1
|
Jeong D, Kwon DS, Won G, Kim S, Bang J, Shim J. Toward Sustainable Polymer Materials for Rechargeable Batteries: Utilizing Natural Feedstocks and Recycling/Upcycling of Polymer Waste. CHEMSUSCHEM 2024; 17:e202401010. [PMID: 38842474 DOI: 10.1002/cssc.202401010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 06/07/2024]
Abstract
The ever-increasing demand for rechargeable battery systems in the era of electric vehicles has spurred extensive research into developing polymeric components for batteries, such as separators, polymer electrolytes, and binders. However, current battery systems rely on expensive and nonrenewable resources, which potentially have a negative environmental impact. Therefore, polymer materials derived from natural resources have gained significant attention, primarily due to their cost-effective and environmentally sustainable features. Moreover, natural feedstocks often possess highly polar functional groups and high molecular weights, offering desirable electro-chemo-mechanical features when applied as battery materials. More recently, various recycling and upcycling strategies for polymeric battery components have also been proposed given the substantial waste generation from end-of-life batteries. Recycling polymeric materials includes an overall process of recovering the components from spent batteries followed by regeneration into new materials. Polymer upcycling into battery materials involves transforming daily-used plastic waste into high-value-added battery components. This review aims to give a state-of-the-art overview of contemporary methods to develop sustainable polymeric materials and recycling/upcycling strategies for various battery applications.
Collapse
Affiliation(s)
- Daun Jeong
- Energy Storage Research Center, Korea Institute of Science & Technology (KIST), 14 Gil 5 Hwarang-ro, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Da-Sol Kwon
- Energy Storage Research Center, Korea Institute of Science & Technology (KIST), 14 Gil 5 Hwarang-ro, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Department of Chemical and Biological Engineering, Korea University, 14, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Gwangbin Won
- Department of Chemistry Education, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seunghyeon Kim
- Department of Chemistry Education, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Joona Bang
- Department of Chemical and Biological Engineering, Korea University, 14, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jimin Shim
- Department of Chemistry Education, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| |
Collapse
|
2
|
Qi Y, Huang J, Qin S, Yan M, Huang X, Ren Y. An In Situ Polymerization Gel Polymer Electrolyte Based on Pentaerythritol Tetracrylate for High-Performance Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39565953 DOI: 10.1021/acsami.4c16084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Problems occur frequently during the application of traditional liquid electrolyte batteries, such as fluid leakage and low energy density. As a product of liquid electrolyte transition to solid electrolyte, gel polymer electrolyte has its own advantages for achieving high conductivity and good thermal stability. In this study, pentaerythritol tetracrylate (PETEA) was used as the precursor to prepare polymer-based materials with the assistance of azobis(isobutyronitrile) (AIBN) as the initiator. Because fluorine is beneficial to improving the migration efficiency of Li+ and the electrochemical performance of the gel polymer electrolyte, dodecafluoroheptyl methacrylate (DFHMA) is introduced to the PETEA-based gel polymer electrolyte (GPE) system. The DFHMA-introduced GPE shows better electrochemical performance, battery cycle performance, conductivity, and lithium-ion migration number compared with the pristine PETEA-based GPE. In particular, the DFHMA-introduced GPE exhibits the best performance because the molar ratio of PETEA to DFHMA is 5:1. Herein, the electrochemical window is 4.6 V, the ionic conductivity reaches 1.207 mS cm-1, and the number of lithium-ion migrations reaches the value of 0.663. Because the electric current density is 2 C, the specific capacity of LiNi0.5Co0.2Mn0.3O2 (NCM523)/GPE/Li reaches 143.1 mAh g-1 after 100 cycles.
Collapse
Affiliation(s)
- Yanli Qi
- School of Materials Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou Key Laboratory of Intelligent Manufacturing and Advanced Technology for Power Battery, Changzhou Key Laboratory of the Vital Technology for Power Battery and Management System, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Jiali Huang
- School of Materials Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou Key Laboratory of Intelligent Manufacturing and Advanced Technology for Power Battery, Changzhou Key Laboratory of the Vital Technology for Power Battery and Management System, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Shaopan Qin
- School of Materials Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou Key Laboratory of Intelligent Manufacturing and Advanced Technology for Power Battery, Changzhou Key Laboratory of the Vital Technology for Power Battery and Management System, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Maoyin Yan
- School of Materials Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou Key Laboratory of Intelligent Manufacturing and Advanced Technology for Power Battery, Changzhou Key Laboratory of the Vital Technology for Power Battery and Management System, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Xiaobing Huang
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde, Hunan 415000, China
| | - Yurong Ren
- School of Materials Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou Key Laboratory of Intelligent Manufacturing and Advanced Technology for Power Battery, Changzhou Key Laboratory of the Vital Technology for Power Battery and Management System, Changzhou University, Changzhou, Jiangsu 213164, China
| |
Collapse
|
3
|
Safavi-Mirmahalleh SA, Dadkhah-Janqor A, Salami-Kalajahi M. Chitosan-based gel polymer electrolytes for high performance Li-ion battery. Int J Biol Macromol 2024; 282:137304. [PMID: 39515702 DOI: 10.1016/j.ijbiomac.2024.137304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/17/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
This study explores the use of glutaraldehyde-crosslinked chitosan-based gel polymer electrolytes (GPEs) in lithium-ion batteries (LIBs). GPEs are prepared by solution casting using two different molecular weights of chitosan including 150 kDa as medium and 400 kDa as high molecular weight (MMWCS and HMWCS, respectively) with varying amounts of crosslinker. Degree of crystallinity was 25.9 and 24.1 % for HMWCS and MMWCS, respectively that was decreased to 18.3 and 22.7 % by using 5 % crosslinker and 17.8 and 21.1 % by using 10 % crosslinker, and 17.2 and 17.6 % by using 20 % crosslinker. The obtained ionic conductivity for HMWCS and MMWCS was 3.1 × 10-3 and 2.9 × 10-3 S.cm-1. After crosslinking by 5, 10, and 20 % crosslinker, the ionic conductivity was obtained to 0.9 × 10-3 and 0.3 × 10-3 S.cm-1, 6.3 × 10-3 and 5 × 10-3 S.cm-1, and 1.1 × 10-3 and 0.5 × 10-3 S.cm-1 for high and medium molecular weight, respectively. Lithium-ion transfer number was obtained between 0.34 and 0.83 and the highest t+ value was obtained for the MMWCS-GA10. Electrochemical stability window of the prepared polymer electrolytes was >5 V and samples showed no remarkable dendrite growth after cycling analyses. The symmetric cells demonstrated reliable performance, operating for over 300 h without any short-circuiting, which indicates excellent reversible cycling stability for chitosan-based lithium-ion batteries. Furthermore, the Gr/GPE cell exhibited very low voltage polarization, with the over-potential decreasing from 10 mV initially to 6 mV after 300 h at the same current density. Discharge capacity was obtained higher than 170 mAh/g at 0.2C with CE = 97 % for both HMWCS-GA20 and HMWCS-GA20.
Collapse
Affiliation(s)
- Seyedeh-Arefeh Safavi-Mirmahalleh
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | - Alireza Dadkhah-Janqor
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran
| | - Mehdi Salami-Kalajahi
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran.
| |
Collapse
|
4
|
Song Y, Zhao G, Zhang S, Xie C, Yang R, Li X. Chitosan nanofiber paper used as separator for high performance and sustainable lithium-ion batteries. Carbohydr Polym 2024; 329:121530. [PMID: 38286525 DOI: 10.1016/j.carbpol.2023.121530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/07/2023] [Accepted: 10/24/2023] [Indexed: 01/31/2024]
Abstract
Separators are indispensable components in lithium-ion batteries (LIBs), providing efficient pathways for lithium ions to travel and isolating the positive and negative electrodes to avoid short circuits. However, traditional polyolefin-based separators exhibit inferior electrolyte affinities, limited porosities, and low thermal stabilities. In this study, a novel method was developed to prepare chitosan micro/nanofiber membranes as LIB separators using natural materials. The pore sizes of the chitosan micro/nanofibers separators were modulated by changing the diameters of the chitosan fibers. The results demonstrated that the chitosan nanofiber separators (CSNFs) had superior electrolyte uptake (281 %), excellent thermal dimensional stability, and electrochemical performance in LiFePO4/Li half-cell, as indicated by the higher discharge capacity after 100 cycles, and higher rate capacity than commercial Celgard2325 separator. This study paves the way for the fabrication of eco-efficient and environment-friendly separators for high-performance LIBs.
Collapse
Affiliation(s)
- Yanghui Song
- State Key Lab of Pulp and Papermaking Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Guanglei Zhao
- State Key Lab of Pulp and Papermaking Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Sihan Zhang
- State Key Lab of Pulp and Papermaking Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Chong Xie
- State Key Lab of Pulp and Papermaking Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Runde Yang
- State Key Lab of Pulp and Papermaking Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xiaofeng Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510644, China.
| |
Collapse
|
5
|
Islam MR, Homaira, Mahmud E, Alam RB. MoS 2 nanoflower decorated bio-derived chitosan nanocomposites for sustainable energy storage: Structural, optical and electrochemical studies. Heliyon 2024; 10:e25424. [PMID: 38356515 PMCID: PMC10864963 DOI: 10.1016/j.heliyon.2024.e25424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
Bio-derived chitosan-molybdenum di sulfide (Cs-MoS2) nanocomposites are prepared by a simple and economical aqueous casting method with varying concentrations of MoS2. The structural, surface morphological, optical, and electrochemical properties of the nanocomposites were studied. FTIR analysis reveals the strong interaction between Cs and MoS2. FESEM micrograph showed an increment of the surface roughness due to the incorporation of MoS2 layers into Cs. The surface wettability of the nanocomposites was found to be decreased from 73° to 33° due to the incorporation of MoS2 into the chitosan. UV-vis spectroscopy study demonstrates a reduction of optical bandgap from 4.29 to 3.44 eV as the nanofiller, MoS2, introduces localized states within the forbidden energy bandgap. The incorporation of MoS2 was found to increase the specific capacitance of Cs from 421 mFg-1 to 1589 mFg-1 at a current density of 100 μAg-1. The EIS analysis revealed an increase in the pseudo-capacitance from 0.09 μF to 4.13 μF and a reduction of charge transfer resistance that comes from the nanofiller contribution. MoS2 nanoflower introduces more active sites and expands the electroactive zone, thus improving the charge storage property of Cs. The Cs-MoS2 may offer a new route for the synthesis of eco-friendly, biodegradable, and electrical storage devices.
Collapse
Affiliation(s)
- Muhammad Rakibul Islam
- Nanocomposite Research Laboratory, Department of Physics, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh
| | - Homaira
- Nanocomposite Research Laboratory, Department of Physics, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh
| | - Eashika Mahmud
- Nanocomposite Research Laboratory, Department of Physics, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh
| | - Rabeya Binta Alam
- Nanocomposite Research Laboratory, Department of Physics, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh
| |
Collapse
|
6
|
Liu J, He X, Cai J, Zhou J, Liu B, Zhang S, Sun Z, Su P, Qu D, Li Y. 3D Porous VO x/N-Doped Carbon Nanosheet Hybrids Derived from Cross-Linked Dicyandiamide-Chitosan Hydrogels for Superior Supercapacitor Electrode Materials. Polymers (Basel) 2023; 15:3565. [PMID: 37688191 PMCID: PMC10490277 DOI: 10.3390/polym15173565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/20/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
Three-dimensional porous carbon materials with moderate heteroatom-doping have been extensively investigated as promising electrode materials for energy storage. In this study, we fabricated a 3D cross-linked chitosan-dicyandiamide-VOSO4 hydrogel using a polymerization process. After pyrolysis at high temperature, 3D porous VOx/N-doped carbon nanosheet hybrids (3D VNCN) were obtained. The unique 3D porous skeleton, abundant doping elements, and presence of VOx 3D VNCN pyrolyzed at 800 °C (3D VNCN-800) ensured excellent electrochemical performance. The 3D VNCN-800 electrode exhibits a maximum specific capacitance of 408.1 F·g-1 at 1 A·g-1 current density and an admirable cycling stability with 96.8% capacitance retention after 5000 cycles. Moreover, an assembled symmetrical supercapacitor based on the 3D VNCN-800 electrode delivers a maximum energy density of 15.6 Wh·Kg-1 at a power density of 600 W·Kg-1. Our study demonstrates a potential guideline for the fabrication of porous carbon materials with 3D structure and abundant heteroatom-doping.
Collapse
Affiliation(s)
- Jinghua Liu
- Liuzhou Key Laboratory of New Energy Vehicle Power Lithium Battery, Guangxi Engineering Research Center for Characteristic Metallic Powder Materials, School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545000, China; (J.L.); (J.Z.); (B.L.); (S.Z.); (Z.S.)
| | - Xiong He
- Liuzhou Key Laboratory of New Energy Vehicle Power Lithium Battery, Guangxi Engineering Research Center for Characteristic Metallic Powder Materials, School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545000, China; (J.L.); (J.Z.); (B.L.); (S.Z.); (Z.S.)
| | - Jiayang Cai
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; (J.C.); (P.S.)
| | - Jie Zhou
- Liuzhou Key Laboratory of New Energy Vehicle Power Lithium Battery, Guangxi Engineering Research Center for Characteristic Metallic Powder Materials, School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545000, China; (J.L.); (J.Z.); (B.L.); (S.Z.); (Z.S.)
| | - Baosheng Liu
- Liuzhou Key Laboratory of New Energy Vehicle Power Lithium Battery, Guangxi Engineering Research Center for Characteristic Metallic Powder Materials, School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545000, China; (J.L.); (J.Z.); (B.L.); (S.Z.); (Z.S.)
| | - Shaohui Zhang
- Liuzhou Key Laboratory of New Energy Vehicle Power Lithium Battery, Guangxi Engineering Research Center for Characteristic Metallic Powder Materials, School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545000, China; (J.L.); (J.Z.); (B.L.); (S.Z.); (Z.S.)
| | - Zijun Sun
- Liuzhou Key Laboratory of New Energy Vehicle Power Lithium Battery, Guangxi Engineering Research Center for Characteristic Metallic Powder Materials, School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545000, China; (J.L.); (J.Z.); (B.L.); (S.Z.); (Z.S.)
| | - Pingping Su
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; (J.C.); (P.S.)
| | - Dezhi Qu
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; (J.C.); (P.S.)
| | - Yudong Li
- Key Laboratory of Bio-Based Material Science & Technology, Northeast Forestry University, Harbin 150090, China;
| |
Collapse
|
7
|
Yu X, Jiang Z, Yuan R, Song H. A Review of the Relationship between Gel Polymer Electrolytes and Solid Electrolyte Interfaces in Lithium Metal Batteries. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111789. [PMID: 37299691 DOI: 10.3390/nano13111789] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
Lithium metal batteries (LMBs) are a dazzling star in electrochemical energy storage thanks to their high energy density and low redox potential. However, LMBs have a deadly lithium dendrite problem. Among the various methods for inhibiting lithium dendrites, gel polymer electrolytes (GPEs) possess the advantages of good interfacial compatibility, similar ionic conductivity to liquid electrolytes, and better interfacial tension. In recent years, there have been many reviews of GPEs, but few papers discussed the relationship between GPEs and solid electrolyte interfaces (SEIs). In this review, the mechanisms and advantages of GPEs in inhibiting lithium dendrites are first reviewed. Then, the relationship between GPEs and SEIs is examined. In addition, the effects of GPE preparation methods, plasticizer selections, polymer substrates, and additives on the SEI layer are summarized. Finally, the challenges of using GPEs and SEIs in dendrite suppression are listed and a perspective on GPEs and SEIs is considered.
Collapse
Affiliation(s)
- Xiaoqi Yu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zipeng Jiang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Renlu Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huaihe Song
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
8
|
Shamshina JL, Berton P. Renewable Biopolymers Combined with Ionic Liquids for the Next Generation of Supercapacitor Materials. Int J Mol Sci 2023; 24:ijms24097866. [PMID: 37175574 PMCID: PMC10177905 DOI: 10.3390/ijms24097866] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
The search for biocompatible and renewable materials for the next generation of energy devices has led to increasing interest in using biopolymers as a matrix component for the development of electric double-layer capacitors (EDLCs). However, using biopolymers as host matrices presents limitations in performance and scalability. At the same time, ionic liquids (ILs) have shown exceptional properties as non-aqueous electrolytes. This review intends to highlight the progress in integrating ILs and biopolymers for EDLC. While ILs have been used as solvents to process biopolymers and electrolyte materials, biopolymers have been utilized to provide novel chemistries of electrolyte materials via one of the following scenarios: (1) acting as host polymeric matrices for IL-support, (2) performing as polymeric fillers, and (3) serving as backbone polymer substrates for synthetic polymer grafting. Each of these scenarios is discussed in detail and supported with several examples. The use of biopolymers as electrode materials is another topic covered in this review, where biopolymers are used as a source of carbon or as a flexible support for conductive materials. This review also highlights current challenges in materials development, including improvements in robustness and conductivity, and proper dispersion and compatibility of biopolymeric and synthetic polymeric matrices for proper interface bonding.
Collapse
Affiliation(s)
- Julia L Shamshina
- Fiber and Biopolymer Research Institute, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Paula Berton
- Chemical and Petroleum Engineering Department, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
9
|
Liu Y, Lv S, Zhang M, He J, Ni P. UV-Photopolymerized Cellulose Acetate-Acrylate Membranes for Lithium-ion Battery Separator. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
10
|
Encapsulating carboxymethyl substituted chitosan on LiNi0.5Mn1.5O4 cathode for enhanced charge/discharge performances. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
11
|
Xue X, Wan L, Li W, Tan X, Du X, Tong Y. A Self-Healing Gel Polymer Electrolyte, Based on a Macromolecule Cross-Linked Chitosan for Flexible Supercapacitors. Gels 2022; 9:gels9010008. [PMID: 36661776 PMCID: PMC9857939 DOI: 10.3390/gels9010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Gel polymer electrolytes with a satisfied ionic conductivity have attracted interest in flexible energy storage technologies, such as supercapacitors and rechargeable batteries. However, the poor mechanical strength inhibits its widespread application. One of the most significant ways to avoid the drawbacks of the gel polymer electrolytes without compromising their ion transportation capabilities is to create a self-healing structure with the cross-linking segment. Herein, a new kind of macromolecule chemical cross-linked network ionic gel polymer electrolyte (MCIGPE) with superior electrochemical characteristics, a high flexibility, and an excellent self-healing ability were designed, based on chitosan and dibenzaldehyde-terminated poly (ethylene glycol) (PEGDA) via dynamic imine bonds. The ionic conductivity of the MCIGPE-65 can achieve 2.75 × 10-2 S cm-1. A symmetric all-solid-state supercapacitor employing carbon cloth as current collectors, activated a carbon film as electrodes, and MCIGPE-65 as a gel polymer electrolyte exhibits a high specific capacitance of 51.1 F g-1 at 1 A g-1, and the energy density of 7.1 Wh kg-1 at a power density of 500.2 W kg-1. This research proves the enormous potential of incorporating, environmentally and economically, chitosan into gel polymer electrolytes for supercapacitors.
Collapse
Affiliation(s)
| | | | | | | | | | - Yongfen Tong
- Correspondence: ; Tel.: +86-791-8395-3377; Fax: +86-791-8395-3373
| |
Collapse
|
12
|
Proton Conductivity and Dimensional Stability of Proton Exchange Membrane: A Dilemma Solved by Chitosan Aerogel Framework. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Wang A, Tu Y, Wang S, Zhang H, Yu F, Chen Y, Li D. A PEGylated Chitosan as Gel Polymer Electrolyte for Lithium Ion Batteries. Polymers (Basel) 2022; 14:4552. [PMID: 36365545 PMCID: PMC9657041 DOI: 10.3390/polym14214552] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 07/23/2024] Open
Abstract
Due to their safety and sustainability, polysaccharides such as cellulose and chitosan have great potential to be the matrix of gel polymer electrolytes (GPE) for lithium-based batteries. However, they easily form hydrogels due to the large numbers of hydrophilic hydroxyl or amino functional groups within their macromolecules. Therefore, a polysaccharide-based amphiphilic gel, or organogel, is urgently necessary to satisfy the anhydrous requirement of lithium ion batteries. In this study, a PEGylated chitosan was initially designed using a chemical grafting method to make an GPE for lithium ion batteries. The significantly improved affinity of PEGylated chitosan to organic liquid electrolyte makes chitosan as a GPE for lithium ion batteries possible. A reasonable ionic conductivity (1.12 × 10-3 S cm-1) and high lithium ion transport number (0.816) at room temperature were obtained by replacing commercial battery separator with PEG-grafted chitosan gel film. The assembled Li/GPE/LiFePO4 coin cell also displayed a high initial discharge capacity of 150.8 mA h g-1. The PEGylated chitosan-based GPE exhibits great potential in the field of energy storage.
Collapse
Affiliation(s)
- Anqi Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, Haikou 570228, China
| | - Yue Tu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, Haikou 570228, China
| | - Sijie Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, Haikou 570228, China
| | - Hongbing Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, Haikou 570228, China
| | - Feng Yu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, Haikou 570228, China
| | - Yong Chen
- Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
| | - De Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, Haikou 570228, China
| |
Collapse
|
14
|
Wu C, Zeng W. Gel Electrolyte for Li Metal Battery. Chem Asian J 2022; 17:e202200816. [PMID: 36220330 DOI: 10.1002/asia.202200816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/17/2022] [Indexed: 11/09/2022]
Abstract
The pursuit of high energy density enables lithium metal batteries (LMBs) to become the research hotpot again. However, the safety concerns including easy leakage and inflammability of the liquid electrolyte and the performance deterioration due to the uncontrollable Li dendrites growth in liquid electrolyte limit the further development of LMBs. Gel electrolyte, the most promising alternative for the commercial liquid electrolyte, is expected to solve the dilemma faced by the liquid electrolyte because of its higher safety, good flexibility and adaptability to the electrode and high ionic conductivity comparable to that of liquid electrolyte. Deeply understanding the characteristics and the role of the gel electrolyte in LMBs is of great importance to achieve superior electrochemical performance of LMBs. In this review, we comprehensively introduce the chemical fundamental of the gel electrolyte. On this basis, the modification strategies and the recent progress of the gel electrolyte for LMBs are systematically reviewed and particularly highlighted, which are categorized based on composition regulation, structural design and functional design. We endeavor to provide guidance for the rational design of the gel electrolyte with superior properties for LMBs.
Collapse
Affiliation(s)
- Chen Wu
- Department of Flexible Sensing Technology, Guangdong Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, 510665, P. R. China
| | - Wei Zeng
- Department of Flexible Sensing Technology, Guangdong Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, 510665, P. R. China
| |
Collapse
|
15
|
Two-Dimensional Zeolitic Imidazolate Framework ZIF-L: A Promising Catalyst for Polymerization. Catalysts 2022. [DOI: 10.3390/catal12050521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Here, for the first time, a 2D and leaf-like zeolitic imidazolate framework (ZIF-L) is reported for the synthesis of ultrahigh molecular weight (UHMW) poly(methyl methacrylate) (PMMA) with Mn up to 1390 kg mol−1. This synthesis method is a one-step process without any co-catalyst in a solvent-free medium. SEM, PXRD, FT-IR, TGA, and nitrogen sorption measurements confirmed the 2D and leaf-like structure of ZIF-L. The results of PXRD, SEM, TGA demonstrate that the catalyst ZIF-L is remarkably stable even after a long-time polymerization reaction. Zwitterionic Lewis pair polymerization (LPP) has been proposed for the catalytic performance of ZIF-L on methyl methacrylate (MMA) polymerization. This MMA polymerization is consistent with a living system, where ZIF-L could reinitiate the polymerization and propagates the process by gradually growing the polymer chains.
Collapse
|
16
|
Lan L, Ping J, Xiong J, Ying Y. Sustainable Natural Bio-Origin Materials for Future Flexible Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200560. [PMID: 35322600 PMCID: PMC9130888 DOI: 10.1002/advs.202200560] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/27/2022] [Indexed: 05/12/2023]
Abstract
Flexible devices serve as important intelligent interfaces in various applications involving health monitoring, biomedical therapies, and human-machine interfacing. To address the concern of electronic waste caused by the increasing usage of electronic devices based on synthetic polymers, bio-origin materials that possess environmental benignity as well as sustainability offer new opportunities for constructing flexible electronic devices with higher safety and environmental adaptivity. Herein, the bio-source and unique molecular structures of various types of natural bio-origin materials are briefly introduced. Their properties and processing technologies are systematically summarized. Then, the recent progress of these materials for constructing emerging intelligent flexible electronic devices including energy harvesters, energy storage devices, and sensors are introduced. Furthermore, the applications of these flexible electronic devices including biomedical implants, artificial e-skin, and environmental monitoring are summarized. Finally, future challenges and prospects for developing high-performance bio-origin material-based flexible devices are discussed. This review aims to provide a comprehensive and systematic summary of the latest advances in the natural bio-origin material-based flexible devices, which is expected to offer inspirations for exploitation of green flexible electronics, bridging the gap in future human-machine-environment interactions.
Collapse
Affiliation(s)
- Lingyi Lan
- Laboratory of Agricultural Information Intelligent SensingSchool of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouZhejiang310058China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang ProvinceHangzhouZhejiang310058China
| | - Jianfeng Ping
- Laboratory of Agricultural Information Intelligent SensingSchool of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouZhejiang310058China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang ProvinceHangzhouZhejiang310058China
| | - Jiaqing Xiong
- Innovation Center for Textile Science and TechnologyDonghua University2999 North Renmin RoadShanghai201620China
| | - Yibin Ying
- Laboratory of Agricultural Information Intelligent SensingSchool of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouZhejiang310058China
- Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang ProvinceHangzhouZhejiang310058China
| |
Collapse
|
17
|
Raghavan A, Ghosh S. Recent Advancements on Biopolymer‐ Based Flexible Electrolytes for Next‐Gen Supercaps and Batteries: A Brief Sketch. ChemistrySelect 2021. [DOI: 10.1002/slct.202103291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Akshaya Raghavan
- Polymers & Functional Materials division CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Sutapa Ghosh
- Polymers & Functional Materials division CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
18
|
Xu F, Deng S, Guo Q, Zhou D, Yao X. Quasi-Ionic Liquid Enabling Single-Phase Poly(vinylidene fluoride)-Based Polymer Electrolytes for Solid-State LiNi 0.6 Co 0.2 Mn 0.2 O 2 ||Li Batteries with Rigid-Flexible Coupling Interphase. SMALL METHODS 2021; 5:e2100262. [PMID: 34927985 DOI: 10.1002/smtd.202100262] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Indexed: 05/21/2023]
Abstract
Poly(vinylidene fluoride)-based polymer electrolytes are being intensely investigated for solid-state lithium metal batteries. However, phase separation and porous structures are still pronounced issues in traditional preparing procedure. Herein, a bottom-to-up strategy is employed to design single-phase and densified polymer electrolytes via incorporating quasi-ionic liquid with poly(vinylidene fluoride-co-hexafluoropropylene). Due to strong ion/dipole-dipole interaction, the optimized polymer electrolyte delivers high room-temperature ionic conductivity of 1.55 × 10-3 S cm-1 , superior thermal and oxidation stability of 4.97 V, excellent stretchability of over 1500% and toughness of 43 MJ cm-3 as well as desirable self-extinguishing ability. Furthermore, the superb compatibility toward Li anode enables over 3000 h cycling of Li plating/stripping and ≈98% Coulombic efficiency in Li||Cu test at 0.1 mA cm-2 . In particular, lithium metal battery Li||LiNi0.6 Co0.2 Mn0.2 O2 exhibits a room-temperature discharge retention rate of 96% after 500 cycles under a rate of 0.1 C, which is associated with the rigid-flexible coupling electrodes/electrolytes interphase. This investigation demonstrates the potential application of quasi-ionic liquid/polymer electrolytes in safe lithium metal batteries.
Collapse
Affiliation(s)
- Fanglin Xu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Shungui Deng
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Qingya Guo
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Dong Zhou
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Xiayin Yao
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
19
|
Mousavi H. A comprehensive survey upon diverse and prolific applications of chitosan-based catalytic systems in one-pot multi-component synthesis of heterocyclic rings. Int J Biol Macromol 2021; 186:1003-1166. [PMID: 34174311 DOI: 10.1016/j.ijbiomac.2021.06.123] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/16/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
Heterocyclic compounds are among the most prestigious and valuable chemical molecules with diverse and magnificent applications in various sciences. Due to the remarkable and numerous properties of the heterocyclic frameworks, the development of efficient and convenient synthetic methods for the preparation of such outstanding compounds is of great importance. Undoubtedly, catalysis has a conspicuous role in modern chemical synthesis and green chemistry. Therefore, when designing a chemical reaction, choosing and or preparing powerful and environmentally benign simple catalysts or complicated catalytic systems for an acceleration of the chemical reaction is a pivotal part of work for synthetic chemists. Chitosan, as a biocompatible and biodegradable pseudo-natural polysaccharide is one of the excellent choices for the preparation of suitable catalytic systems due to its unique properties. In this review paper, every effort has been made to cover all research articles in the field of one-pot synthesis of heterocyclic frameworks in the presence of chitosan-based catalytic systems, which were published roughly by the first quarter of 2020. It is hoped that this review paper can be a little help to synthetic scientists, methodologists, and catalyst designers, both on the laboratory and industrial scales.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran.
| |
Collapse
|
20
|
Yu F, Zhao L, Zhang H, Sun Z, Li Y, Hu Q, Chen Y. Cathode/gel polymer electrolyte integration design based on continuous composition and preparation technique for high performance lithium ion batteries. RSC Adv 2021; 11:3854-3862. [PMID: 35424375 PMCID: PMC8694142 DOI: 10.1039/d0ra10743c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/08/2021] [Indexed: 11/21/2022] Open
Abstract
Gel polymer electrolytes (GPEs) combine the high ionic conductivity of liquid electrolytes and good safety assurance of solid electrolytes. However, the poor interfacial contact between electrode materials and electrolyte is still a big obstacle to the high performance of solid-state batteries. Herein, an integrated cathode/GPE based on continuous composition and preparation technic is obtained by simple UV curing. The improved interfacial contact between cathode and GPE helps to facilitate the fast ions transfer at the interface. Compared with cells assembled with separated cathode and GPE, the cells with integrated cathode-GPE showed much lower interfacial impedance, lower potential polarization and more stable cycling property. This work provided a low-cost natural material gelatin and a simple UV irradiation method to prepare an integrated cathode and gel polymer electrolyte for solid-state lithium batteries. The capacity retention of the cells assembled from integrated structure was 91.4% which was much higher than that of the non-integrated cells (80.9%) after 200 cycles.
Collapse
Affiliation(s)
- Feng Yu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, College of Materials Science and Engineering, Hainan University Haikou 570228 PR China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University Tianjin 300071 PR China
| | - Lingzhu Zhao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, College of Materials Science and Engineering, Hainan University Haikou 570228 PR China
| | - Hongbing Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, College of Materials Science and Engineering, Hainan University Haikou 570228 PR China
| | - Zhipeng Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, College of Materials Science and Engineering, Hainan University Haikou 570228 PR China
| | - Yuli Li
- Institution of Plastic Surgery, Weifang Medical University Weifang 261042 P. R. China
| | - Qing Hu
- School of Material Science and Engineering, Jingdezhen Ceramic Institute Jingdezhen 333001 P. R. China
| | - Yong Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, College of Materials Science and Engineering, Hainan University Haikou 570228 PR China
| |
Collapse
|
21
|
Shang C, Fan F. Preparation of ionogel-bonded mesoporous silica and its application in liquid chromatography. NEW J CHEM 2021. [DOI: 10.1039/d1nj03244e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A new preparation strategy for stable ionogels on silica obtained by a chemical bonding method and its application in LC.
Collapse
Affiliation(s)
- Ce Shang
- E&D Research Institute of Liaohe Oilfield Company, Panjin, 124010, China
| | - Fangbin Fan
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Zhu C, Zhang J, Zeng X, Xu J, Wang L, Li Z. Semi‐Interpenetrating Polymer Electrolyte as a Coating Layer Constructed on Polyphenylene Sulfide Nonwoven to Afford Superior Stability and Performance for Lithium‐Ion Batteries. ChemElectroChem 2020. [DOI: 10.1002/celc.202001232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Changqing Zhu
- College of Materials Science and Engineering Key Laboratory of Textile Fiber and Products (Ministry of Education) Wuhan Textile University Wuhan 430200 China
| | - Jingxi Zhang
- College of Materials Science and Engineering Key Laboratory of Textile Fiber and Products (Ministry of Education) Wuhan Textile University Wuhan 430200 China
| | - Xinyu Zeng
- College of Materials Science and Engineering Key Laboratory of Textile Fiber and Products (Ministry of Education) Wuhan Textile University Wuhan 430200 China
| | - Jing Xu
- College of Materials Science and Engineering Key Laboratory of Textile Fiber and Products (Ministry of Education) Wuhan Textile University Wuhan 430200 China
| | - Luoxin Wang
- College of Materials Science and Engineering Key Laboratory of Textile Fiber and Products (Ministry of Education) Wuhan Textile University Wuhan 430200 China
| | - Zi‐Chen Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) Key Laboratory of Polymer Chemistry & Physics of Ministry of Education Department of Polymer Science & Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| |
Collapse
|
23
|
Abdur RM, Mousavi B, Shahadat HM, Akther N, Chaemchuen S, Verpoort F. High Molecular Weight Poly(methyl methacrylate) Synthesis Using Recyclable and Reusable Zeolitic Imidazole Framework‐8 Catalyst. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rahaman M. Abdur
- Laboratory of Organometallics Catalysis and Ordered Materials State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 China
- School of Materials Science and Engineering Wuhan University of Technology Wuhan 430070 China
- Department of Chemistry Mawlana Bhashani Science and Technology University Santosh Tangail 1902 Bangladesh
| | - Bibimaryam Mousavi
- Laboratory of Organometallics Catalysis and Ordered Materials State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 China
| | - Hossain M. Shahadat
- Laboratory of Organometallics Catalysis and Ordered Materials State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 China
- School of Materials Science and Engineering Wuhan University of Technology Wuhan 430070 China
- Department of Chemistry Comilla University Comilla 3506 Bangladesh
| | - Nishat Akther
- Department of Biochemistry and Molecular Biology Mawlana Bhashani Science and Technology University Santosh Tangail 1902 Bangladesh
| | - Somboon Chaemchuen
- Laboratory of Organometallics Catalysis and Ordered Materials State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 China
| | - Francis Verpoort
- Laboratory of Organometallics Catalysis and Ordered Materials State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 China
- National Research Tomsk Polytechnic University Lenin Avenue 30 Tomsk 634050 Russia
- Center for Environmental and Energy Research Ghent University Global Campus 119 Songdomunhwa‐Ro Yeonsu‐Gu Incheon 404‐806 South Korea
| |
Collapse
|
24
|
Kim S, Kim DH, Cho M, Lee WB, Lee Y. Fast-Charging Lithium-Sulfur Batteries Enabled via Lean Binder Content. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004372. [PMID: 33136316 DOI: 10.1002/smll.202004372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Next-generation energy storage devices such as lithium-sulfur batteries (LSBs) face several challenges including fast charging and high-power delivery. Thus, it is necessary to improve the stability of the electrodes with efficient electrochemical system. In this work, a durable sulfur cathode even at high rates is enabled via lean binder content. The binder consists of a chitosan cross-linked with a carboxylated nitrile-butadiene rubber (XNBR), which exhibits high affinity toward lithium polysulfide along with robust mechanical properties because of the synergistic effect of the polar chitosan and the elastomeric XNBR. Despite using extremely small content of binder (3 wt%), the LSB shows a highly stable long-term cycling performance with capacity retention decay values of 0.026% and 0.029% after 500 cycles at 5 and 10 C. Moreover, the cell shows an outstanding specific capacity of 228 mAh g-1 at an ultrahigh charge-discharge rate of 20 C. This approach may significantly improve the design of the sulfur cathode and pave a facile way to fabricate commercially viable next-generation energy storage devices.
Collapse
Affiliation(s)
- Soochan Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Dong Hyun Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Misuk Cho
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Won Bo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Youngkwan Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
25
|
Zeng F, Sun Y, Hui B, Xia Y, Zou Y, Zhang X, Yang D. Three-Dimensional Porous Alginate Fiber Membrane Reinforced PEO-Based Solid Polymer Electrolyte for Safe and High-Performance Lithium Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2020; 12:43805-43812. [PMID: 32897049 DOI: 10.1021/acsami.0c13039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The rational design and optimization of solid polymer electrolytes (SPEs) are critical for the application of safety and high efficiency lithium ion batteries (LIBs). Herein, we synthesized a novel poly(ethylene oxide) (PEO)-based SPE (PEO@AF SPE) with a cross-linking network by the introduction of alginate fiber (AF) membranes. Depending on the high-strength supporting AF skeleton and the cross-linking network formed by hydrogen bonds between the PEO matrix and AF skeleton, the obtained PEO@AF SPE exhibits an excellent tensile strength of 3.71 MPa, favorable heat resistance (close to 120 °C), and wide electrochemical stability window (5.2 V vs Li/Li+). Meanwhile, the abundant oxygen-containing groups in alginate macromolecular and the three-dimensional (3D) porous structure of the AF membrane can greatly increase Li+ anchor points and provide more Li+ migration pathways, leading to the enhancement of Li+ conduction and interfacial stability between the SPE and Li anode. Furthermore, the assembled LiFePO4/PEO@AF SPE/Li cells also exhibit satisfactory electrochemical performance. These results reveal that PEO incorporating with AFs can boost the mechanical strength, thermostability, and electrochemical properties of the SPE simultaneously. Furthermore, one will expect that the newly designed PEO@AF SPE with cross-linked networks thus provides the possibility for future applications of safety and high-performance LIBs.
Collapse
Affiliation(s)
- Fanyou Zeng
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Bio-based Materials, Qingdao University, Qingdao 266071, P. R. China
| | - Yuanyuan Sun
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Bio-based Materials, Qingdao University, Qingdao 266071, P. R. China
| | - Bin Hui
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Bio-based Materials, Qingdao University, Qingdao 266071, P. R. China
| | - Yanzhi Xia
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Bio-based Materials, Qingdao University, Qingdao 266071, P. R. China
| | - Yihui Zou
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Bio-based Materials, Qingdao University, Qingdao 266071, P. R. China
| | - Xiaoli Zhang
- State Centre for International Cooperation on Designer Low-Carbon and Environmental Materials, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Dongjiang Yang
- School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Bio-based Materials, Qingdao University, Qingdao 266071, P. R. China
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan, Brisbane QLD 4111, Australia
| |
Collapse
|
26
|
Sun R, Zhang X, San Hui K, Zhang K, Xu G, Li C, Ma J, He W. NaTi
2
(PO
4
)
3
/N‐Doped Hard Carbon Nanocomposites with Sandwich Structure for High‐Performance Na‐Ion Full Batteries. ChemElectroChem 2020. [DOI: 10.1002/celc.202000116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Rong Sun
- Institute of Materials Science and Engineering Qilu University of Technology Shandong Academy of Sciences Jinan 250353 China
| | - Xudong Zhang
- Institute of Materials Science and Engineering Qilu University of Technology Shandong Academy of Sciences Jinan 250353 China
| | - Kwan San Hui
- Energy and Environment Laboratory, School of Engineering University of East Anglia (UEA) Norwich NR4 7TJ United Kingdom
| | - Keliang Zhang
- Institute of Materials Science and Engineering Qilu University of Technology Shandong Academy of Sciences Jinan 250353 China
| | - Guogang Xu
- College of Material Science and Engineering Shandong University of Science and Technology Qingdao 266590 China
| | - Changgang Li
- Institute of Materials Science and Engineering Qilu University of Technology Shandong Academy of Sciences Jinan 250353 China
| | - Jingyun Ma
- Institute of Materials Science and Engineering Qilu University of Technology Shandong Academy of Sciences Jinan 250353 China
| | - Wen He
- Institute of Materials Science and Engineering Qilu University of Technology Shandong Academy of Sciences Jinan 250353 China
| |
Collapse
|
27
|
Kumar S, Bera R, Das N, Koh J. Chitosan-based zeolite-Y and ZSM-5 porous biocomposites for H2 and CO2 storage. Carbohydr Polym 2020; 232:115808. [DOI: 10.1016/j.carbpol.2019.115808] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/19/2019] [Accepted: 12/29/2019] [Indexed: 02/07/2023]
|
28
|
Zhang J, Zhu C, Xu J, Wu J, Yin X, Chen S, Zhu Z, Wang L, Li ZC. Enhanced mechanical behavior and electrochemical performance of composite separator by constructing crosslinked polymer electrolyte networks on polyphenylene sulfide nonwoven surface. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117622] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Zhao L, Fu J, Du Z, Jia X, Qu Y, Yu F, Du J, Chen Y. High-strength and flexible cellulose/PEG based gel polymer electrolyte with high performance for lithium ion batteries. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117428] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
30
|
Sun G, Guo J, Niu H, Chen N, Zhang M, Tian G, Qi S, Wu D. The design of a multifunctional separator regulating the lithium ion flux for advanced lithium-ion batteries. RSC Adv 2019; 9:40084-40091. [PMID: 35541409 PMCID: PMC9076257 DOI: 10.1039/c9ra08006f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/21/2019] [Indexed: 11/21/2022] Open
Abstract
Herein, we design a controllable approach for preparing multifunctional polybenzimidazole porous membranes with superior fire-resistance, excellent thermo-stability, and high wettability. Specifically, the recyclable imidazole is firstly utilized as the eco-friendly template for micropores formation, which is an interesting finding and has tremendous potential for low-cost industrial production. The unique backbone structure of the as-prepared polybenzimidazole porous membrane endows the separator with superb thermal dimensional stability at 300 °C. Most significantly, the inherent flame retardancy of polybenzimidazole can ensure the high security of lithium-ion batteries, and the existence of polar groups of imidazole can regulate the Li+ flux and improve the ionic conductivity of lithium ions. Notably, the cell with a polybenzimidazole porous membrane presents higher capability (131.7 mA h g-1) than that of a commercial Celgard membrane (95.4 mA h g-1) at higher charge-discharge density (5C), and it can work normally at 120 °C. The fascinating comprehensive properties of the polybenzimidazole porous membrane with excellent thermal-stability, satisfying wettability, superb flame retardancy and good electrochemical performance indicate its promising application for high-safety and high-performance lithium-ion batteries.
Collapse
Affiliation(s)
- Guohua Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 China +86 10 6442 1693
| | - Jiacong Guo
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 China +86 10 6442 1693
| | - Hongqing Niu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 China +86 10 6442 1693
| | - Nanjun Chen
- Department of Energy Engineering, College of Engineering, Hanyang University Seoul 04763 Republic of Korea
| | - Mengying Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 China +86 10 6442 1693
| | - Guofeng Tian
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 China +86 10 6442 1693
| | - Shengli Qi
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 China +86 10 6442 1693
- Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology Changzhou 213164 Jiangsu China +86 10 6442 2381
| | - Dezhen Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology Beijing 100029 China +86 10 6442 1693
| |
Collapse
|
31
|
Du Z, Su Y, Qu Y, Zhao L, Jia X, Mo Y, Yu F, Du J, Chen Y. A mechanically robust, biodegradable and high performance cellulose gel membrane as gel polymer electrolyte of lithium-ion battery. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.12.173] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|