1
|
Ren S, Zhang W, Wang Z, Yassar A, Chen J, Zeng M, Yi Z. Preparation of Dye Semiconductors via Coupling Polymerization Catalyzed by Two Catalysts and Application to Transistor. Molecules 2023; 29:71. [PMID: 38202654 PMCID: PMC10780007 DOI: 10.3390/molecules29010071] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Organic dye semiconductors have received increasing attention as the next generation of semiconductors, and one of their potential applications is as a core component of organic transistors. In this study, two novel diketopyrrolopyrrole (DPP) dye core-based materials were designed and separately prepared using Stille coupling reactions under different palladium catalyst conditions. The molecular weights and elemental compositions were tested to demonstrate that both catalysts could be used to successfully prepare materials of this structure, with the main differences being the weight-average molecular weight and the dispersion index. PDPP-2Py-2Tz I with a longer conjugation length exhibited better thermodynamic stability than the counterpart polymer PDPP-2Py-2Tz II. The intrinsic optical properties of the polymers were relatively similar, while the electrochemical tests showed small differences in their energy levels. The polymers obtained with different catalysts displayed similar and moderate electron mobility in transistor devices, while PDPP-2Py-2Tz I possessed a higher switching ratio. Our study provides a comparison of such dye materials under different catalytic conditions and also demonstrates the great potential of dye materials for optoelectronic applications.
Collapse
Affiliation(s)
- Shiwei Ren
- Zhuhai-Fudan Research Institute of Innovation, Hengqin 519000, China;
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China;
| | - Wenqing Zhang
- Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhuoer Wang
- Key Laboratory of Colloid and Interface Chemistry of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Abderrahim Yassar
- LPICM, Ecole Polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau, France;
| | - Jinyang Chen
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China;
| | - Minfeng Zeng
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China;
| | - Zhengran Yi
- Zhuhai-Fudan Research Institute of Innovation, Hengqin 519000, China;
| |
Collapse
|
2
|
Ren S, Ding Y, Zhang W, Wang Z, Wang S, Yi Z. Rational Design of Novel Conjugated Terpolymers Based on Diketopyrrolopyrrole and Their Applications to Organic Thin-Film Transistors. Polymers (Basel) 2023; 15:3803. [PMID: 37765656 PMCID: PMC10535888 DOI: 10.3390/polym15183803] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/09/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Organic polymer semiconductor materials, due to their good chemical modifiability, can be easily tuned by rational molecular structure design to modulate their material properties, which, in turn, affects the device performance. Here, we designed and synthesized a series of materials based on terpolymer structures and applied them to organic thin-film transistor (OTFT) device applications. The four polymers, obtained by polymerization of three monomers relying on the Stille coupling reaction, shared comparable molecular weights, with the main structural difference being the ratio of the thiazole component to the fluorinated thiophene (Tz/FS). The conjugated polymers exhibited similar energy levels and thermal stability; however, their photochemical and crystalline properties were distinctly different, leading to significantly varied mobility behavior. Materials with a Tz/FS ratio of 50:50 showed the highest electron mobility, up to 0.69 cm2 V-1 s-1. Our investigation reveals the fundamental relationship between the structure and properties of materials and provides a basis for the design of semiconductor materials with higher carrier mobility.
Collapse
Affiliation(s)
- Shiwei Ren
- Zhuhai-Fudan Innovation Research Institute, Hengqin 519000, China
| | - Yubing Ding
- Zhuhai-Fudan Innovation Research Institute, Hengqin 519000, China
| | - Wenqing Zhang
- Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhuoer Wang
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Sichun Wang
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai 200438, China
| | - Zhengran Yi
- Zhuhai-Fudan Innovation Research Institute, Hengqin 519000, China
| |
Collapse
|
3
|
Kimpel J, He W, Cheng Y, Michinobu T. A Route to Conjugated Monomers and Polymers Incorporating 2,5-Connected Oxazole in the Backbone. J Org Chem 2022; 87:9384-9390. [PMID: 35766973 DOI: 10.1021/acs.joc.2c00511] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Joining of imidazole, pyrimidine, and oxazole to other conjugated core units was explored in pursuit of yielding monomers to synthesize organic semiconducting polymers. Regioregular oxazole-flanked thiophene, benzothiadiazole, naphthalene diimide (NDI), and thienopyrroledione (TPD) were successfully isolated via stannylation of oxazole and the Stille coupling of brominated core units (overall yields ranging from ca. 40 to 60%). From subsequent direct arylation polymerization, NDI/oxazole/TPD-containing regioisomeric polymers were obtained with optical and electrochemical orbital energetics in the semiconducting regime.
Collapse
Affiliation(s)
- Joost Kimpel
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Waner He
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Ye Cheng
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Tsuyoshi Michinobu
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
4
|
Chen J, Yang J, Guo Y, Liu Y. Acceptor Modulation Strategies for Improving the Electron Transport in High-Performance Organic Field-Effect Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104325. [PMID: 34605074 DOI: 10.1002/adma.202104325] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/04/2021] [Indexed: 06/13/2023]
Abstract
High-performance ambipolar and electronic type semiconducting polymers are essential for fabricating various organic optoelectronic devices and complementary circuits. This review summarizes the strategies of improving the electron transport of semiconducting polymers via acceptor modulation strategies, which include the use of single, dual, triple, multiple, and all acceptors as well as the fusion of multiple identical acceptors to obtain new heterocyclic acceptors. To further improve the electron transport of semiconducting polymers, the introduction of strong electron-withdrawing groups can enhance the electron-withdrawing ability of donors and acceptors, thereby facilitating electron injection and suppressing hole accumulation. In addition, the relationships between the molecular structure, frontier molecular orbital energy levels, thin film morphology, microstructure, processing conditions, and device performances are also comprehensively discussed. Finally, the challenges encountered in this research area are proposed and the future outlook is presented.
Collapse
Affiliation(s)
- Jinyang Chen
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jie Yang
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yunlong Guo
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Organic Solids Laboratory, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
5
|
Park KH, Go J, Lim B, Noh Y. Recent progress in lactam‐based polymer semiconductors for organic electronic devices. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kwang Hun Park
- Center for Advanced Specialty Chemicals Korea Research Institute of Chemical Technology (KRICT) Ulsan Republic of Korea
| | - Ji‐Young Go
- Department of Chemical Engineering Pohang University of Science and Technology Pohang Republic of Korea
| | - Bogyu Lim
- Center for Advanced Specialty Chemicals Korea Research Institute of Chemical Technology (KRICT) Ulsan Republic of Korea
| | - Yong‐Young Noh
- Department of Chemical Engineering Pohang University of Science and Technology Pohang Republic of Korea
| |
Collapse
|
6
|
Wei C, Xu P, Zhang W, Zhou Y, Wei X, Zheng Y, Wang L, Yu G. Incorporation of Cyano‐Substituted Aromatic Blocks into Naphthalene Diimide‐Based Copolymers: Toward Unipolar n‐Channel Field‐Effect Transistors. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Congyuan Wei
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Pan Xu
- School of Material Science and Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yankai Zhou
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xuyang Wei
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yuanhui Zheng
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Liping Wang
- School of Material Science and Engineering University of Science and Technology Beijing Beijing 100083 P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
7
|
Bhosale SV, Al Kobaisi M, Jadhav RW, Morajkar PP, Jones LA, George S. Naphthalene diimides: perspectives and promise. Chem Soc Rev 2021; 50:9845-9998. [PMID: 34308940 DOI: 10.1039/d0cs00239a] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this review, we describe the developments in the field of naphthalene diimides (NDIs) from 2016 to the presentday. NDIs are shown to be an increasingly interesting class of molecules due to their electronic properties, large electron deficient aromatic cores and tendency to self-assemble into functional structures. Almost all NDIs possess high electron affinity, good charge carrier mobility, and excellent thermal and oxidative stability, making them promising candidates for applications in organic electronics, photovoltaic devices, and flexible displays. NDIs have also been extensively studied due to their potential real-world uses across a wide variety of applications including supramolecular chemistry, sensing, host-guest complexes for molecular switching devices, such as catenanes and rotaxanes, ion-channels, catalysis, and medicine and as non-fullerene accepters in solar cells. In recent years, NDI research with respect to supramolecular assemblies and mechanoluminescent properties has also gained considerable traction. Thus, this review will assist a wide range of readers and researchers including chemists, physicists, biologists, medicinal chemists and materials scientists in understanding the scope for development and applicability of NDI dyes in their respective fields through a discussion of the main properties of NDI derivatives and of the status of emerging applications.
Collapse
Affiliation(s)
- Sheshanath V Bhosale
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa-403 206, India.
| | - Mohammad Al Kobaisi
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Ratan W Jadhav
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa-403 206, India.
| | - Pranay P Morajkar
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa-403 206, India.
| | - Lathe A Jones
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Subi George
- New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur PO, Bangalore-560064, India
| |
Collapse
|
8
|
Kang B, Kim HN, Sun C, Kwon SK, Cho K, Kim YH. π-Extended Thiazole-Containing Polymer Semiconductor for Balanced Charge-Carrier Mobilities. Macromol Rapid Commun 2021; 42:e2000741. [PMID: 33660389 DOI: 10.1002/marc.202000741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/22/2021] [Indexed: 11/09/2022]
Abstract
A low-band gap semiconducting polymer with an acceptor-donor-acceptor architecture is newly designed and synthesized by incorporating a π-extended thiazole-vinylene-thiazole unit. The resulting thiazole-containing diketopyrrolopyrrole copolymer exhibits well-balanced ambipolar characteristics with hole mobility of up to 0.11 cm2 V-1 s-1 and electron mobility of up to 0.30 cm2 V-1 s-1 , which are suitable for applications in polymer electronics.
Collapse
Affiliation(s)
- Boseok Kang
- SKKU Advanced Institute of Nanotechnology and Department of Nano Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Korea
| | - Hyoung Nam Kim
- Department of Chemistry and RIGET, Gyeongsang National University, 501 Jinju Daero, Jinju, 52828, Korea
| | - Cheng Sun
- Department of Chemistry and RIGET, Gyeongsang National University, 501 Jinju Daero, Jinju, 52828, Korea
| | - Soon-Ki Kwon
- Department of Materials Engineering and Convergence Technology and ERI, Gyeongsang National University, 501 Jinju Daero, Jinju, 52828, Korea
| | - Kilwon Cho
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Yun-Hi Kim
- Department of Chemistry and RIGET, Gyeongsang National University, 501 Jinju Daero, Jinju, 52828, Korea
| |
Collapse
|
9
|
Feng K, Guo H, Wang J, Shi Y, Wu Z, Su M, Zhang X, Son JH, Woo HY, Guo X. Cyano-Functionalized Bithiophene Imide-Based n-Type Polymer Semiconductors: Synthesis, Structure-Property Correlations, and Thermoelectric Performance. J Am Chem Soc 2021; 143:1539-1552. [PMID: 33445867 DOI: 10.1021/jacs.0c11608] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
n-Type polymers with deep-positioned lowest unoccupied molecular orbital (LUMO) energy levels are essential for enabling n-type organic thin-film transistors (OTFTs) with high stability and n-type organic thermoelectrics (OTEs) with high doping efficiency and promising thermoelectric performance. Bithiophene imide (BTI) and its derivatives have been demonstrated as promising acceptor units for constructing high-performance n-type polymers. However, the electron-rich thiophene moiety in BTI leads to elevated LUMOs for the resultant polymers and hence limits their n-type performance and intrinsic stability. Herein, we addressed this issue by introducing strong electron-withdrawing cyano functionality on BTI and its derivatives. We have successfully overcome the synthetic challenges and developed a series of novel acceptor building blocks, CNI, CNTI, and CNDTI, which show substantially higher electron deficiencies than does BTI. On the basis of these novel building blocks, acceptor-acceptor type homopolymers and copolymers were successfully synthesized and featured greatly suppressed LUMOs (-3.64 to -4.11 eV) versus that (-3.48 eV) of the control polymer PBTI. Their deep-positioned LUMOs resulted in improved stability in OTFTs and more efficient n-doping in OTEs for the corresponding polymers with a highest electrical conductivity of 23.3 S cm-1 and a power factor of ∼10 μW m-1 K-2. The conductivity and power factor are among the highest values reported for solution-processed molecularly n-doped polymers. The new CNI, CNTI, and CNDTI offer a remarkable platform for constructing n-type polymers, and this study demonstrates that cyano-functionalization of BTI is a very effective strategy for developing polymers with deep-lying LUMOs for high-performance n-type organic electronic devices.
Collapse
Affiliation(s)
- Kui Feng
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Han Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Junwei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Yongqiang Shi
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Ziang Wu
- Department of Chemistry, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul 02841, South Korea
| | - Mengyao Su
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Xianhe Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Jae Hoon Son
- Department of Chemistry, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul 02841, South Korea
| | - Han Young Woo
- Department of Chemistry, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul 02841, South Korea
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| |
Collapse
|
10
|
Shi Y, Guo H, Huang J, Zhang X, Wu Z, Yang K, Zhang Y, Feng K, Woo HY, Ortiz RP, Zhou M, Guo X. Distannylated Bithiophene Imide: Enabling High‐Performance n‐Type Polymer Semiconductors with an Acceptor–Acceptor Backbone. Angew Chem Int Ed Engl 2020; 59:14449-14457. [DOI: 10.1002/anie.202002292] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/18/2020] [Indexed: 01/20/2023]
Affiliation(s)
- Yongqiang Shi
- School of New Energy and Materials and State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Engineering Southwest Petroleum University Chengdu Sichuan 610500 China
- Department of Materials Science and Engineering Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
| | - Han Guo
- Department of Materials Science and Engineering Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
| | - Jiachen Huang
- Department of Materials Science and Engineering Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
| | - Xianhe Zhang
- Department of Materials Science and Engineering Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
| | - Ziang Wu
- Department of Chemistry College of Science Korea University 145 Anam-ro Seongbuk-gu Seoul 136-713 Republic of Korea
| | - Kun Yang
- Department of Materials Science and Engineering Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
| | - Yujie Zhang
- Department of Materials Science and Engineering Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
| | - Kui Feng
- Department of Materials Science and Engineering Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
| | - Han Young Woo
- Department of Chemistry College of Science Korea University 145 Anam-ro Seongbuk-gu Seoul 136-713 Republic of Korea
| | - Rocio Ponce Ortiz
- Department of Physical Chemistry University of Málaga Campus de Teatinos s/n Málaga 29071 Spain
| | - Ming Zhou
- School of New Energy and Materials and State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Engineering Southwest Petroleum University Chengdu Sichuan 610500 China
| | - Xugang Guo
- Department of Materials Science and Engineering Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
| |
Collapse
|
11
|
Shi Y, Guo H, Huang J, Zhang X, Wu Z, Yang K, Zhang Y, Feng K, Woo HY, Ortiz RP, Zhou M, Guo X. Distannylated Bithiophene Imide: Enabling High‐Performance n‐Type Polymer Semiconductors with an Acceptor–Acceptor Backbone. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002292] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yongqiang Shi
- School of New Energy and Materials and State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Engineering Southwest Petroleum University Chengdu Sichuan 610500 China
- Department of Materials Science and Engineering Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
| | - Han Guo
- Department of Materials Science and Engineering Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
| | - Jiachen Huang
- Department of Materials Science and Engineering Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
| | - Xianhe Zhang
- Department of Materials Science and Engineering Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
| | - Ziang Wu
- Department of Chemistry College of Science Korea University 145 Anam-ro Seongbuk-gu Seoul 136-713 Republic of Korea
| | - Kun Yang
- Department of Materials Science and Engineering Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
| | - Yujie Zhang
- Department of Materials Science and Engineering Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
| | - Kui Feng
- Department of Materials Science and Engineering Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
| | - Han Young Woo
- Department of Chemistry College of Science Korea University 145 Anam-ro Seongbuk-gu Seoul 136-713 Republic of Korea
| | - Rocio Ponce Ortiz
- Department of Physical Chemistry University of Málaga Campus de Teatinos s/n Málaga 29071 Spain
| | - Ming Zhou
- School of New Energy and Materials and State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation Engineering Southwest Petroleum University Chengdu Sichuan 610500 China
| | - Xugang Guo
- Department of Materials Science and Engineering Southern University of Science and Technology (SUSTech) No. 1088, Xueyuan Road Shenzhen Guangdong 518055 China
| |
Collapse
|
12
|
Wang S, Fazzi D, Puttisong Y, Jafari MJ, Chen Z, Ederth T, Andreasen JW, Chen WM, Facchetti A, Fabiano S. Effect of Backbone Regiochemistry on Conductivity, Charge Density, and Polaron Structure of n-Doped Donor-Acceptor Polymers. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2019; 31:3395-3406. [PMID: 31296974 PMCID: PMC6613787 DOI: 10.1021/acs.chemmater.9b00558] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/09/2019] [Indexed: 05/04/2023]
Abstract
We investigated the influence of backbone regiochemistry on the conductivity, charge density, and polaron structure in the widely studied n-doped donor-acceptor polymer poly[N,N'-bis(2-octyldodecyl)-1,4,5,8-naphthalenediimide-2,6-diyl]-alt-5,5'-(2,2'-bithiophene) [P(NDI2OD-T2)]. In contrast to classic semicrystalline polymers such as poly(3-hexylthiophene) (P3HT), the regioirregular (RI) structure of the naphthalenediimide (NDI)-bithiophene (T2) backbone does not alter the intramolecular steric demand of the chain versus the regioregular (RR) polymer, yielding RI-P(NDI2OD-T2) with similar energetics and optical features as its RR counterpart. By combining the electrical, UV-vis/infrared, X-ray diffraction, and electron paramagnetic resonance data and density functional theory calculations, we quantitatively characterized the conductivity, aggregation, crystallinity, and charge density, and simulated the polaron structures, molecular vibrations, and spin density distribution of RR-/RI-P(NDI2OD-T2). Importantly, we observed that RI-P(NDI2OD-T2) can be doped to a greater extent compared to its RR counterpart. This finding is remarkable and contrasts benchmark P3HT, allowing us to uniquely study the role of regiochemistry on the charge-transport properties of n-doped donor-acceptor polymers.
Collapse
Affiliation(s)
- Suhao Wang
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
| | - Daniele Fazzi
- Institut
für Physikalische Chemie, Department Chemie, Universität zu Köln, Luxemburger Str. 116, D-50939 Köln, Germany
| | - Yuttapoom Puttisong
- Department
of Physics Chemistry and Biology, Linköping
University, SE-581 83 Linköping, Sweden
| | - Mohammad J. Jafari
- Department
of Physics Chemistry and Biology, Linköping
University, SE-581 83 Linköping, Sweden
| | - Zhihua Chen
- Flexterra
Corporation, 8025 Lamon
Avenue, 60077-5318 Skokie, Illinois, United States
| | - Thomas Ederth
- Department
of Physics Chemistry and Biology, Linköping
University, SE-581 83 Linköping, Sweden
| | - Jens W. Andreasen
- Department
of Energy Conversion and Storage, Technical
University of Denmark, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Weimin M. Chen
- Department
of Physics Chemistry and Biology, Linköping
University, SE-581 83 Linköping, Sweden
| | - Antonio Facchetti
- Flexterra
Corporation, 8025 Lamon
Avenue, 60077-5318 Skokie, Illinois, United States
- Department
of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 United
States
| | - Simone Fabiano
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
| |
Collapse
|