1
|
Yuan Y, Peng X, Weng X, He J, Liao C, Wang Y, Liu L, Zeng S, Song J, Qu J. Two-dimensional nanomaterials as enhanced surface plasmon resonance sensing platforms: Design perspectives and illustrative applications. Biosens Bioelectron 2023; 241:115672. [PMID: 37716156 DOI: 10.1016/j.bios.2023.115672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 08/16/2023] [Accepted: 09/04/2023] [Indexed: 09/18/2023]
Abstract
Both increasing demand for ultrasensitive detection in the scientific community and significant new breakthroughs in materials science field have inspired and promoted the development of new-generation multifunctional plasmonic sensing platforms by adopting promising plasmonic nanomaterials. Recently, high-quality surface plasmon resonance (SPR) sensors, assisted by two dimensional (2D) nanomaterials including 2D van der Waals (vdWs) materials (such as graphene/graphene oxide, transition metal dichalcogenides (TMDs), phosphorene, antimonene, tellurene, MXenes, and metal oxides), 2D metal-organic frameworks (MOFs), 2D hyperbolic metamaterials (HMMs), and 2D optical metasurfaces, have emerged as a class of novel plasmonic sensing platforms that show unprecedented detection sensitivity and impressive performance. This review of recent progress in 2D nanomaterials-enhanced SPR platforms will highlight their compelling plasmonic enhancement features, working mechanisms, and design methodologies, as well as discuss illustrative practical applications. Hence, it is of great importance to describe the latest research progress in 2D nanomaterials-enhanced SPR sensing cases. In this review, we present some concepts of SPR enhanced by 2D nanomaterials, including the basic principles of SPR, signal modulation approaches, and working enhancement mechanisms for various 2D materials-enhanced SPR systems. In addition, we also demonstrate a detailed categorization of 2D nanomaterials-enhanced SPR sensing platforms and comment on their ability to realize ultrasensitive SPR detection. Finally, we conclude with future perspectives for exploring a new generation of 2D nanomaterials-based sensors.
Collapse
Affiliation(s)
- Yufeng Yuan
- School of Electronic Engineering and Intelligentization, Dongguan University of Technology, Dongguan, Guangdong, 523808, China; State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xiao Peng
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xiaoyu Weng
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Jun He
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Changrui Liao
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Yiping Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Liwei Liu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Shuwen Zeng
- Light, Nanomaterials & Nanotechnologies (L2n), CNRS-EMR 7004, Université de Technologie de Troyes, 10000, Troyes, France.
| | - Jun Song
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| | - Junle Qu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China.
| |
Collapse
|
2
|
Chen Y, Xiong X, Chen Y, Chen L, Liu G, Xiao W, Shi J, Chen Z, Luo Y. MoS 2-Nanoflower and Nanodiamond Co-Engineered Surface Plasmon Resonance for Biosensing. BIOSENSORS 2023; 13:bios13050506. [PMID: 37232867 DOI: 10.3390/bios13050506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023]
Abstract
Surface plasmon resonance (SPR) based sensors play an important role in the biological and medical fields, and improving the sensitivity is a goal that has always been pursued. In this paper, a sensitivity enhancement scheme jointly employing MoS2 nanoflower (MNF) and nanodiamond (ND) to co-engineer the plasmonic surface was proposed and demonstrated. The scheme could be easily implemented via physically depositing MNF and ND overlayers on the gold surface of an SPR chip, and the overlayer could be flexibly adjusted by controlling the deposition times, thus approaching the optimal performance. The bulk RI sensitivity was enhanced from 9682 to 12,219 nm/RIU under the optimal condition that successively deposited MNF and ND 1 and 2 times. The proposed scheme was proved in an IgG immunoassay, where the sensitivity was twice enhanced compared to the traditional bare gold surface. Characterization and simulation results revealed that the improvement arose from the enhanced sensing field and increased antibody loading via the deposited MNF and ND overlayer. At the same time, the versatile surface property of NDs allowed a specifically-functionalized sensor using the standard method compatible with a gold surface. Besides, the application for pseudorabies virus detection in serum solution was also demonstrated.
Collapse
Affiliation(s)
- Yaofei Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou 510632, China
- Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
| | - Xin Xiong
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou 510632, China
- Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
| | - Yu Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou 510632, China
- Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
| | - Lei Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou 510632, China
- Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
| | - Guishi Liu
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou 510632, China
- Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
| | - Wei Xiao
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Jifu Shi
- Siyuan Laboratory, Department of Physics, Jinan University, Guangzhou 510632, China
| | - Zhe Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou 510632, China
- Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
| | - Yunhan Luo
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou 510632, China
- Department of Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
3
|
Zhou X, Zheng B. Surface modification for improving immunoassay sensitivity. LAB ON A CHIP 2023; 23:1151-1168. [PMID: 36636910 DOI: 10.1039/d2lc00811d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Immunoassays are widely performed in many fields such as biomarker discovery, proteomics, drug development, and clinical diagnosis. There is a growing need for high sensitivity of immunoassays to detect low abundance analytes. As a result, great effort has been made to improve the quality of surfaces, on which the immunoassay is performed. In this review article, we summarize the recent progress in surface modification strategies for improving the sensitivity of immunoassays. The surface modification strategies can be categorized into two groups: antifouling coatings to reduce background noise and nanostructured surfaces to amplify the signals. The first part of the review summarizes the common antifouling coating techniques to prevent nonspecific binding and reduce background noise. The techniques include hydrophilic polymer based self-assembled monomers, polymer brushes, and surface attached hydrogels, and omniphobicity based perfluorinated surfaces. In the second part, some common nanostructured surfaces to amplify the specific detection signals are introduced, including nanoparticle functionalized surfaces, two dimensional (2D) nanoarrays, and 2D nanomaterial coatings. The third part discusses the surface modification techniques for digital immunoassays. In the end, the challenges and the future perspectives of the surface modification techniques for immunoassays are presented.
Collapse
Affiliation(s)
- Xiaohu Zhou
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| | - Bo Zheng
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| |
Collapse
|
4
|
Near-infrared surface plasmon resonance sensor with a graphene-gold surface architecture for ultra-sensitive biodetection. Anal Chim Acta 2022; 1205:339692. [DOI: 10.1016/j.aca.2022.339692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 11/23/2022]
|
5
|
Chen Y, Chen Y, Shi W, Hu S, Huang Q, Liu GS, Shi J, Chen L, Azeman NH, Ashrif A Bakar A, Luo Y, Chen Z. MoS 2-nanoflower enhanced programmable adsorption/desorption plasmonic detection for bipolar-molecules with high sensitivity. Biosens Bioelectron 2022; 198:113787. [PMID: 34864241 DOI: 10.1016/j.bios.2021.113787] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 10/22/2021] [Accepted: 11/11/2021] [Indexed: 11/28/2022]
Abstract
High sensitivity and capturing ratio are strongly demanded for surface plasmon resonance (SPR) sensors when applied in detection of small molecules. Herein, an SPR sensor is combined with a novel smart material, namely, MoS2 nanoflowers (MNFs), to demonstrate programmable adsorption/desorption of small bipolar molecules, i.e., amino acids. The MNFs overcoated on the plasmonic gold layer increase the sensitivity by 25% compared to an unmodified SPR sensor, because of the electric field enhancement at the gold surface. Furthermore, as the MNFs have rich edge sites and negatively charged surfaces, the MNF-SPR sensors exhibit not only much higher bipolar-molecule adsorption capability, but also efficient desorption of these molecules. It is demonstrated that the MNF-SPR sensors enable controllable detection of amino acids by adjusting solution pH according to their isoelectric points. In addition, the MNFs decorated on the plasmonic interface can be as nanostructure frameworks and modified with antibody, which allows for specific detection of proteins. This novel SPR sensor provides a new simple strategy for pre-screening of amino acid disorders in blood plasma and a universal high-sensitive platform for immunoassay.
Collapse
Affiliation(s)
- Yu Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication Technology, Department of Optoelectronic Engineering, College of Science and Engineering, Jinan University, Guangzhou, 510632, China
| | - Yaofei Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication Technology, Department of Optoelectronic Engineering, College of Science and Engineering, Jinan University, Guangzhou, 510632, China
| | - Weicheng Shi
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication Technology, Department of Optoelectronic Engineering, College of Science and Engineering, Jinan University, Guangzhou, 510632, China
| | - Shiqi Hu
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication Technology, Department of Optoelectronic Engineering, College of Science and Engineering, Jinan University, Guangzhou, 510632, China
| | - Qizhang Huang
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Gui-Shi Liu
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication Technology, Department of Optoelectronic Engineering, College of Science and Engineering, Jinan University, Guangzhou, 510632, China.
| | - Jifu Shi
- Siyuan Laboratory, Department of Physics, Jinan University, Guangzhou , 510632, China.
| | - Lei Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication Technology, Department of Optoelectronic Engineering, College of Science and Engineering, Jinan University, Guangzhou, 510632, China
| | - Nur Hidayah Azeman
- Photonics Technology Laboratory, Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | - Ahmad Ashrif A Bakar
- Photonics Technology Laboratory, Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | - Yunhan Luo
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication Technology, Department of Optoelectronic Engineering, College of Science and Engineering, Jinan University, Guangzhou, 510632, China.
| | - Zhe Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication Technology, Department of Optoelectronic Engineering, College of Science and Engineering, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
6
|
Lei Z, Guo B. 2D Material-Based Optical Biosensor: Status and Prospect. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102924. [PMID: 34898053 PMCID: PMC8811838 DOI: 10.1002/advs.202102924] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/05/2021] [Indexed: 05/07/2023]
Abstract
The combination of 2D materials and optical biosensors has become a hot research topic in recent years. Graphene, transition metal dichalcogenides, black phosphorus, MXenes, and other 2D materials (metal oxides and degenerate semiconductors) have unique optical properties and play a unique role in the detection of different biomolecules. Through the modification of 2D materials, optical biosensor has the advantages that traditional sensors (such as electrical sensing) do not have, and the sensitivity and detection limit are greatly improved. Here, optical biosensors based on different 2D materials are reviewed. First, various detection methods of biomolecules, including surface plasmon resonance (SPR), fluorescence resonance energy transfer (FRET), and evanescent wave and properties, preparation and integration strategies of 2D material, are introduced in detail. Second, various biosensors based on 2D materials are summarized. Furthermore, the applications of these optical biosensors in biological imaging, food safety, pollution prevention/control, and biological medicine are discussed. Finally, the future development of optical biosensors is prospected. It is believed that with their in-depth research in the laboratory, optical biosensors will gradually become commercialized and improve people's quality of life in many aspects.
Collapse
Affiliation(s)
- Zong‐Lin Lei
- Key Lab of In‐Fiber Integrated Optics of Ministry of Education of ChinaHarbin Engineering UniversityHarbin150001China
| | - Bo Guo
- Key Lab of In‐Fiber Integrated Optics of Ministry of Education of ChinaHarbin Engineering UniversityHarbin150001China
| |
Collapse
|
7
|
Wang Y, Mao Z, Chen Q, Koh K, Hu X, Chen H. Rapid and sensitive detection of PD-L1 exosomes using Cu-TCPP 2D MOF as a SPR sensitizer. Biosens Bioelectron 2022; 201:113954. [PMID: 35030466 DOI: 10.1016/j.bios.2021.113954] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 11/27/2022]
Abstract
Two-dimensional metal organic framework (2D MOF Cu-TCPP) with significantly enhanced photoelectric properties was synthesized by a simple hydrothermal method. The π-stacked electroactive porphyrin molecules of TCPP-based 2D MOF carry out charge transport in the MOF structure. The d-d band transition of Cu2+ and its 2D ultra-thin characteristics can produce excellent near-infrared light absorption to couple with SPR. Three key parameters including the refractive index sensitivity, detection accuracy and quality factor were improved significantly for 2D MOF modified gold chips. Especially, the refractive index sensitivity was increased from 98 to 137.67°/RIU after modified with 2D MOF. Thus, for the first time, we applied it as a signal enhancer to improve direct SPR assay for the Programmed death ligand-1 (PD-L1) exosomes. Owning to its large specific surface area, excellent photoelectric properties, highly ordered structure, good dispersion and biocompatibility, the LOD of the SPR sensor was 16.7 particles/mL. The reliability and practicability were further validated by analysis of PD-L1 exosomes in human serum samples. The recovery rate was 93.43 %-102.35%, with RSD of 5.79 %-14.6%. Given their excellent signal amplification ability, 2D MOF Cu-TCPP could serve as an ideal SPR sensitizer for rapid and sensitive detection of trace disease markers.
Collapse
Affiliation(s)
- Yindian Wang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Zhihui Mao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Qiang Chen
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Kwangnak Koh
- Institute of General Education, Pusan National University, Busan, 609-735, Republic of Korea
| | - Xiaojun Hu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| | - Hongxia Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
8
|
Chen Y, Peng S, Zhao P, Chen L, Liu GS, Ouyang D, Luo Y, Chen Z. Cell-modified plasmonic interface for the signal-amplified detection of Cucurbitacin E. BIOMEDICAL OPTICS EXPRESS 2022; 13:274-283. [PMID: 35154870 PMCID: PMC8803011 DOI: 10.1364/boe.445679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 05/24/2023]
Abstract
Cucurbitacin E (CuE) plays an important role in anticancer, antichemical carcinogenesis, and body immunity, etc., and the detection of its concentration is meaningful to pharmacological studies and clinical applications. However, the small molecular weight of CuE makes direct detection difficult through a surface plasmon resonance (SPR) sensor. In this work, we propose a cells-amplified signal strategy at the plasmonic interface, realizing the detection of CuE with ultra-low concentration. The seeded HeLa cells are modified onto the surface of the SPR sensor, and a small amount of CuE can lead to the remarkable morphology change of cells and the release of cell-related substances onto the plamonic interface, thus significantly amplifying the signal. Experimental results show that by using an unmodified SPR sensor with the bulk refractive index sensitivity of 2367.3 nm/RIU (RIU: refractive index unit), there no effective signal can be detected during the CuE concentration range of 0-100 nM; whereas, employing the proposed strategy, the signal for CuE detection can be significantly enhanced, resulting in a high detection sensitivity of 0.6196 nm/nM, corresponding to a limit of detection of 45.2 pM (25.2 pg/mL). The proposed cells-based signal amplifying strategy shows great potential applications in drug screening or bio-sensing to small molecules with low concentration.
Collapse
Affiliation(s)
- Yaofei Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou 510632, China
- Contributed equally
| | - Shuihua Peng
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou 510632, China
- Contributed equally
| | - Peili Zhao
- Pathology department, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Lei Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou 510632, China
| | - Gui-Shi Liu
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou 510632, China
| | - Dongyun Ouyang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yunhan Luo
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou 510632, China
| | - Zhe Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University, Guangzhou 510632, China
| |
Collapse
|
9
|
Xiao Y, Zhong Y, Luo Y, Zhang J, Chen Y, Liu G, Yu J. Near-infrared tunable surface plasmon resonance sensors based on graphene plasmons via electrostatic gating control. RSC Adv 2021; 11:37559-37567. [PMID: 35496388 PMCID: PMC9043794 DOI: 10.1039/d1ra06807e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/16/2021] [Indexed: 12/15/2022] Open
Abstract
A tunable near-infrared surface plasmon resonance sensor based on graphene plasmons via electrostatic gating control is investigated theoretically. Instead of the traditional refractive index sensing, the sensor can respond sensitively to the change of the chemical potential in graphene caused by the attachment of the analyte molecules. This feature can be potentially used for biological sensing with high sensitivity and high specificity. Theoretical calculations show that the chemical potential sensing sensitivities under wavelength interrogation patterns are 1.5, 2.21, 3, 3.79, 4.64 nm meV-1 at different wavebands with centre wavelengths of 1100, 1310, 1550, 1700, 1900 nm respectively, and the full width half maximum (FWHM) is also evaluated to be 10, 25.5, 43, 55.5, 77 nm at these different wavebands respectively. It can be estimated that the theoretical limit of detection (LOD) in DNA sensing of the proposed sensor can reach the femtomolar level, several orders of magnitude superior to that of noble metal-based SPR sensors (nanomolar or subnanomolar scale), and is comparable to that of noble metal-based SPR sensors with graphene/Au-NPs as a sensitivity enhancement strategy. The FWHM is much smaller than that of the noble metal-based SPR sensors, making the proposed sensor have a potentially higher figure of merit (FOM). This work provides a new way of thinking to detect in an SPR manner the analyte that can cause chemical potential change in graphene and provides a beneficial complement to refractive index sensing SPR sensors.
Collapse
Affiliation(s)
- Yi Xiao
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University Guangzhou 510632 China
- Department of Optoelectronic Engineering, Jinan University Guangzhou 510632 China
| | - Yongchun Zhong
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University Guangzhou 510632 China
- Department of Optoelectronic Engineering, Jinan University Guangzhou 510632 China
| | - Yunhan Luo
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University Guangzhou 510632 China
- Department of Optoelectronic Engineering, Jinan University Guangzhou 510632 China
| | - Jun Zhang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University Guangzhou 510632 China
- Department of Optoelectronic Engineering, Jinan University Guangzhou 510632 China
| | - Yaofei Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University Guangzhou 510632 China
- Department of Optoelectronic Engineering, Jinan University Guangzhou 510632 China
| | - Guishi Liu
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University Guangzhou 510632 China
- Department of Optoelectronic Engineering, Jinan University Guangzhou 510632 China
| | - Jianhui Yu
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Jinan University Guangzhou 510632 China
- Department of Optoelectronic Engineering, Jinan University Guangzhou 510632 China
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University Guangzhou 510632 China
| |
Collapse
|
10
|
Chen S, Hu S, Wu Y, Deng D, Luo Y, Chen Z. Ultrasensitive Biosensor with Hyperbolic Metamaterials Composed of Silver and Zinc Oxide. NANOMATERIALS 2021; 11:nano11092220. [PMID: 34578536 PMCID: PMC8464729 DOI: 10.3390/nano11092220] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 11/24/2022]
Abstract
We propose a hyperbolic metamaterial-based surface plasmon resonance (HMM-SPR) sensor by composing a few pairs of alternating silver (Ag) and zinc oxide (ZnO) layers. Aiming to achieve the best design for the sensor, the dependence of the sensitivity on the incidence angle, the thickness of the alternating layer and the metal filling fraction are explored comprehensively. We find that the proposed HMM-SPR sensor achieves an average sensitivity of 34,800 nm per refractive index unit (RIU) and a figure of merit (FOM) of 470.7 RIU−1 in the refractive index ranging from 1.33 to 1.34. Both the sensitivity (S) and the FOM show great enhancement when compared to the conventional silver-based SPR sensor (Ag-SPR). The underlying physical reason for the higher performance is analyzed by numerical simulation using the finite element method. The higher sensitivity could be attributed to the enhanced electric field amplitude and the increased penetration depth, which respectively increase the interaction strength and the sensing volume. The proposed HMM-SPR sensor with greatly improved sensitivity and an improved figure of merit is expected to find application in biochemical sensing due to the higher resolution.
Collapse
Affiliation(s)
- Shuhan Chen
- School of Physics and Electronic Engineering, Jiaying University, Meizhou 514015, China; (Y.W.); (D.D.)
- Correspondence: (S.C.); (Y.L.)
| | - Shiqi Hu
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, College of Science and Engineering, Jinan University, Guangzhou 510632, China; (S.H.); (Z.C.)
| | - Yichen Wu
- School of Physics and Electronic Engineering, Jiaying University, Meizhou 514015, China; (Y.W.); (D.D.)
| | - Dingnan Deng
- School of Physics and Electronic Engineering, Jiaying University, Meizhou 514015, China; (Y.W.); (D.D.)
| | - Yunhan Luo
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, College of Science and Engineering, Jinan University, Guangzhou 510632, China; (S.H.); (Z.C.)
- Correspondence: (S.C.); (Y.L.)
| | - Zhe Chen
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, College of Science and Engineering, Jinan University, Guangzhou 510632, China; (S.H.); (Z.C.)
| |
Collapse
|
11
|
Thi Tran NH, Phung VD, Thi Ta HK, Lam VD, Manh DH, Pham NK, Kim JY, Lee NY, Phan BT. Ultrasensitive biosensors based on waveguide-coupled long-range surface plasmon resonance (WC-LRSPR) for enhanced fluorescence spectroscopy. RSC Adv 2021; 11:22450-22460. [PMID: 35480844 PMCID: PMC9034228 DOI: 10.1039/d1ra02130c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/12/2021] [Indexed: 11/21/2022] Open
Abstract
We investigated the coupling phenomenon between plasmonic resonance and waveguide modes through theoretical and experimental parametric analyses on the bimetallic waveguide-coupled long-range surface plasmon resonance (Bi-WCLRSPR) structure.
Collapse
Affiliation(s)
- Nhu Hoa Thi Tran
- Faculty of Materials Science
- University of Science
- HoChiMinh City
- Vietnam
- Vietnam National University
| | - Viet-Duc Phung
- Future Materials and Devices Laboratory
- Duy Tan University
- Ho Chi Minh City
- Vietnam
- Faculty of Environmental and Chemical Engineering
| | - Hanh Kieu Thi Ta
- Faculty of Materials Science
- University of Science
- HoChiMinh City
- Vietnam
- Vietnam National University
| | - Vu Dinh Lam
- Graduate University of Science and Technology
- Vietnam Academy of Science and Technology
- Hanoi
- Vietnam
| | - Do Hung Manh
- Institute of Materials Science
- Vietnam Academy of Science and Technology
- Hanoi
- Vietnam
| | - Ngoc Kim Pham
- Faculty of Materials Science
- University of Science
- HoChiMinh City
- Vietnam
- Vietnam National University
| | - Jae Young Kim
- Department of Life Science
- Gachon University
- Seongnam-si
- Republic of Korea
| | - Nae Yoon Lee
- Department of BioNano Technology
- Gachon University
- Seongnam-si
- Republic of Korea
| | - Bach Thang Phan
- Vietnam National University
- HoChiMinh City
- Vietnam
- Center for Innovative Materials and Architectures (INOMAR)
- HoChiMinh City
| |
Collapse
|
12
|
Hu S, Chen Y, Chen Y, Chen L, Zheng H, Azeman NH, Liu MX, Liu GS, Luo Y, Chen Z. High-performance fiber plasmonic sensor by engineering the dispersion of hyperbolic metamaterials composed of Ag/TiO 2. OPTICS EXPRESS 2020; 28:25562-25573. [PMID: 32907073 DOI: 10.1364/oe.397461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
Hyperbolic metamaterials (HMMs) have attracted increasing attentions because of their unique dispersion properties and the flexibility to control the dispersion by changing the components and fractions of the composed materials. In this work, for the first time, we demonstrate a plasmonic sensor based on a side-polished few-mode-fiber coated with a layered of HMM, which is composed of alternating layers of Ag and TiO2. To optimize the sensor performance, the effects of the metal filling fraction (ρ) and the number of bilayers (Nbi) on the HMM dispersion are thoroughly engineered with the effective medium theory and the finite element method. It is found that the HMM with ρ=0.7 and Nbi = 3 can provide the average sensitivity of 5114.3 nm/RIU (RIU: refractive index unit), and the highest sensitivity 9000 nm/RIU in the surrounding refractive index (SRI) ranging from 1.33 to 1.40 RIU. The corresponding figure of merit (FOM) reaches a maximum of 230.8 RIU-1 which is much higher than that of the conventional silver film based SPR sensor. The influence of ρ and Nbi on the sensitivity are well explained from the aspects of the electrical field distribution and the dispersion relationship. This work opens a gate to significantly improve fiber plasmonic sensors performance by engineering the HMM dispersion, which is expected to meet the emergent demand in the biological, medical and clinical applications.
Collapse
|
13
|
Li K, Li L, Xu N, Peng X, Zhou Y, Yuan Y, Song J, Qu J. Ultrasensitive Surface Plasmon Resonance Biosensor Using Blue Phosphorus-Graphene Architecture. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3326. [PMID: 32545230 PMCID: PMC7308865 DOI: 10.3390/s20113326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 01/02/2023]
Abstract
This study theoretically proposed a novel surface plasmon resonance biosensor by incorporating emerging two dimensional material blue phosphorus and graphene layers with plasmonic gold film. The excellent performances employed for biosensing can be realized by accurately tuning the thickness of gold film and the number of blue phosphorus interlayer. Our proposed plasmonic biosensor architecture designed by phase modulation is much superior to angular modulation, providing 4 orders of magnitude sensitivity enhancement. In addition, the optimized stacked configuration is 42 nm Au film/2-layer blue phosphorus /4-layer graphene, which can produce the sharpest differential phase of 176.7661 degrees and darkest minimum reflectivity as low as 5.3787 × 10-6. For a tiny variation in local refractive index of 0.0012 RIU (RIU, refractive index unit) due to the binding interactions of aromatic biomolecules, our proposed biosensor can provide an ultrahigh detection sensitivity up to 1.4731 × 105 °/RIU, highly promising for performing ultrasensitive biosensing application.
Collapse
Affiliation(s)
| | | | | | | | | | - Yufeng Yuan
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (K.L.); (L.L.); (N.X.); (X.P.); (Y.Z.); (J.S.); (J.Q.)
| | | | | |
Collapse
|
14
|
Qu JH, Dillen A, Saeys W, Lammertyn J, Spasic D. Advancements in SPR biosensing technology: An overview of recent trends in smart layers design, multiplexing concepts, continuous monitoring and in vivo sensing. Anal Chim Acta 2019; 1104:10-27. [PMID: 32106939 DOI: 10.1016/j.aca.2019.12.067] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/04/2019] [Accepted: 12/24/2019] [Indexed: 12/22/2022]
Abstract
Inspired by the rapid progress and existing limitations in surface plasmon resonance (SPR) biosensing technology, we have summarized the recent trends in the fields of both chip-SPR and fiber optic (FO)-SPR biosensors during the past five years, primarily regarding smart layers design, multiplexing, continuous monitoring and in vivo sensing. Versatile surface chemistries, biomaterials and nanomaterials have been utilized thus far to generate smart layers on SPR platforms and as such achieve oriented immobilization of bioreceptors, improved fouling resistance and sensitivity enhancement, collectively aiming to improve the biosensing performance. Furthermore, often driven by the desires for time- and cost-effective quantification of multiple targets in a single measurement, efforts have been made to implement multiplex bioassays on SPR platforms. While this aspect largely remains difficult to attain, numerous alternative strategies arose for obtaining parallel analysis of multiple analytes in one single device. Additionally, one of the upcoming challenges in this field will be to succeed in using SPR platforms for continuous measurements and in vivo sensing, and as such match up other biosensing platforms where these goals have been already conquered. Overall, this review will give insight into multiple possibilities that have become available over the years for boosting the performance of SPR biosensors. However, because combining them all into one optimal sensor is practically not feasible, the final application needs to be considered while designing an SPR biosensor, as this will determine the requirements of the bioassay and will thus help in selecting the essential elements from the recent progress made in SPR sensing.
Collapse
Affiliation(s)
- Jia-Huan Qu
- KU Leuven, Department of Biosystems - Biosensors Group, Willem de Croylaan 42, Box 2428, 3001, Leuven, Belgium
| | - Annelies Dillen
- KU Leuven, Department of Biosystems - Biosensors Group, Willem de Croylaan 42, Box 2428, 3001, Leuven, Belgium
| | - Wouter Saeys
- KU Leuven, Department of Biosystems, MeBioS - Biophotonics, Kasteelpark Arenberg 30, Box 2456, 3001, Leuven, Belgium
| | - Jeroen Lammertyn
- KU Leuven, Department of Biosystems - Biosensors Group, Willem de Croylaan 42, Box 2428, 3001, Leuven, Belgium.
| | - Dragana Spasic
- KU Leuven, Department of Biosystems - Biosensors Group, Willem de Croylaan 42, Box 2428, 3001, Leuven, Belgium
| |
Collapse
|
15
|
Jia Y, Li Z, Wang H, Saeed M, Cai H. Sensitivity Enhancement of a Surface Plasmon Resonance Sensor with Platinum Diselenide. SENSORS (BASEL, SWITZERLAND) 2019; 20:E131. [PMID: 31878225 PMCID: PMC6982880 DOI: 10.3390/s20010131] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023]
Abstract
The extraordinary optoelectronic properties of platinum diselenide (PtSe2), whose structure is similar to graphene and phosphorene, has attracted great attention in new rapidly developed two-dimensional (2D) materials beyond the other 2D material family members. We have investigated the surface plasmon resonance (SPR) sensors through PtSe2 with the transfer matrix method. The simulation results show that the anticipated PtSe2 biochemical sensors have the ability to detect analytic. It is evident that only the sensitivities of Ag or Au film biochemical sensors were observed at 118°/RIU (refractive index unit) and 130°/RIU, whereas the sensitivities of the PtSe2-based biochemical sensors reached as high as 162°/RIU (Ag film) and 165°/RIU (Au film). The diverse biosensor sensitivities with PtSe2 suggest that this kind of 2D material can adapt SPR sensor properties.
Collapse
Affiliation(s)
- Yue Jia
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (Y.J.); (Z.L.); (H.W.)
| | - Zhongfu Li
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (Y.J.); (Z.L.); (H.W.)
| | - Haiqi Wang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (Y.J.); (Z.L.); (H.W.)
| | - Muhammad Saeed
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China;
| | - Houzhi Cai
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; (Y.J.); (Z.L.); (H.W.)
| |
Collapse
|
16
|
Jing JY, Zhu Q, Dai ZX, Li SY, Wang Q, Zhao WM. Sensing self-referenced fiber optic long-range surface plasmon resonance sensor based on electronic coupling between surface plasmon polaritons. APPLIED OPTICS 2019; 58:6329-6334. [PMID: 31503778 DOI: 10.1364/ao.58.006329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/11/2019] [Indexed: 06/10/2023]
Abstract
A type of hollow gold nanoparticle (HGNP)-modified fiber optic long-range surface plasmon resonance (LRSPR) sensor with sensing self-reference is proposed and demonstrated. HGNPs have a stronger plasmonic field compared to solid GNPs because of the coupling between the inner and outer walls of HGNPs. The intense near-field electronic coupling between long-range surface plasmon polaritons associated with the LRSPR gold layer and localized surface plasmon polaritons of HGNPs leads to localized electromagnetic-field enhancement and LRSPR response signal amplification. Therefore, the HGNP-modified LRSPR sensor possesses a more excellent sensing property compared with the unmodified LRSPR sensor. The long-range resonance dip in the transmission spectrum is shown to shift in response to ambient refractivity change, and the characteristic absorption peak is fixed, allowing to regard it as a reference to improve detection accuracy of the sensors. The mode-field distribution of the sensors is simulated by using the finite element method, and the simulation results show that the electric-field intensity on the HGNP surface is significantly enhanced compared with that of the gold layer surface of the unmodified LRSPR sensor. 1874.79 nm/RIU improvement in sensitivity, 1.42 times improvement in figure of merit (FOM), and approximately 50% reduction in limit of detection (LOD) are achieved for the refractivity measurement of a low-concentration biological solution with the employment of HGNPs in LRSPR sensing experiments. The HGNP-modified LRSPR sensor proposed in this paper has high detection accuracy and FOM and low LOD, and can realize remote real-time online monitoring. Therefore, it has important research value and broad application prospects in the field of biochemical detection.
Collapse
|
17
|
Morales-Narváez E, Merkoçi A. Graphene Oxide as an Optical Biosensing Platform: A Progress Report. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805043. [PMID: 30549101 DOI: 10.1002/adma.201805043] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/22/2018] [Indexed: 05/27/2023]
Abstract
A few years ago, crucial graphene oxide (GO) features such as the carbon/oxygen ratio, number of layers, and lateral size were scarcely investigated and, thus, their impact on the overall optical biosensing performance was almost unknown. Nowadays valuable insights about these features are well documented in the literature, whereas others remain controversial. Moreover, most of the biosensing systems based on GO were amenable to operating as colloidal suspensions. Currently, the literature reports conceptually new approaches obviating the need of GO colloidal suspensions, enabling the integration of GO onto a solid phase and leading to their application in new biosensing devices. Furthermore, most GO-based biosensing devices exploit photoluminescent signals. However, further progress is also achieved in powerful label-free optical techniques exploiting GO in biosensing, particularly using optical fibers, surface plasmon resonance, and surface enhanced Raman scattering. Herein, a critical overview on these topics is offered, highlighting the key role of the physicochemical properties of GO. New challenges and opportunities in this exciting field are also highlighted.
Collapse
Affiliation(s)
- Eden Morales-Narváez
- Biophotonic Nanosensors Laboratory, Centro de Investigaciones en Óptica, A. C., Loma del Bosque 115, Lomas del Campestre, León, Guanajuato, 37150, México
| | - Arben Merkoçi
- Nanobioelectronics and Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2) CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010, Barcelona, Spain
| |
Collapse
|