1
|
Zhang CM, Qiu YZ, Wu H, Guan J, Wang SG, Sun XF. Polyethylene glycol-polyvinylidene fluoride/TiO 2 nanocomposite polymer coatings with efficient antifouling strategies: Hydrophilized defensive surface and stable capacitive deionization. J Colloid Interface Sci 2024; 666:585-593. [PMID: 38613980 DOI: 10.1016/j.jcis.2024.03.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/15/2024]
Abstract
Capacitive deionization (CDI) is flourishing as an energy-efficient and cost-effective water desalination method. However, challenges such as electrode degradation and fouling have hindered the practical deployment of CDI technology. To address these challenges, the key point of our strategy is applying a hydrophilic coating composed of polyethylene glycol (PEG)-functionalized nano-TiO2/polyvinylidene fluoride (PVDF) to the electrode interface (labeled as APPT electrode). The PEG/PVDF/TiO2 layer not only mitigates the co-ion depletion, but also imparts the activated carbon (AC) electrode hydrophilicity. As anticipated, the APPT electrode possessed an enhanced desalination capacity of 83.54 μmol g-1 and a low energy consumption of 17.99 Wh m-3 in 10 mM sodium chloride solution compared with the bare AC electrode. Notably, the APPT maintained about 93.19 % of its desalination capacity after 50 consecutive adsorption-desorption cycles in the presence of bovine serum albumin (BSA). During the trial, moreover, no obvious overall performance decline was noted in concentration reduction (Δc), water recovery (WR) and productivity (P) over 50 cycles. This strategy realizes energy-efficient, antifouling and stable brackish water desalination and has great promise for practical applications.
Collapse
Affiliation(s)
- Chun-Miao Zhang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yun-Ze Qiu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hao Wu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jing Guan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Shu-Guang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xue-Fei Sun
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
2
|
Meng W, Han X, Han R, Zhang X, Zeng X, Duan J, Luo X. A highly stable electrochemical sensor with antifouling and antibacterial capabilities for mercury ion detection in seawater. Anal Chim Acta 2024; 1309:342685. [PMID: 38772667 DOI: 10.1016/j.aca.2024.342685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 04/27/2024] [Accepted: 05/02/2024] [Indexed: 05/23/2024]
Abstract
The monitoring of heavy metal ions in ocean is crucial for environment protection and assessment of seawater quality. However, the detection of heavy metal ions in seawater with electrochemical sensors, especially for long-term monitoring, always faces challenges due to marine biofouling caused by the nonspecific adsorption of microbial and biomolecules. Herein, an electrochemical aptasensor, integrating both antifouling and antibacterial properties, was developed for the detection of Hg2+ in the ocean. In this electrochemical aptasensor, eco-friendly peptides with superior hydrophilicity served as anti-biofouling materials, preventing nonspecific adsorption on the sensing interface, while silver nanoparticles were employed to eliminate bacteria. Subsequently, a ferrocene-modified aptamer was employed for the specific recognition of Hg2+, leveraging the aptamer's ability to fold into a thymine-Hg2+-thymine (T-Hg2+-T) structure upon interaction, and bringing ferrocene nearer to the sensor surface, significantly amplifying the electrochemical response. The prepared electrochemical aptasensor significantly reduced the nonspecific adsorption in seawater while maintaining sensitive electrochemical response. Furthermore, the biosensor exhibited a linear response range of 0.01-100 nM with a detection limit of 2.30 pM, and realized the accurate monitoring of mercury ions in real marine environment. The research results offer new insights into the preparation of marine antifouling sensing devices, and it is expected that sensors with antifouling and antimicrobial capabilities will find broad applications in the monitoring of marine pollutants.
Collapse
Affiliation(s)
- Weichen Meng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China; Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xiaochun Han
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Rui Han
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Xinchao Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Xianghua Zeng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China.
| | - Jizhou Duan
- Key Laboratory of Marine Environmental Corrosion and Bio-Fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China.
| |
Collapse
|
3
|
Wang C, Xue S, Xu Y, Li R, Qiu Y, Wang C, Ren LF, Shao J. Novel electrocatalytic capacitive deionization with catalytic electrodes for selective phosphonate degradation: Performance and mechanism. WATER RESEARCH 2024; 256:121614. [PMID: 38657308 DOI: 10.1016/j.watres.2024.121614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/07/2024] [Accepted: 04/14/2024] [Indexed: 04/26/2024]
Abstract
Phosphonate is becoming a global interest and concern owing to its environment risk and potential value. Degradation of phosphonate into phosphate followed by the recovery is regarded as a promising strategy to control phosphonate pollution, relieve phosphorus crisis, and promote phosphorus cycle. Given these objectives, an anion-membrane-coated-electrode (A-MCE) doped with Fe-Co based carbon catalyst and cation-membrane-coated-electrode (C-MCE) doped with carbon-based catalyst were prepared as catalytic electrodes, and a novel electrocatalytic capacitive deionization (E-CDI) was developed. During charging process, phosphonate was enriched around A-MCE surface based on electrostatic attraction, ligand exchange, and hydrogen bond. Meanwhile, Fe2+ and Co2+ were self-oxidized into Fe3+ and Co3+, forming a complex with enriched phosphonate and enabling an intramolecular electron transfer process for phosphonate degradation. Additionally, benefiting from the stable dissolved oxygen and high oxygen reduction reaction activity of C-MCE, hydrogen peroxide accumulated in E-CDI (158 μM) and thus hydroxyl radicals (·OH) were generated by activation. E-CDI provided an ideal platform for the effective reaction between ·OH and phosphonate, avoiding the loss of ·OH and triggering selective degradation of most phosphonate. After charging for 70 min, approximately 89.9% of phosphonate was degraded into phosphate, and phosphate was subsequently adsorbed by A-MCE. Results also showed that phosphonate degradation was highly dependent on solution pH and voltage, and was insignificantly affected by electrolyte concentration. Compared to traditional advanced oxidation processes, E-CDI exhibited a higher degradation efficiency, lower cost, and less sensitive to co-existed ions in treating simulated wastewaters. Self-enhanced and selective degradation of phosphonate, and in-situ phosphate adsorption were simultaneously achieved for the first time by a E-CDI system, showing high promise in treating organic-containing saline wastewaters.
Collapse
Affiliation(s)
- Chengyi Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, 200240, Shanghai, PR China; China Electronics System Engineering NO. 2 Construction Co., Ltd., No. 88 Juqu Road, Wuxi, 214135, Jiangsu, PR China
| | - Siyue Xue
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, 200240, Shanghai, PR China
| | - Yubo Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, 200240, Shanghai, PR China
| | - Ran Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, 200240, Shanghai, PR China
| | - Yangbo Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, 200240, Shanghai, PR China
| | - Chao Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, 200240, Shanghai, PR China
| | - Long-Fei Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, 200240, Shanghai, PR China.
| | - Jiahui Shao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, 200240, Shanghai, PR China; Institute for Ecological Research and Pollution Control of Plateau Lakes, Yunnan University, No. 2 Cuihu North Road, Kunming, 650504, Yunnan, PR China.
| |
Collapse
|
4
|
Wang Y, Yang L, Ouyang D, Chen D, Zhu H, Yin J. Amino acids functionalized vascular-like carbon fibers for efficient capacitive deionization. J Colloid Interface Sci 2023; 649:97-106. [PMID: 37339562 DOI: 10.1016/j.jcis.2023.06.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/04/2023] [Accepted: 06/11/2023] [Indexed: 06/22/2023]
Abstract
Porous carbons have attracted great attention in capacitive deionization (CDI), benefiting from their high surface areas and abundant adsorption sites. However, the sluggish adsorption rate and poor cycling stability of carbons are still concerns, which are caused by the insufficient ion-accessible networks and the side reactions (the co-ion repulsion and oxidative corrosion). Herein, inspired by the blood vessels in organisms, mesoporous hollow carbon fibers (HCF) were successfully synthesized via a template assisted coaxial electrospinning strategy. Subsequently, the surface charge of HCF was modified by various amino acids (arginine (HCF-Arg) and aspartic acid (HCF-Asp)). Combining structure design and surface modulation, these freestanding HCFs present enhanced desalination rate and stability, in which the hierarchal vasculature facilitates electron/ion transport, and the functionalized surface suppresses the side reactions. Impressively, when HCF-Asp and HCF-Arg serve as cathode and anode respectively, the asymmetric CDI device provides an excellent salt adsorption capacity of 45.6 mg g-1, a fast salt adsorption rate of 14.0 mg g-1 min-1 and a superior cycling stability up to 80 cycles. In short, this work evidenced an integrated strategy to exploiting carbon materials with outstanding capacity and stability for high-performance capacitive deionization.
Collapse
Affiliation(s)
- Yanan Wang
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liuqian Yang
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dandan Ouyang
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Dongxu Chen
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Zhu
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jiao Yin
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Vallejos S, Trigo-López M, Arnaiz A, Miguel Á, Muñoz A, Mendía A, García JM. From Classical to Advanced Use of Polymers in Food and Beverage Applications. Polymers (Basel) 2022; 14:4954. [PMID: 36433081 PMCID: PMC9699061 DOI: 10.3390/polym14224954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Polymers are extensively used in food and beverage packaging to shield against contaminants and external damage due to their barrier properties, protecting the goods inside and reducing waste. However, current trends in polymers for food, water, and beverage applications are moving forward into the design and preparation of advanced polymers, which can act as active packaging, bearing active ingredients in their formulation, or controlling the head-space composition to extend the shelf-life of the goods inside. In addition, polymers can serve as sensory polymers to detect and indicate the presence of target species, including contaminants of food quality indicators, or even to remove or separate target species for later quantification. Polymers are nowadays essential materials for both food safety and the extension of food shelf-life, which are key goals of the food industry, and the irruption of smart materials is opening new opportunities for going even further in these goals. This review describes the state of the art following the last 10 years of research within the field of food and beverage polymer's applications, covering present applications, perspectives, and concerns related to waste generation and the circular economy.
Collapse
Affiliation(s)
- Saúl Vallejos
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Miriam Trigo-López
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Ana Arnaiz
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001 Burgos, Spain
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Universidad Politécnica de Madrid (UPM), 28223 Madrid, Spain
| | - Álvaro Miguel
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001 Burgos, Spain
- Facultad de Ciencias, Campus de Cantoblanco, Universidad Autónoma de Madrid, Calle Francisco Tomás y Valiente 7, 28049 Madrid, Spain
| | - Asunción Muñoz
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Aránzazu Mendía
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001 Burgos, Spain
| | - José Miguel García
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001 Burgos, Spain
| |
Collapse
|
6
|
Zhang J, Wang X, Liang M, Han M, Dai J, Wei Q, Oo TZ, Aung SH, Hui KN, Chen F. High-Performance Photoelectrochemical Desalination Based on the Dye-Sensitized Bi 2O 3 Anode. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33024-33031. [PMID: 35819320 DOI: 10.1021/acsami.2c04749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, a solar-driven redox flow desalination system is reported, which combines a solar cell based on a Bi2O3 photoanode and a redox flow desalination cell through an integrated electrode. The Bi2O3 film was prepared through a simple one-step water bath deposition method and served as a photoanode after the coating of the N719 dye. The activated carbon (AC)-coated graphite paper served as both the integrated electrode and counter electrode. The I3-/I- redox electrolyte circulates in the solar cell channel between the photoanode and intergrated electrode, while the [Fe(CN)6]4-/[Fe(CN)6]3- electrolyte circulates in the redox flow desalination part between the integrated electrode and counter electrode. This dye-sensitized solar-driven desalination cell is capable of achieving a maximum salt removal rate of 62.89 μg/(cm2·min) without consuming any electrical power. The combination of the solar cell and redox flow desalination is highly efficient with double functions of desalination and energy release using light as a driving force. This current research work is significant for the development of efficient and stable photoanode materials in photoelectrochemical desalination.
Collapse
Affiliation(s)
- Jiancong Zhang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, P. R. China
- School of Electronics and Information Engineering, South China Normal University, Foshan 528225, P. R. China
| | - Xing Wang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, P. R. China
| | - Mengjun Liang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, P. R. China
| | - Minxian Han
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, P. R. China
| | - Jinhong Dai
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, P. R. China
| | - Qiang Wei
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, P. R. China
| | - Than Zaw Oo
- Materials Research Laboratory, Department of Physics, University of Mandalay, 05032 Mandalay, Myanmar
- Universities' Research Centre, University of Yangon, Yangon 11041, Myanmar
| | - Su Htike Aung
- Materials Research Laboratory, Department of Physics, University of Mandalay, 05032 Mandalay, Myanmar
| | - Kwun Nam Hui
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, P. R. China
| | - Fuming Chen
- School of Electronics and Information Engineering, South China Normal University, Foshan 528225, P. R. China
| |
Collapse
|
7
|
Liu N, Ren P, Saleem A, Feng W, Huo J, Ma H, Li S, Li P, Huang W. Simultaneous Efficient Decontamination of Bacteria and Heavy Metals via Capacitive Deionization Using Polydopamine/Polyhexamethylene Guanidine Co-deposited Activated Carbon Electrodes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:61669-61680. [PMID: 34915703 DOI: 10.1021/acsami.1c20145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The contamination of pathogenic micro-organisms and heavy metals in drinking water sources poses a serious threat to human health, which raises the demand for efficient water treatments. Herein, multi-functional capacitive deionization (CDI) electrodes were developed for the simultaneous decontamination of bacteria and heavy metal contaminants. Polyhexamethylene guanidine (PHMG), an antibacterial polymer, was deposited on the surface of the activated carbon (AC) electrode with the assistance of mussel-inspired polydopamine (PDA) chemistry. The main characterization results proved successful co-deposition of PDA and PHMG on the AC electrode, forming a hydrophilic coating layer in one step. Electrochemical analyses indicated that the AC-PDA/PHMG electrodes presented satisfactory capacitive behaviors, with outstanding salt adsorption capacity and cycling stability. The modified electrodes also exhibit excellent disinfection performance and heavy metal adsorption performance. The bacterial elimination rate of co-deposited electrodes grew along with the increase in the PHMG content. Particularly, AC-PDA/PHMG2 electrodes successfully removed and deactivated 99.11% Escherichia coli and 98.67% Pseudomonas aeruginosa (104 CFU mL-1) in water within 60 min. Furthermore, three flow cells made by AC-PDA/PHMG2 electrodes connected in series achieved efficient removal of salt, heavy metals such as lead and cadmium, and bacteria simultaneously, which indicated that the adsorption performance is significantly improved compared with pristine AC electrodes. These results denote the enormous potential of this one-step prepared multi-functional electrodes for facile and effective water purification using CDI technology.
Collapse
Affiliation(s)
- Nian Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Panyu Ren
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Atif Saleem
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Wei Feng
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Jingjing Huo
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Huifang Ma
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Sheng Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
8
|
Fritz PA, Boom RM, Schroën C. Electrochemically driven adsorptive separation techniques: From ions to proteins and cells in liquid streams. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Honarparvar S, Zhang X, Chen T, Alborzi A, Afroz K, Reible D. Frontiers of Membrane Desalination Processes for Brackish Water Treatment: A Review. MEMBRANES 2021; 11:246. [PMID: 33805438 PMCID: PMC8066301 DOI: 10.3390/membranes11040246] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/31/2022]
Abstract
Climate change, population growth, and increased industrial activities are exacerbating freshwater scarcity and leading to increased interest in desalination of saline water. Brackish water is an attractive alternative to freshwater due to its low salinity and widespread availability in many water-scarce areas. However, partial or total desalination of brackish water is essential to reach the water quality requirements for a variety of applications. Selection of appropriate technology requires knowledge and understanding of the operational principles, capabilities, and limitations of the available desalination processes. Proper combination of feedwater technology improves the energy efficiency of desalination. In this article, we focus on pressure-driven and electro-driven membrane desalination processes. We review the principles, as well as challenges and recent improvements for reverse osmosis (RO), nanofiltration (NF), electrodialysis (ED), and membrane capacitive deionization (MCDI). RO is the dominant membrane process for large-scale desalination of brackish water with higher salinity, while ED and MCDI are energy-efficient for lower salinity ranges. Selective removal of multivalent components makes NF an excellent option for water softening. Brackish water desalination with membrane processes faces a series of challenges. Membrane fouling and scaling are the common issues associated with these processes, resulting in a reduction in their water recovery and energy efficiency. To overcome such adverse effects, many efforts have been dedicated toward development of pre-treatment steps, surface modification of membranes, use of anti-scalant, and modification of operational conditions. However, the effectiveness of these approaches depends on the fouling propensity of the feed water. In addition to the fouling and scaling, each process may face other challenges depending on their state of development and maturity. This review provides recent advances in the material, architecture, and operation of these processes that can assist in the selection and design of technologies for particular applications. The active research directions to improve the performance of these processes are also identified. The review shows that technologies that are tunable and particularly efficient for partial desalination such as ED and MCDI are increasingly competitive with traditional RO processes. Development of cost-effective ion exchange membranes with high chemical and mechanical stability can further improve the economy of desalination with electro-membrane processes and advance their future applications.
Collapse
Affiliation(s)
- Soraya Honarparvar
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (S.H.); (X.Z.); (T.C.); (K.A.)
| | - Xin Zhang
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (S.H.); (X.Z.); (T.C.); (K.A.)
| | - Tianyu Chen
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (S.H.); (X.Z.); (T.C.); (K.A.)
| | - Ashkan Alborzi
- Department of Civil, Environmental and Construction Engineering, Texas Tech University, Lubbock, TX 79409, USA;
| | - Khurshida Afroz
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (S.H.); (X.Z.); (T.C.); (K.A.)
| | - Danny Reible
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (S.H.); (X.Z.); (T.C.); (K.A.)
- Department of Civil, Environmental and Construction Engineering, Texas Tech University, Lubbock, TX 79409, USA;
| |
Collapse
|
10
|
Wang X, Wang W, Liu X, Wang Y. Amphoteric functional polymers for leather wet finishing auxiliaries: A review. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5248] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xuechuan Wang
- College of Bioresources Chemical and Materials Engineering Shaanxi University of Science & Technology Xi'an China
- National Demonstration Center for Experimental Light Chemistry Engineering Education Shaanxi University of Science & Technology Xi'an China
| | - Wanni Wang
- College of Bioresources Chemical and Materials Engineering Shaanxi University of Science & Technology Xi'an China
- National Demonstration Center for Experimental Light Chemistry Engineering Education Shaanxi University of Science & Technology Xi'an China
| | - Xinhua Liu
- National Demonstration Center for Experimental Light Chemistry Engineering Education Shaanxi University of Science & Technology Xi'an China
- Institute of Biomass & Functional Materials Shaanxi University of Science & Technology Xi'an China
| | - Youyou Wang
- National Demonstration Center for Experimental Light Chemistry Engineering Education Shaanxi University of Science & Technology Xi'an China
- Institute of Biomass & Functional Materials Shaanxi University of Science & Technology Xi'an China
| |
Collapse
|
11
|
Liu E, Lee LY, Ong SL, Ng HY. Treatment of industrial brine using capacitive deionization (CDI) towards zero liquid discharge - challenges and optimization. WATER RESEARCH 2020; 183:116059. [PMID: 32721705 DOI: 10.1016/j.watres.2020.116059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 06/05/2020] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Abstract
Thermal-based Zero Liquid Discharge (ZLD) process has been used for managing industrial brine. However, conventional thermal ZLD process is very energy intensive. In view of this, pre-concentration techniques have been applied prior to thermal process to reduce energy consumption of ZLD systems. Capacitive Deionization (CDI) is an emerging desalination technique and has yet to be extensively explored for the treatment of industrial brine especially for ZLD applications. High concentration of total dissolved solids (TDS) and high fouling potential of industrial brine are two major challenges in CDI process. This paper reviews the possible factors for optimizing CDI process in industrial brine treatment, namely, cell architectures, strategies in operation and fouling control. Cell architectures of membrane CDI (MCDI) and flow-electrode CDI (CDI) are preferred options for treating industrial brine compared with classic CDI in terms of energy consumption and fouling propensity. There are other operational strategies that could enhance the feasibility of using CDI process for ZLD application. These include reversed voltage desorption, multi-stage operation, brine recirculation and fouling control. Fouling control methods comprise pretreatment, antifouling modification, antiscalant and chemical cleaning. These methods could be integrated to optimize fouling mitigation. In addition to providing insights on feasibility of using CDI to concentrate industrial brines, this review also proposed guidelines for optimizing CDI process applied to treat industrial brines for ZLD applications.
Collapse
Affiliation(s)
- Enyu Liu
- Centre for Water Research, Department of Civil & Environmental Engineering, Faculty of Engineering, National University of Singapore, S 117576, Singapore.
| | - Lai Yoke Lee
- NUS Environmental Research Institute, National University of Singapore, S 117411, Singapore.
| | - Say Leong Ong
- Centre for Water Research, Department of Civil & Environmental Engineering, Faculty of Engineering, National University of Singapore, S 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, S 117411, Singapore.
| | - How Yong Ng
- Centre for Water Research, Department of Civil & Environmental Engineering, Faculty of Engineering, National University of Singapore, S 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, S 117411, Singapore.
| |
Collapse
|
12
|
Zhao X, Wei H, Zhao H, Wang Y, Tang N. Electrode materials for capacitive deionization: A review. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114416] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Chen S, Xie Y, Chinnappan A, Wei Z, Gu Q, He H, Fang Y, Zhang X, Lakshminarayanan R, Zhao W, Zhao C, Ramakrishna S. A self-cleaning zwitterionic nanofibrous membrane for highly efficient oil-in-water separation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 729:138876. [PMID: 32361445 DOI: 10.1016/j.scitotenv.2020.138876] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/19/2020] [Accepted: 04/19/2020] [Indexed: 06/11/2023]
Abstract
The oil and bacteria adhesion during membrane separation process brings great challenges to the operation costs and membrane service life. Meantime, the strong chemical corrosion in sewage seriously limits the durability of membrane as well. Herein, a facile strategy is developed for fabricating highly stable and efficient zwitterionic nanofibrous membrane (NFM) with self-cleaning feature via the combination of in-situ cross-linking of poly (sulfobetaine methacrylate) (PSBMA) and electrospun poly (ether sulfone) (PES) nanofibers. Owing to the introduction of zwitterionic functional groups, the PSBMA/PES NFM exhibits superior antifouling ability (over 3 cycles of crude oil fouling/self-cleaning and up to 7 days of bacteria adhesion/repelling tests). Moreover, the membrane also presents remarkable chemical stability in acidic, alkaline and salty environments; and exhibits excellent separation performance for both layered oil/water mixture and oil-in-water emulsion as well. Furthermore, the membrane is capable to remove bacteria during the continuous oil/water mixture separation. Overall, the proposed strategy provides a new perspective into developing long-term antifouling membrane materials for complicated oily wastewater remediation in various corrosive environments.
Collapse
Affiliation(s)
- Shengqiu Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China; Department of Mechanical Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Yi Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Amutha Chinnappan
- Department of Mechanical Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Zhiwei Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Qilin Gu
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Hongying He
- Department of Mechanical Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Yuanlai Fang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Xiang Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Rajamani Lakshminarayanan
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China; National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore 117574, Singapore
| |
Collapse
|
14
|
Cui M, Ma Y, Wang L, Wang Y, Wang S, Luo X. Antifouling sensors based on peptides for biomarker detection. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115903] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Liu T, Serrano J, Elliott J, Yang X, Cathcart W, Wang Z, He Z, Liu G. Exceptional capacitive deionization rate and capacity by block copolymer-based porous carbon fibers. SCIENCE ADVANCES 2020; 6:eaaz0906. [PMID: 32426453 PMCID: PMC7164930 DOI: 10.1126/sciadv.aaz0906] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 01/22/2020] [Indexed: 05/26/2023]
Abstract
Capacitive deionization (CDI) is energetically favorable for desalinating low-salinity water. The bottlenecks of current carbon-based CDI materials are their limited desalination capacities and time-consuming cycles, caused by insufficient ion-accessible surfaces and retarded electron/ion transport. Here, we demonstrate porous carbon fibers (PCFs) derived from microphase-separated poly(methyl methacrylate)-block-polyacrylonitrile (PMMA-b-PAN) as an effective CDI material. PCF has abundant and uniform mesopores that are interconnected with micropores. This hierarchical porous structure renders PCF a large ion-accessible surface area and a high desalination capacity. In addition, the continuous carbon fibers and interconnected porous network enable fast electron/ion transport, and hence a high desalination rate. PCF shows desalination capacity of 30 mgNaCl g-1 PCF and maximal time-average desalination rate of 38.0 mgNaCl g-1 PCF min-1, which are about 3 and 40 times, respectively, those of typical porous carbons. Our work underlines the promise of block copolymer-based PCF for mutually high-capacity and high-rate CDI.
Collapse
Affiliation(s)
- Tianyu Liu
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Joel Serrano
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - John Elliott
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Xiaozhou Yang
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - William Cathcart
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Zixuan Wang
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Zhen He
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Guoliang Liu
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Macromolecules Innovation Institute, and Division of Nanoscience, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
16
|
Liu X, Shanbhag S, Mauter MS. Understanding and mitigating performance decline in electrochemical deionization. Curr Opin Chem Eng 2019. [DOI: 10.1016/j.coche.2019.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|