1
|
Oh YW, Kim H, Do LM, Baek KH, Kang IS, Lee GW, Kang CM. Rapid activation of a solution-processed aluminum oxide gate dielectric through intense pulsed light irradiation. RSC Adv 2024; 14:37438-37444. [PMID: 39582940 PMCID: PMC11583877 DOI: 10.1039/d4ra06855f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/07/2024] [Indexed: 11/26/2024] Open
Abstract
In this study, we report rapid activation of a solution-processed aluminum oxide gate dielectric film to reduce its processing time under ambient atmosphere. Aluminum precursor films were exposed to a high energy light-pulse and completely converted into dielectric films within 30 seconds (450 pulses). The aluminum oxide gate dielectric film irradiated using intense pulsed light with 450 pulses exhibits a smooth surface and a leakage current density of less than 10-8 A cm-2 at 2 MV cm-1. Moreover, dielectric constants of the aluminum oxide layer were calculated to be approximately 7. Finally, we fabricated a solution-processed indium gallium zinc oxide thin-film transistor with AlO x using intense pulsed light irradiation, exhibiting a field-effect mobility of 2.99 cm2 V-1 s-1, threshold voltage of 0.73 V, subthreshold swing of 180 mV per decade and I on/I off ratio of 3.9 × 106.
Collapse
Affiliation(s)
- Yeon-Wha Oh
- Division of Nano Convergence Technology Development, Nantional NanoFAB Center Daejeon 34141 South Korea
- Dept. of Electronics Engineering, Chungnam National University Daejeon 34134 South Korea
| | - Hoon Kim
- Electronics and Telecommunications Research Institute 218 Gajeong-ro, Yuseong-gu Daejeon 34129 South Korea +82-42-860-5202 +82-42-860-5229
| | - Lee-Mi Do
- Electronics and Telecommunications Research Institute 218 Gajeong-ro, Yuseong-gu Daejeon 34129 South Korea +82-42-860-5202 +82-42-860-5229
| | - Kyu-Ha Baek
- Electronics and Telecommunications Research Institute 218 Gajeong-ro, Yuseong-gu Daejeon 34129 South Korea +82-42-860-5202 +82-42-860-5229
| | - Il-Suk Kang
- Division of Nano Convergence Technology Development, Nantional NanoFAB Center Daejeon 34141 South Korea
| | - Ga-Won Lee
- Dept. of Electronics Engineering, Chungnam National University Daejeon 34134 South Korea
| | - Chan-Mo Kang
- Electronics and Telecommunications Research Institute 218 Gajeong-ro, Yuseong-gu Daejeon 34129 South Korea +82-42-860-5202 +82-42-860-5229
| |
Collapse
|
2
|
Pradhan JR, Dasgupta S. Fully Printed Negative-Capacitance Field-Effect Transistors with Ultralow Subthreshold Swing and High Inverter Signal Gain. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39517-39527. [PMID: 39012262 DOI: 10.1021/acsami.4c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The switching of conventional field-effect transistors (FETs) is limited by the Boltzmann barrier of thermionic emission, which prevents the realization of low-power electronics. In order to overcome this limitation, among others, unconventional device geometry with a ferroelectric/dielectric insulator stack has been proposed to demonstrate stable negative-capacitance behavior. Here, the switching of the ferroelectric layer behaves like a step-up amplifier and results in a body factor less than 1. This implies a larger change in the semiconductor surface potential compared to the applied gate voltage variation. The transistors with such ferroelectric/dielectric stack are known as negative-capacitance field-effect transistors (nc-FETs), and can demonstrate a subthreshold slope lower than the Boltzmann's limit (60 mV/decade). While nc-FETs have typically been realized with high-vacuum-deposition processes, here we show fully printed nc-FETs with amorphous indium-gallium-zinc oxide (a-IGZO) as the semiconductor material, Al2O3 as the dielectric, and poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE) as the polymer ferroelectric. The printed nc-FETs demonstrate an extremely low subthreshold slope of ∼2.3 mV/decade at room temperature, which remains below the Boltzmann's limit for over 5 orders of magnitude of drain currents. Furthermore, the unipolar depletion-load-type inverters fabricated using n-type nc-FETs have demonstrated an extraordinary signal gain of 2691.
Collapse
Affiliation(s)
- Jyoti Ranjan Pradhan
- Department of Materials Engineering, Indian Institute of Science (IISc), C V Raman Avenue, Bangalore 560012, Karnataka, India
| | - Subho Dasgupta
- Department of Materials Engineering, Indian Institute of Science (IISc), C V Raman Avenue, Bangalore 560012, Karnataka, India
| |
Collapse
|
3
|
Kim T, Choi CH, Hur JS, Ha D, Kuh BJ, Kim Y, Cho MH, Kim S, Jeong JK. Progress, Challenges, and Opportunities in Oxide Semiconductor Devices: A Key Building Block for Applications Ranging from Display Backplanes to 3D Integrated Semiconductor Chips. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204663. [PMID: 35862931 DOI: 10.1002/adma.202204663] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/04/2022] [Indexed: 06/15/2023]
Abstract
As Si has faced physical limits on further scaling down, novel semiconducting materials such as 2D transition metal dichalcogenides and oxide semiconductors (OSs) have gained tremendous attention to continue the ever-demanding downscaling represented by Moore's law. Among them, OS is considered to be the most promising alternative material because it has intriguing features such as modest mobility, extremely low off-current, great uniformity, and low-temperature processibility with conventional complementary-metal-oxide-semiconductor-compatible methods. In practice, OS has successfully replaced hydrogenated amorphous Si in high-end liquid crystal display devices and has now become a standard backplane electronic for organic light-emitting diode displays despite the short time since their invention in 2004. For OS to be implemented in next-generation electronics such as back-end-of-line transistor applications in monolithic 3D integration beyond the display applications, however, there is still much room for further study, such as high mobility, immune short-channel effects, low electrical contact properties, etc. This study reviews the brief history of OS and recent progress in device applications from a material science and device physics point of view. Simultaneously, remaining challenges and opportunities in OS for use in next-generation electronics are discussed.
Collapse
Affiliation(s)
- Taikyu Kim
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Cheol Hee Choi
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jae Seok Hur
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Daewon Ha
- Semiconductor R&D Center, Samsung Electronics, Hwaseong, Gyeonggi-do, 18848, Republic of Korea
| | - Bong Jin Kuh
- Semiconductor R&D Center, Samsung Electronics, Hwaseong, Gyeonggi-do, 18848, Republic of Korea
| | - Yongsung Kim
- Samsung Advanced Institute of Technology, Samsung Electronics, Suwon, Gyeonggi-do, 16678, Republic of Korea
| | - Min Hee Cho
- Semiconductor R&D Center, Samsung Electronics, Hwaseong, Gyeonggi-do, 18848, Republic of Korea
| | - Sangwook Kim
- Samsung Advanced Institute of Technology, Samsung Electronics, Suwon, Gyeonggi-do, 16678, Republic of Korea
| | - Jae Kyeong Jeong
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| |
Collapse
|
4
|
Wei S, Bai J, Xie W, Su Y, Qin F, Wang D. Reliability and Stability Improvement of MOS Capacitors via Nitrogen-Hydrogen Mixed Plasma Pretreatment for SiC Surfaces. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18537-18549. [PMID: 36987379 DOI: 10.1021/acsami.3c00995] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
We investigated the effect of nitrogen-hydrogen (NH) mixed plasma pretreatment of 4H-SiC surfaces on SiC surface properties, SiO2/SiC interface quality, and the reliability and voltage stability of metal-oxide-semiconductor (MOS) capacitors. The NH plasma pretreatment decreased the incomplete oxide and contaminants on the SiC surface and reduced the density of SiO2/SiC interface traps. Compared with the untreated sample, the dielectric insulating characteristics and reliability of samples pretreated by NH plasma were improved. We also demonstrated that the shift/hysteresis of the flat band voltage (Vfb) and the midgap voltage (Vmg) induced by bias temperature stress for SiC MOS capacitors after NH plasma pretreatment was significantly decreased. Furthermore, the mechanisms of NH plasma pretreatment to improve interface properties and device performances were determined by combining secondary ion mass spectrometry (SIMS) measurements, X-ray photoelectron spectroscopy (XPS), and first-principles calculations. The result indicates that the excessive oxidation at the SiO2/SiC interface was limited due to the reduction in the diffusion of oxygen atoms into SiC caused by the surface Si-H and Si-N; NH plasma pretreatment suppressed the generation of interfacial traps by reducing surface pollutants and passivating surface defects, and some N atoms introduced into the SiO2/SiC interface effectively passivated the interfacial electroactive traps.
Collapse
Affiliation(s)
- Shengsheng Wei
- Key Laboratory of Intelligent Control and Optimization for Industrial Equipment (Dalian University of Technology), Ministry of Education, School of Control Science and Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jiao Bai
- Key Laboratory of Intelligent Control and Optimization for Industrial Equipment (Dalian University of Technology), Ministry of Education, School of Control Science and Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Weiwei Xie
- Key Laboratory of Intelligent Control and Optimization for Industrial Equipment (Dalian University of Technology), Ministry of Education, School of Control Science and Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yan Su
- State Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), Dalian University of Technology, Dalian 116024, China
| | - Fuwen Qin
- State Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), Dalian University of Technology, Dalian 116024, China
| | - Dejun Wang
- Key Laboratory of Intelligent Control and Optimization for Industrial Equipment (Dalian University of Technology), Ministry of Education, School of Control Science and Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China
- Key Laboratory of Integrated Circuit and Biomedical Electronic System, Liaoning Province, School of Control Science and Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
5
|
Huang W, Yu X, Zeng L, Wang B, Takai A, Di Carlo G, Bedzyk MJ, Marks TJ, Facchetti A. Ultraviolet Light-Densified Oxide-Organic Self-Assembled Dielectrics: Processing Thin-Film Transistors at Room Temperature. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3445-3453. [PMID: 33416304 DOI: 10.1021/acsami.0c20345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Low-temperature, solution-processable, high-capacitance, and low-leakage gate dielectrics are of great interest for unconventional electronics. Here, we report a near room temperature ultraviolet densification (UVD) methodology for realizing high-performance organic-inorganic zirconia self-assembled nanodielectrics (UVD-ZrSANDs). These UVD-ZrSAND multilayers are grown from solution in ambient, densified by UV radiation, and characterized by X-ray reflectivity, atomic force microscopy, X-ray photoelectron spectroscopy, and capacitance measurements. The resulting UVD-ZrSAND films exhibit large capacitances of >700 nF/cm2 and low leakage current densities of <10-7 A/cm2, which rival or exceed those synthesized by traditional thermal methods. Both the p-type organic semiconductor pentacene and the n-type metal oxide semiconductor In2O3 were used to investigate UVD-ZrSANDs as the gate dielectric in thin-film transistors, affording mobilities of 0.58 and 26.21 cm2/(V s), respectively, at a low gate voltage of 2 V. These results represent a significant advance in fabricating ultra-thin high-performance dielectrics near room temperature and should facilitate their integration into diverse electronic technologies.
Collapse
Affiliation(s)
- Wei Huang
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave., Kowloon 000000, Hong Kong
| | - Li Zeng
- Department of Materials Science and Engineering, Applied Physics Program and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Binghao Wang
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Atsuro Takai
- Molecular Design and Function Group, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan
| | - Gabriele Di Carlo
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael J Bedzyk
- Department of Materials Science and Engineering, Applied Physics Program and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Tobin J Marks
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
- Flexterra Corporation, Skokie, Illinois 60077, United States
| |
Collapse
|
6
|
Jeon SP, Heo JS, Kim I, Kim YH, Park SK. Enhanced Interfacial Integrity of Amorphous Oxide Thin-Film Transistors by Elemental Diffusion of Ternary Oxide Semiconductors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:57996-58004. [PMID: 33332113 DOI: 10.1021/acsami.0c16068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Low-temperature solution-processed oxide semiconductor and dielectric films typically possess a substantial number of defects and impurities due to incomplete metal-oxygen bond formation, causing poor electrical performance and stability. Here, we exploit a facile route to improve the film quality and the interfacial property of low-temperature solution-processed oxide thin films via elemental diffusion between metallic ion-doped InOx (M:InOx) ternary oxide semiconductor and AlOx gate dielectric layers. Particularly, it was revealed that metallic dopants such as magnesium (Mg) and hafnium (Hf) having a small ionic radius, a high Gibbs energy of oxidation, and bonding dissociation energy could successfully diffuse into the low-quality AlOx gate dielectric layer and effectively reduce the structural defects and residual impurities present in the bulk and at the semiconductor/dielectric interface. Through an extensive investigation on the compositional, structural, and electrical properties of M:InOx/AlOx thin-film transistors (TFTs), we provide direct evidences of elemental diffusion occurred between M:InOx and AlOx layers as well as its contribution to the electrical performance and operational stability. Using the elemental diffusion process, we demonstrate solution-processed Hf:InOx TFTs using a low-temperature (180 °C) AlOx gate dielectric having a field-effect mobility of 2.83 cm2 V-1·s-1 and improved bias stability. Based on these results, it is concluded that the elemental diffusion between oxide semiconductor and gate dielectric layers can play a crucial role in realizing oxide TFTs with enhanced structural and interfacial integrity.
Collapse
Affiliation(s)
- Seong-Pil Jeon
- School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06980, Korea
| | - Jae Sang Heo
- Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut 06030, United States
- School of Advanced Materials Science and Engineering and SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Korea
| | - Insoo Kim
- Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut 06030, United States
| | - Yong-Hoon Kim
- School of Advanced Materials Science and Engineering and SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Korea
| | - Sung Kyu Park
- School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06980, Korea
| |
Collapse
|
7
|
Synaptic transistors with aluminum oxide dielectrics enabling full audio frequency range signal processing. Sci Rep 2020; 10:16664. [PMID: 33028862 PMCID: PMC7542445 DOI: 10.1038/s41598-020-73705-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 09/17/2020] [Indexed: 12/17/2022] Open
Abstract
The rapid evolution of the neuromorphic computing stimulates the search for novel brain-inspired electronic devices. Synaptic transistors are three-terminal devices that can mimic the chemical synapses while consuming low power, whereby an insulating dielectric layer physically separates output and input signals from each other. Appropriate choice of the dielectric is crucial in achieving a wide range of operation frequencies in these devices. Here we report synaptic transistors with printed aluminum oxide dielectrics, improving the operation frequency of solution-processed synaptic transistors by almost two orders of magnitude to 50 kHz. Fabricated devices, yielding synaptic response for all audio frequencies (20 Hz to 20 kHz), are employed in an acoustic response system to show the potential for future research in neuro-acoustic signal processing with printed oxide electronics.
Collapse
|
8
|
Zhuang X, Patel S, Zhang C, Wang B, Chen Y, Liu H, Dravid VP, Yu J, Hu YY, Huang W, Facchetti A, Marks TJ. Frequency-Agile Low-Temperature Solution-Processed Alumina Dielectrics for Inorganic and Organic Electronics Enhanced by Fluoride Doping. J Am Chem Soc 2020; 142:12440-12452. [PMID: 32539371 DOI: 10.1021/jacs.0c05161] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The frequency-dependent capacitance of low-temperature solution-processed metal oxide (MO) dielectrics typically yields unreliable and unstable thin-film transistor (TFT) performance metrics, which hinders the development of next-generation roll-to-roll MO electronics and obscures intercomparisons between processing methodologies. Here, capacitance values stable over a wide frequency range are achieved in low-temperature combustion-synthesized aluminum oxide (AlOx) dielectric films by fluoride doping. For an optimal F incorporation of ∼3.7 atomic % F, the F:AlOx film capacitance of 166 ± 11 nF/cm2 is stable over a 10-1-104 Hz frequency range, far more stable than that of neat AlOx films (capacitance = 336 ± 201 nF/cm2) which falls from 781 ± 85 nF/cm2 to 104 ± 4 nF/cm2 over this frequency range. Importantly, both n-type/inorganic and p-type/organic TFTs exhibit reliable electrical characteristics with minimum hysteresis when employing the F:AlOx dielectric with ∼3.7 atomic % F. Systematic characterization of film microstructural/compositional and electronic/dielectric properties by X-ray photoelectron spectroscopy, time-of-fight secondary ion mass spectrometry, cross-section transmission electron microscopy, solid-state nuclear magnetic resonance, and UV-vis absorption spectroscopy reveal that fluoride doping generates AlOF, which strongly reduces the mobile hydrogen content, suppressing polarization mechanisms at low frequencies. Thus, this work provides a broadly applicable anion doping strategy for the realization of high-performance solution-processed metal oxide dielectrics for both organic and inorganic electronics applications.
Collapse
Affiliation(s)
- Xinming Zhuang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China.,Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Sawankumar Patel
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Chi Zhang
- Department of Materials Science and Engineering, The NUANCE Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Binghao Wang
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Yao Chen
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Haoyu Liu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Vinayak P Dravid
- Department of Materials Science and Engineering, The NUANCE Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Junsheng Yu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Yan-Yan Hu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States.,Center of Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Wei Huang
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States.,Flexterra Corporation, 8025 Lamon Avenue, Skokie, Illinois 60077, United States
| | - Tobin J Marks
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
9
|
Jo J, Kang S, Heo JS, Kim Y, Park SK. Flexible Metal Oxide Semiconductor Devices Made by Solution Methods. Chemistry 2020; 26:9126-9156. [DOI: 10.1002/chem.202000090] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Indexed: 01/22/2023]
Affiliation(s)
- Jeong‐Wan Jo
- School of Electrical and Electronics EngineeringChung-Ang University Seoul 06980 Republic of Korea
- School of Advanced Materials Science and EngineeringSungkyunkwan University Suwon 16419 Republic of Korea
| | - Seung‐Han Kang
- School of Electrical and Electronics EngineeringChung-Ang University Seoul 06980 Republic of Korea
| | - Jae Sang Heo
- Department of MedicineUniversity of Connecticut School of Medicine Farmington CT 06030 USA
| | - Yong‐Hoon Kim
- School of Advanced Materials Science and EngineeringSungkyunkwan University Suwon 16419 Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT)Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Sung Kyu Park
- School of Electrical and Electronics EngineeringChung-Ang University Seoul 06980 Republic of Korea
| |
Collapse
|
10
|
Chen KY, Yang CC, Huang CY, Su YK. ALD Al 2O 3 gate dielectric on the reduction of interface trap density and the enhanced photo-electric performance of IGO TFT. RSC Adv 2020; 10:9902-9906. [PMID: 35498582 PMCID: PMC9050226 DOI: 10.1039/d0ra00123f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/21/2020] [Indexed: 01/31/2023] Open
Abstract
The amorphous indium gallium oxide thin film transistor was fabricated using a cosputtering method. Two samples with different gate dielectric layers were used as follows: sample A with a SiO2 dielectric layer; and sample B with an Al2O3 dielectric layer. The influence of the gate dielectrics on the electric and photo performance has been investigated. Atomic layer deposition deposited the dense film with low interface trapping density and effectively increased drain current. Therefore, sample B exhibited optimal parameters, with an Ion/Ioff ratio of 7.39 × 107, the subthreshold swing of 0.096 V dec−1, and μFE of 5.36 cm2 V−1 s−1. For ultraviolet (UV) detection, the UV-to-visible rejection ratio of the device was 3 × 105, and the photoresponsivity was 0.38 A W−1 at the VGS of −5 V. The amorphous indium gallium oxide thin film transistor was fabricated using a cosputtering method.![]()
Collapse
Affiliation(s)
- Kuan-Yu Chen
- Department of Electrical Engineering, Institute of Microelectronics, National Cheng Kung University Tainan 701 Taiwan.,Green Energy Technology Research Center, Department of Electrical Engineering, Kun Shan University Yongkang 710 Taiwan
| | - Chih-Chiang Yang
- Green Energy Technology Research Center, Department of Electrical Engineering, Kun Shan University Yongkang 710 Taiwan
| | - Chun-Yuan Huang
- Department of Applied Science, National Taitung University Taitung 950 Taiwan
| | - Yan-Kuin Su
- Department of Electrical Engineering, Institute of Microelectronics, National Cheng Kung University Tainan 701 Taiwan.,Green Energy Technology Research Center, Department of Electrical Engineering, Kun Shan University Yongkang 710 Taiwan
| |
Collapse
|
11
|
Williams NX, Watson N, Joh DY, Chilkoti A, Franklin AD. Aerosol jet printing of biological inks by ultrasonic delivery. Biofabrication 2020; 12:025004. [PMID: 31778993 PMCID: PMC7047942 DOI: 10.1088/1758-5090/ab5cf5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Printing is a promising method to reduce the cost of fabricating biomedical devices. While there have been significant advancements in direct-write printing techniques, non-contact printing of biological reagents has been almost exclusively limited to inkjet printing. Motivated by this lacuna, this work investigated aerosol jet printing (AJP) of biological reagents onto a nonfouling polymer brush to fabricate in vitro diagnostic (IVD) assays. The ultrasonication ink delivery process, which had previously been reported to damage DNA molecules, caused no degradation of printed proteins, allowing printing of a streptavidin-biotin binding assay with sub-nanogram ml-1 analytical sensitivity. Furthermore, a carcinoembryogenic antigen IVD was printed and found to have sensitivities in the clinically relevant range (limit of detection of approximately 0.5 ng ml-1 and a dynamic range of approximately three orders of magnitude). Finally, the multi-material printing capabilities of the aerosol jet printer were demonstrated by printing silver nanowires and streptavidin as interconnected patterns in the same print job without removal of the substrate from the printer, which will facilitate the fabrication of mixed-material devices. As cost, versatility, and ink usage become more prominent factors in the development of IVDs, this work has shown that AJP should become a more widely considered technique for fabrication.
Collapse
Affiliation(s)
- Nicholas X Williams
- Department of Electrical and Computer Engineering, Duke University, Durham NC 27708, United States of America
| | | | | | | | | |
Collapse
|
12
|
Scheideler W, Subramanian V. Printed flexible and transparent electronics: enhancing low-temperature processed metal oxides with 0D and 1D nanomaterials. NANOTECHNOLOGY 2019; 30:272001. [PMID: 30893670 DOI: 10.1088/1361-6528/ab1167] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Metal oxides have broad multifunctionality and important applications to energy, sensing, and information display. Printed electronics have recently adopted metal oxides to push the limits of performance and stability for flexible thin film systems. However, a grand challenge in this field is to achieve these properties while balancing the thermal budget, which critically determines the applicability, flexibility, and cost of these systems. This paper presents a focused review of printed metal oxide electronics, highlighting our recent work developing high-performance, printed transistors processed at low temperatures via aqueous precursor chemistries, nanomaterial hybrid inks, and ultraviolet annealing. These results reveal the potential for printing uniquely high-performance active devices (electronic mobility >10 cm2 V-1 s-1) but also illustrates the utility of nanocomposites that integrate nanomaterials within a metal oxide matrix for improving device performance.
Collapse
Affiliation(s)
- William Scheideler
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, United States of America
| | | |
Collapse
|