between the multiple loss mechanisms of the FeCoNi@C, and the improved impedance matching characteristic came from the hollow sphere morphology.
Collapse
|
37
|
Xu X, Ran F, Lai H, Cheng Z, Lv T, Shao L, Liu Y. In Situ Confined Bimetallic Metal-Organic Framework Derived Nanostructure within 3D Interconnected Bamboo-like Carbon Nanotube Networks for Boosting Electromagnetic Wave Absorbing Performances. ACS APPLIED MATERIALS & INTERFACES 2019; 11:35999-36009. [PMID: 31498593 DOI: 10.1021/acsami.9b14754] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Metal-organic framework (MOFs) derived magnetic nanoparticles/porous carbon (M/C) composites featuring efficient interfacial engineering and spatially continuous three-dimensional (3D) networks are desirable electromagnetic wave (EMW) absorbing materials due to multiple transmission path and well impedance matching. However, it is challenging to construct such 3D interconnected carbon networks from a single MOF precursor. Herein, FeNi3 and N embedded 3D carbon networks comprising bamboo-like carbon nanotubes connected carbon nanorods (FeNi@CNT/CNRs) were prepared via one-step pyrolyzing of the composite of melamine and FeNi-MIL-88B. Attributed to the synergistic contributions of 3D interconnected carbon nanotube networks and MOFs derived M/C for multiple transmission path, impedance matching, and dielectric loss (especially for multiple polarization and micro-current), the FeNi@CNT/CNRs nanoarchitectures have demonstrated superior EMW absorbing performance. In particular, the optimized FeNi@CNT/CNR-0.9 has exhibited strong absorption (-47.0 dB, 2.3 mm in thickness) and broadband effective absorption (4.5 GHz, 1.6 mm in thickness). This attractive strategy holds promise as a general approach to fabricate the carbon hybrid network constituted of MOFs derived nanopolyhedron and CNTs for the target application.
Collapse
Affiliation(s)
- Xueqing Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin , Heilongjiang 150001 , P. R. China
| | - Feitian Ran
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin , Heilongjiang 150001 , P. R. China
| | - Hua Lai
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin , Heilongjiang 150001 , P. R. China
| | - Zhongjun Cheng
- Natural Science Research Center, Academy of Fundamental and Interdisciplinary National Key Laboratory of Science and Technology on Advanced Composites in Special Environments , Harbin Institute of Technology , Harbin , Heilongjiang 150090 , P. R. China
| | - Tong Lv
- Aerospace Institute of Advanced Material & Processing Technology , Beijing 100074 , P. R. China
| | - Lu Shao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin , Heilongjiang 150001 , P. R. China
| | - Yuyan Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin , Heilongjiang 150001 , P. R. China
| |
Collapse
|
38
|
Zhang X, Qiao J, Zhao J, Xu D, Wang F, Liu C, Jiang Y, Wu L, Cui P, Lv L, Wang Q, Liu W, Wang Z, Liu J. High-Efficiency Electromagnetic Wave Absorption of Cobalt-Decorated NH 2-UIO-66-Derived Porous ZrO 2/C. ACS APPLIED MATERIALS & INTERFACES 2019; 11:35959-35968. [PMID: 31525942 DOI: 10.1021/acsami.9b10168] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Broadband absorbers derived from metal-organic frameworks are highly desirable in the electromagnetic (EM) wave absorption field. Herein, a strategy for cobalt-decorated porous ZrO2/C hybrid octahedrons by pyrolysis of Co(NO3)2-impregnated NH2-UIO-66 was developed. The hybridization of Co nanoparticles with ZrO2/C results in remarkable EM wave absorption performance with a minimum reflection loss (RL) of -57.2 dB at 15.8 GHz, corresponding to a matching thickness of 3.3 mm. The maximum effective absorption bandwidth (RL ≤ -10 dB) reaches 11.9 GHz (6.1-18 GHz), covering 74.4% of the whole measured bandwidth. The textural properties of nanocomposites have been thoroughly characterized by powder X-ray diffraction, electron microscopy, X-ray photoelectron spectroscopy, and nitrogen adsorption-desorption isotherms. The corresponding results show that the face-centered cubic-phased ∼50 nm Co nanoparticles are evenly distributed on the surface of porous ZrO2/C hybrid octahedrons. The excellent performance of Co/ZrO2/C can be ascribed to the strong interface polarization and the suitable impedance matching, originating from the synergistic effect among the components.
Collapse
Affiliation(s)
- Xue Zhang
- School of Materials Science and Engineering , Shandong University , Jinan 250061 , P. R. China
| | - Jing Qiao
- School of Materials Science and Engineering , Shandong University , Jinan 250061 , P. R. China
| | - Jinbo Zhao
- School of Materials Science and Engineering , Qilu University of Technology , Jinan 250353 , P. R. China
| | | | - Fenglong Wang
- School of Materials Science and Engineering , Shandong University , Jinan 250061 , P. R. China
| | - Chang Liu
- School of Materials Science and Engineering , Shandong University , Jinan 250061 , P. R. China
| | - Yanyan Jiang
- School of Materials Science and Engineering , Shandong University , Jinan 250061 , P. R. China
| | - Lili Wu
- School of Materials Science and Engineering , Shandong University , Jinan 250061 , P. R. China
| | | | - Longfei Lv
- School of Materials Science and Engineering , Shandong University , Jinan 250061 , P. R. China
| | - Qi Wang
- School of Materials Science and Engineering , Shandong University , Jinan 250061 , P. R. China
| | | | - Zhou Wang
- School of Materials Science and Engineering , Shandong University , Jinan 250061 , P. R. China
| | - Jiurong Liu
- School of Materials Science and Engineering , Shandong University , Jinan 250061 , P. R. China
| |
Collapse
|
39
|
Wang S, Xu Y, Fu R, Zhu H, Jiao Q, Feng T, Feng C, Shi D, Li H, Zhao Y. Rational Construction of Hierarchically Porous Fe-Co/N-Doped Carbon/rGO Composites for Broadband Microwave Absorption. NANO-MICRO LETTERS 2019; 11:76. [PMID: 34138043 PMCID: PMC7770714 DOI: 10.1007/s40820-019-0307-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/28/2019] [Indexed: 05/17/2023]
Abstract
Developing lightweight and broadband microwave absorbers for dealing with serious electromagnetic radiation pollution is a great challenge. Here, a novel Fe-Co/N-doped carbon/reduced graphene oxide (Fe-Co/NC/rGO) composite with hierarchically porous structure was designed and synthetized by in situ growth of Fe-doped Co-based metal organic frameworks (Co-MOF) on the sheets of porous cocoon-like rGO followed by calcination. The Fe-Co/NC composites are homogeneously distributed on the sheets of porous rGO. The Fe-Co/NC/rGO composite with multiple components (Fe/Co/NC/rGO) causes magnetic loss, dielectric loss, resistance loss, interfacial polarization, and good impedance matching. The hierarchically porous structure of the Fe-Co/NC/rGO enhances the multiple reflections and scattering of microwaves. Compared with the Co/NC and Fe-Co/NC, the hierarchically porous Fe-Co/NC/rGO composite exhibits much better microwave absorption performances due to the rational composition and porous structural design. Its minimum reflection loss (RLmin) reaches - 43.26 dB at 11.28 GHz with a thickness of 2.5 mm, and the effective absorption frequency (RL ≤ - 10 dB) is up to 9.12 GHz (8.88-18 GHz) with the same thickness of 2.5 mm. Moreover, the widest effective bandwidth of 9.29 GHz occurs at a thickness of 2.63 mm. This work provides a lightweight and broadband microwave absorbing material while offering a new idea to design excellent microwave absorbers with multicomponent and hierarchically porous structures.
Collapse
Affiliation(s)
- Shanshan Wang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Zhuhai, 100081, People's Republic of China
| | - Yingchun Xu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Zhuhai, 100081, People's Republic of China
| | - Ruru Fu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Zhuhai, 100081, People's Republic of China
| | - Huanhuan Zhu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Zhuhai, 100081, People's Republic of China
| | - Qingze Jiao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Zhuhai, 100081, People's Republic of China
- School of Materials and the Environment, Beijing Institute of Technology, Zhuhai, 519085, People's Republic of China
| | - Tongying Feng
- School of Materials and the Environment, Beijing Institute of Technology, Zhuhai, 519085, People's Republic of China
| | - Caihong Feng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Zhuhai, 100081, People's Republic of China
| | - Daxin Shi
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Zhuhai, 100081, People's Republic of China
| | - Hansheng Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Zhuhai, 100081, People's Republic of China
| | - Yun Zhao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Zhuhai, 100081, People's Republic of China.
| |
Collapse
|
40
|
Liu P, Gao S, Wang Y, Huang Y, Wang Y, Luo J. Core-Shell CoNi@Graphitic Carbon Decorated on B,N-Codoped Hollow Carbon Polyhedrons toward Lightweight and High-Efficiency Microwave Attenuation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:25624-25635. [PMID: 31268285 DOI: 10.1021/acsami.9b08525] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Lightweight and high-efficiency microwave attenuation are two major challenges in the exploration of carbon-based absorbers, which can be achieved simultaneously by manipulating their chemical composition, microstructure, or impedance matching. In this work, core-shell CoNi@graphitic carbon decorated on B,N-codoped hollow carbon polyhedrons has been constructed by a facile pyrolysis process using metal-organic frameworks as precursors. The B,N-codoped hollow carbon polyhedrons, originated from the calcination of Co-Ni-ZIF-67, are composed of carbon nanocages and BN domains, and CoNi alloy is encapsulated by graphitic carbon layers. With a filling loading of 30 wt %, the absorber exhibits a maximum RL of -62.8 dB at 7.2 GHz with 3 mm and the effective absorption bandwidth below -10 dB remarkably reaches as strong as 8 GHz when the thickness is only 2 mm. The outstanding microwave absorption performance stems from the hollow carbon polyhedrons and carbon nanocages with interior cavities, the synergistic coupling effect between the abundant B-C-N heteroatoms, the strong dipolar/interfacial polarizations, the multiple scatterings, and the improved impedance matching. This study demonstrates that the codoped strategy provides a new way for the rational design of carbon-based absorbers with lightweight and superior microwave attenuation.
Collapse
Affiliation(s)
- Panbo Liu
- MOE Key Laboratory of Material Physics and Chemistry under Extrodinary Conditions, School of Science , Northwestern Polytechnical University , Xi'an 710129 , China
| | - Sai Gao
- MOE Key Laboratory of Material Physics and Chemistry under Extrodinary Conditions, School of Science , Northwestern Polytechnical University , Xi'an 710129 , China
| | - Yang Wang
- MOE Key Laboratory of Material Physics and Chemistry under Extrodinary Conditions, School of Science , Northwestern Polytechnical University , Xi'an 710129 , China
| | - Ying Huang
- MOE Key Laboratory of Material Physics and Chemistry under Extrodinary Conditions, School of Science , Northwestern Polytechnical University , Xi'an 710129 , China
| | - Yan Wang
- School of Materials and Chemical Engineering , Xi'an Technological University , Xi'an 710021 , China
| | - Juhua Luo
- School of Material Science and Engineering , Yancheng Institute of Technology , Yancheng 224051 , China
| |
Collapse
|
41
|
Li S, Huang Y, Ling D, Zhang N, Zong M, Qin X, Liu P. Enhanced microwave-absorption with carbon-encapsulated Fe-Co particles on reduced graphene oxide nanosheets with nanoscale-holes in the basal plane. J Colloid Interface Sci 2019; 544:188-197. [PMID: 30844567 DOI: 10.1016/j.jcis.2019.02.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 02/07/2023]
Abstract
In this study, an Fe-Co alloy is coated with carbon and decorated on a holey reduced graphene oxide nanosheet (FeCo@C/HRGO) composite. The structure is synthesized using liquid-phase reduction and hydrothermal processes followed by high-temperature calcination. The FeCo@C/HRGO composite is identified and characterized using XRD, XPS, Raman spectroscopy, TEM, and SEM. This novel composite exhibits excellent electromagnetic-wave absorption properties. The maximum reflection loss for FeCo@C/HRGO reaches -76.6 dB at 16.64 GHz with a thickness of 1.7 mm. The RL below -10 dB reaches 14.32 GHz for a thickness of 1.7-5.0 mm. This confirms that microwave absorption of FeCo@C can be substantially improved upon decoration with HRGO nanosheets.
Collapse
Affiliation(s)
- Suping Li
- Research & Development Institute in Shenzhen, Northwestern Polytechnical University, Xi'an 710072, PR China; The MOE Key Laboratory of Material Physics and Chemistry under Extrodinary Conditions, Ministry of Education, School of Science, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Ying Huang
- Research & Development Institute in Shenzhen, Northwestern Polytechnical University, Xi'an 710072, PR China; The MOE Key Laboratory of Material Physics and Chemistry under Extrodinary Conditions, Ministry of Education, School of Science, Northwestern Polytechnical University, Xi'an 710072, PR China.
| | - Ding Ling
- Research & Development Institute in Shenzhen, Northwestern Polytechnical University, Xi'an 710072, PR China; The MOE Key Laboratory of Material Physics and Chemistry under Extrodinary Conditions, Ministry of Education, School of Science, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Na Zhang
- Research & Development Institute in Shenzhen, Northwestern Polytechnical University, Xi'an 710072, PR China; The MOE Key Laboratory of Material Physics and Chemistry under Extrodinary Conditions, Ministry of Education, School of Science, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Meng Zong
- Research & Development Institute in Shenzhen, Northwestern Polytechnical University, Xi'an 710072, PR China; The MOE Key Laboratory of Material Physics and Chemistry under Extrodinary Conditions, Ministry of Education, School of Science, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Xiulan Qin
- Research & Development Institute in Shenzhen, Northwestern Polytechnical University, Xi'an 710072, PR China; The MOE Key Laboratory of Material Physics and Chemistry under Extrodinary Conditions, Ministry of Education, School of Science, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Panbo Liu
- Research & Development Institute in Shenzhen, Northwestern Polytechnical University, Xi'an 710072, PR China; The MOE Key Laboratory of Material Physics and Chemistry under Extrodinary Conditions, Ministry of Education, School of Science, Northwestern Polytechnical University, Xi'an 710072, PR China
| |
Collapse
|
42
|
Wu N, Xu D, Yang F, Liu W, Liu J. Porous Fe Hollow Structures with Optimized Impedance Matching as Highly Efficient, Ultrathin, and Lightweight Electromagnetic Wave Absorbers. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00686] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nannan Wu
- Key Laboratory for Liquid−Solid Structural Evolution and Processing of Materials, Ministry of Education and School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, People’s Republic of China
| | - Dongmei Xu
- State Key Laboratory of Crystal Materials, Shandong University, Shandong 250100, China
| | - Fan Yang
- Key Laboratory for Liquid−Solid Structural Evolution and Processing of Materials, Ministry of Education and School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, People’s Republic of China
| | - Wei Liu
- State Key Laboratory of Crystal Materials, Shandong University, Shandong 250100, China
| | - Jiurong Liu
- Key Laboratory for Liquid−Solid Structural Evolution and Processing of Materials, Ministry of Education and School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, People’s Republic of China
| |
Collapse
|
43
|
Sun Y, Zhang J, Zong Y, Deng X, Zhao H, Feng J, He M, Li X, Peng Y, Zheng X. Crystalline-Amorphous Permalloy@Iron Oxide Core-Shell Nanoparticles Decorated on Graphene as High-Efficiency, Lightweight, and Hydrophobic Microwave Absorbents. ACS APPLIED MATERIALS & INTERFACES 2019; 11:6374-6383. [PMID: 30673262 DOI: 10.1021/acsami.8b18875] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The exploration of high-efficiency microwave absorption materials with lightweight and hydrophobic features is highly expected to reduce or eliminate the electromagnetic pollution. Graphene-based nanocomposites are universally acknowledged as promising candidates for absorbing microwaves due to their remarkable dielectric properties and lightweight characteristic. However, the hydrophilicity of graphene may reduce their stability and restrict the applications in moist environment. Herein, a well-designed heterostructure composed of crystalline permalloy core and amorphous iron oxide shell was uniformly adhered on oleylamine-modified graphene nanosheets by a one-pot thermal decomposition method. Compared with the recognized hydrophilic graphene-based hybrid materials, the permalloy@iron oxide/graphene nanocomposites show excellent hydrophobic and water-resistant features with a water contact angle of 136.5°. Besides, the nanocomposites show high-efficiency microwave absorption performance, benefiting from the tunneling effect, polarization, interface interaction, impedance matching condition, and synergistic effect between core-shell permalloy@iron oxide nanoparticles and graphene nanosheets. A broad effective absorption bandwidth with reflection loss (RL) value exceeding -10 dB can be obtained from 4.25 to 18 GHz, covering about 86% measured frequency range when the absorber thickness is 2.0-5.0 mm. Also, the microwave absorption performance of nanocomposites can be tuned by changing the amount of graphene. More importantly, a greatly improved microwave absorption effectiveness of -71.1 dB can be achieved for the nanocomposites in comparison with the bare permalloy@iron oxide nanoparticles (-5.6 dB) and oleylamine-modified GO nanosheets (-3.56 dB). The lightweight and hydrophobic permalloy@iron oxide/graphene nanocomposites with high-efficiency microwave absorption performance are highly promising to improve the environmental adaptability of electric devices, especially in the wet environment.
Collapse
Affiliation(s)
- Yong Sun
- School of Physics , Northwest University , Xi'an 710069 , China
| | - Junwei Zhang
- Key Laboratory of Magnetism and Magnetic Materials of the Ministry of Education , Lanzhou University , Lanzhou 730000 , China
| | - Yan Zong
- School of Physics , Northwest University , Xi'an 710069 , China
| | - Xia Deng
- Key Laboratory of Magnetism and Magnetic Materials of the Ministry of Education , Lanzhou University , Lanzhou 730000 , China
| | - Hongyang Zhao
- School of Science , Xi'an Jiaotong University , Xi'an , Shaanxi 710054 , China
| | - Juan Feng
- School of Physics , Northwest University , Xi'an 710069 , China
| | - Mi He
- School of Physics , Northwest University , Xi'an 710069 , China
| | - Xinghua Li
- School of Physics , Northwest University , Xi'an 710069 , China
| | - Yong Peng
- Key Laboratory of Magnetism and Magnetic Materials of the Ministry of Education , Lanzhou University , Lanzhou 730000 , China
| | - Xinliang Zheng
- School of Physics , Northwest University , Xi'an 710069 , China
| |
Collapse
|
44
|
Metal-Organic Framework Derived Hierarchical Co/C@V2
O3
Hollow Spheres as a Thin, Lightweight, and High-Efficiency Electromagnetic Wave Absorber. Chemistry 2019; 25:2234-2241. [DOI: 10.1002/chem.201805565] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Indexed: 11/07/2022]
|