1
|
Rafieerad A, Saleth LR, Khanahmadi S, Amiri A, Alagarsamy KN, Dhingra S. Periodic Table of Immunomodulatory Elements and Derived Two-Dimensional Biomaterials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2406324. [PMID: 39754328 DOI: 10.1002/advs.202406324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/09/2024] [Indexed: 01/06/2025]
Abstract
Periodic table of chemical elements serves as the foundation of material chemistry, impacting human health in many different ways. It contributes to the creation, growth, and manipulation of functional metallic, ceramic, metalloid, polymeric, and carbon-based materials on and near an atomic scale. Recent nanotechnology advancements have revolutionized the field of biomedical engineering to tackle longstanding clinical challenges. The use of nano-biomaterials has gained traction in medicine, specifically in the areas of nano-immunoengineering to treat inflammatory and infectious diseases. Two-dimensional (2D) nanomaterials have been found to possess high bioactive surface area and compatibility with human and mammalian cells at controlled doses. Furthermore, these biomaterials have intrinsic immunomodulatory properties, which is crucial for their application in immuno-nanomedicine. While significant progress has been made in understanding their bioactivity and biocompatibility, the exact immunomodulatory responses and mechanisms of these materials are still being explored. Current work outlines an innovative "immunomodulatory periodic table of elements" beyond the periodic table of life, medicine, and microbial genomics and comprehensively reviews the role of each element in designing immunoengineered 2D biomaterials in a group-wise manner. It recapitulates the most recent advances in immunomodulatory nanomaterials, paving the way for the development of new mono, hybrid, composite, and hetero-structured biomaterials.
Collapse
Affiliation(s)
- Alireza Rafieerad
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Biomedical Engineering Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R2H2A6, Canada
| | - Leena Regi Saleth
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Biomedical Engineering Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R2H2A6, Canada
| | - Soofia Khanahmadi
- Institute for Molecular Biosciences, Johann Wolfgang Goethe Universität, 60438, Frankfurt am Main, Germany
| | - Ahmad Amiri
- Russell School of Chemical Engineering, The University of Tulsa, Tulsa, OK, 74104, USA
| | - Keshav Narayan Alagarsamy
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Biomedical Engineering Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R2H2A6, Canada
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Biomedical Engineering Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R2H2A6, Canada
| |
Collapse
|
2
|
Fan K, Li Q, Qian Y, Zhang L, Lu D, Zhu L, Yan S, Xu B, Wang Y. Enhanced Photothermal Therapy under Low-Power Near-Infrared Irradiation Enabled by a Si-Cyclopentadithiophene-Based Organic Molecule. Adv Healthc Mater 2024:e2403248. [PMID: 39555634 DOI: 10.1002/adhm.202403248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/30/2024] [Indexed: 11/19/2024]
Abstract
Due to the inadequate photothermal conversion efficiency (PCE), most photothermal agents (PTAs) have to be used under high-power near-infrared (NIR) irradiation, which significantly exceeds medical safety standards, for achieving effective photothermal therapy (PTT) in antitumor treatment. This significantly hinders practical PTT application. Herein, three acceptor-donor-acceptor(A-D-A)-type molecules are synthesized based on cyclopentadithiophene unit to develop effective PTAs. By incorporating the large-size Si atom in the A-D-A molecules, the photosensitizer displays an increased packing distance in the aggregate state, leading to a blue-shifted absorption spectrum that better matches the medial laser wavelength. Also, the Si incorporation strategy elevates the nonradiative decay rate constants (knr) of the A-D-A photosensitizer, and thereby a further enhancement in PCE is achieved for the PTA. Consequently, the SiO-4F-based nanoparticles exhibited 64.23% PCE, with excellent biosafety and photothermal stability. Under NIR irradiation with medical safety (808 nm, 0.33 W cm-2), SiO-4F nanoparticles with 100 µg mL-1 yield a death rate of over 91% for diverse tumor cells. Moreover, in vivo experiments, SiO-4F-based PTT effectively inhibited and eliminated tumors. These findings suggest that the Si-incorporated CDPT is promising for constructing effective A-D-A photosensitizers, enabling the PTT under NIR irradiation that meets medical safety standards.
Collapse
Affiliation(s)
- Kexin Fan
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qingyang Li
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuping Qian
- Department of General Dentistry II, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials & Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| | - Ludan Zhang
- Department of General Dentistry II, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials & Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| | - Di Lu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nano-science and Technology, Beijing, 100190, China
| | - Ling Zhu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nano-science and Technology, Beijing, 100190, China
| | - Shouke Yan
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Bowei Xu
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuguang Wang
- Department of General Dentistry II, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials & Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, PR China
| |
Collapse
|
3
|
Sánchez-Iglesias A, Grzelczak M. Expanding Chemical Space in the Synthesis of Gold Bipyramids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407735. [PMID: 39520337 DOI: 10.1002/smll.202407735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Gold bipyramids (AuBPs), despite having superior properties compared to their spectroscopically similar counterparts, gold nanorods, have found comparatively limited applications. This discrepancy is primarily due to the lack of protocols to tailor their dimensions. Typically, the concentration of Au seeds is virtually the sole factor that determines the aspect ratio and thus, the optical properties of AuBPs. As a result, varying the volumes of AuBPs while incurring minimal changes to their optical spectra remains a synthetically non-trivial task. Here, the chemical space in the seeded growth of AuBPs, is expanded by exploiting the interplay between bromide, silver ions, and seed concentration for tuning the final dimensions and optical properties of AuBPs. Specifically, a 6 fold change in volumes of AuBPs is achieved while maintaining the fixed plasmon band position. Further overgrowth of as-prepared bipyramids broadens the realizable dimensions without compromising quality and initial morphology. Overall, the results expand the chemical toolbox in the wet-chemistry synthesis of anisotropic gold nanoparticles, which is relevant for health, colorimetric sensors, and energy applications.
Collapse
Affiliation(s)
- Ana Sánchez-Iglesias
- Centro de Física de Materiales (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, Donostia-San Sebastián, 20018, Spain
| | - Marek Grzelczak
- Centro de Física de Materiales (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, Donostia-San Sebastián, 20018, Spain
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, Donostia-Sebastián, 20018, Spain
| |
Collapse
|
4
|
Naveen Prasad S, Mahasivam S, Ramanathan R, Bansal V. Silver-based bimetallic nanozyme fabrics with peroxidase-mimic activity for urinary glucose detection. Anal Bioanal Chem 2024; 416:6149-6159. [PMID: 39153105 PMCID: PMC11511708 DOI: 10.1007/s00216-024-05483-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/08/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024]
Abstract
The enhanced catalytic properties of bimetallic nanoparticles have been extensively investigated. In this study, bimetallic Ag-M (M = Au, Pt, or Pd) cotton fabrics were fabricated using a combination of electroless deposition and galvanic replacement reactions, and improvement in their peroxidase-mimicking catalytic activity compared to that of the parent Ag fabric was studied. The Ag-Pt bimetallic nanozyme fabric, which showed the highest catalytic activity and ability to simultaneously generate hydroxyl (•OH) and superoxide (O2•-) radicals, was assessed as a urine glucose sensor. This nanozyme fabric sensor could directly detect urinary glucose in the pathophysiologically relevant high millimolar range without requiring sample predilution. The sensor could achieve performance on par with that of the current clinical gold standard assay. These features of the Ag-Pt nanozyme sensor, particularly its ability to avoid interference effects from complex urinary matrices, position it as a viable candidate for point-of-care urinary glucose monitoring.
Collapse
Affiliation(s)
- Sanjana Naveen Prasad
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Sanje Mahasivam
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Rajesh Ramanathan
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, Melbourne, VIC, 3000, Australia.
| | - Vipul Bansal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory (NBRL), School of Science, RMIT University, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
5
|
Peng J, Li S, Ti H. Sensitize Tumor Immunotherapy: Immunogenic Cell Death Inducing Nanosystems. Int J Nanomedicine 2024; 19:5895-5930. [PMID: 38895146 PMCID: PMC11184231 DOI: 10.2147/ijn.s457782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Low immunogenicity of tumors poses a challenge in the development of effective tumor immunotherapy. However, emerging evidence suggests that certain therapeutic approaches, such as chemotherapy, radiotherapy, and phototherapy, can induce varying degrees of immunogenic cell death (ICD). This ICD phenomenon leads to the release of tumor antigens and the maturation of dendritic cells (DCs), thereby enhancing tumor immunogenicity and promoting immune responses. However, the use of a single conventional ICD inducer often fails to achieve in situ tumor ablation and establish long-term anti-tumor immune responses. Furthermore, the induction of ICD induction varies among different approaches, and the distribution of the therapeutic agent within the body influences the level of ICD and the occurrence of toxic side effects. To address these challenges and further boost tumor immunity, researchers have explored nanosystems as inducers of ICD in combination with tumor immunotherapy. This review examines the mechanisms of ICD and different induction methods, with a specific focus on the relationship between ICD and tumor immunity. The aim is to explore the research advancements utilizing various nanomaterials to enhance the body's anti-tumor effects by inducing ICD. This paper aims to contribute to the development and clinical application of nanomaterial-based ICD inducers in the field of cancer immunotherapy by providing important theoretical guidance and practical references.
Collapse
Affiliation(s)
- Jianlan Peng
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Shiying Li
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Huihui Ti
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
- Guangdong Province Precise Medicine and Big Data Engineering Technology Research Center for Traditional Chinese Medicine, Guangzhou, People’s Republic of China
| |
Collapse
|
6
|
Fan K, Zhang L, Zhong Q, Xiang Y, Xu B, Wang Y. Acceptor-donor-acceptor-type molecules with large electrostatic potential difference for effective NIR photothermal therapy. J Mater Chem B 2024; 12:5140-5149. [PMID: 38712564 DOI: 10.1039/d4tb00187g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Although acceptor-donor-acceptor (A-D-A)-type molecules offer advantages in constructing NIR absorbing photothermal agents (PTAs) due to their strong intramolecular charge transfer and molecular planarity, their applications in photothermal therapy (PTT) of tumors remain insufficiently explored. In particular, the influence of ESP distribution on the optical properties of A-D-A photosensitizers has not been investigated. Herein, we analyze and compare the difference in ESP distribution between A-D-A-type small molecules and polymers to construct NIR absorbing PTAs with a high extinction coefficient (ε) and high photothermal conversion efficiency (PCE). The calculation results of density functional theory (DFT) indicate that the large ESP difference makes A-D-A-type small molecules superior to their polymer counterparts in realizing tight molecular packing and strong NIR absorbance. Among the as-prepared nanoparticles (NPs), Y6 NPs exhibited an obvious bathochromic shift of absorption peak from 711 nm to 822 nm, with the NIR-II emission extended to 1400 nm. Moreover, a high ε value of 5.69 L g-1 cm-1 and a PCE of 66.3% were attained, making Y6 NPs suitable for PTT. With a concentration of 100 μg mL-1, Y6 NPs in aqueous dispersion yielded a death rate of 93.4% for 4T1 cells upon 808 nm laser irradiation (1 W cm-2) for 10 min, which is comparable with the best results of recently reported PTT agents.
Collapse
Affiliation(s)
- Kexin Fan
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering Beijing University of Chemical Technology, Beijing 100029, China.
| | - Ludan Zhang
- National Engineering Laboratory for Digital and Material Technology of Stomatology Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| | - Qinqiu Zhong
- National Engineering Laboratory for Digital and Material Technology of Stomatology Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| | - Yanhe Xiang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering Beijing University of Chemical Technology, Beijing 100029, China.
| | - Bowei Xu
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yuguang Wang
- National Engineering Laboratory for Digital and Material Technology of Stomatology Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, China.
| |
Collapse
|
7
|
Zhou W, Yao Y, Qin H, Xing X, Li Z, Ouyang M, Fan H. Size Dependence of Gold Nanorods for Efficient and Rapid Photothermal Therapy. Int J Mol Sci 2024; 25:2018. [PMID: 38396695 PMCID: PMC10888739 DOI: 10.3390/ijms25042018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
In recent years, gold nanomaterials have become a hot topic in photothermal tumor therapy due to their unique surface plasmon resonance characteristics. The effectiveness of photothermal therapy is highly dependent on the shape and size of gold nanoparticles. In this work, we investigate the photothermal therapeutic effects of four different sizes of gold nanorods (GNRs). The results show that the uptake of short GNRs with aspect ratios 3.3-3.5 by cells is higher than that of GNRs with aspect ratios 4-5.5. Using a laser with single pulse energy as low as 28 pJ laser for 20 s can induce the death of liver cancer cells co-cultured with short GNRs. Long GNRs required twice the energy to achieve the same therapeutic effect. The dual-temperature model is used to simulate the photothermal response of intracellular clusters irradiated by a laser. It is found that small GNRs are easier to compact because of their morphological characteristics, and the electromagnetic coupling between GNRs is better, which increases the internal field enhancement, resulting in higher local temperature. Compared with a single GNR, GNR clusters are less dependent on polarization and wavelength, which is more conducive to the flexible selection of excitation laser sources.
Collapse
Affiliation(s)
- Wei Zhou
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, South China Normal University, Guangzhou 510006, China (Y.Y.)
- Technology & Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics and National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China;
| | - Yanhua Yao
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, South China Normal University, Guangzhou 510006, China (Y.Y.)
| | - Hailing Qin
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, South China Normal University, Guangzhou 510006, China (Y.Y.)
| | - Xiaobo Xing
- Technology & Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics and National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China;
| | - Zongbao Li
- Ministry of Education Key Laboratory of Textile Fiber Products, School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China;
| | - Min Ouyang
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, South China Normal University, Guangzhou 510006, China (Y.Y.)
| | - Haihua Fan
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, South China Normal University, Guangzhou 510006, China (Y.Y.)
| |
Collapse
|
8
|
Bharti S, Tripathi SK, Singh K. Recent progress in MoS 2 nanostructures for biomedical applications: Experimental and computational approach. Anal Biochem 2024; 685:115404. [PMID: 37993043 DOI: 10.1016/j.ab.2023.115404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Abstract
In the category of 2D materials, MoS2 a transition metal dichalcogenide, is a novel and intriguing class of materials with interesting physicochemical properties, explored in applications ranging from cutting-edge optoelectronic to the frontiers of biomedical and biotechnology. MoS2 nanostructures an alternative to heavy toxic metals exhibit biocompatibility, low toxicity and high stability, and high binding affinity to biomolecules. MoS2 nanostructures provide a lot of opportunities for the advancement of novel biosensing, nanodrug delivery system, electrochemical detection, bioimaging, and photothermal therapy. Much efforts have been made in recent years to improve their physiochemical properties by developing a better synthesis approach, surface functionalization, and biocompatibility for their safe use in the advancement of biomedical applications. The understanding of parameters involved during the development of nanostructures for their safe utilization in biomedical applications has been discussed. Computational studies are included in this article to understand better the properties of MoS2 and the mechanism involved in their interaction with biomolecules. As a result, we anticipate that this combined experimental and computational studies of MoS2 will inspire the development of nanostructures with smart drug delivery systems, and add value to the understanding of two-dimensional smart nano-carriers.
Collapse
Affiliation(s)
- Shivani Bharti
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - S K Tripathi
- Department of Physics, Panjab University, Chandigarh, 160014, India
| | - Kedar Singh
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
9
|
Kumar PPP, Lim DK. Photothermal Effect of Gold Nanoparticles as a Nanomedicine for Diagnosis and Therapeutics. Pharmaceutics 2023; 15:2349. [PMID: 37765317 PMCID: PMC10534847 DOI: 10.3390/pharmaceutics15092349] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Gold nanoparticles (AuNPs) have received great attention for various medical applications due to their unique physicochemical properties. AuNPs with tunable optical properties in the visible and near-infrared regions have been utilized in a variety of applications such as in vitro diagnostics, in vivo imaging, and therapeutics. Among the applications, this review will pay more attention to recent developments in diagnostic and therapeutic applications based on the photothermal (PT) effect of AuNPs. In particular, the PT effect of AuNPs has played an important role in medical applications utilizing light, such as photoacoustic imaging, photon polymerase chain reaction (PCR), and hyperthermia therapy. First, we discuss the fundamentals of the optical properties in detail to understand the background of the PT effect of AuNPs. For diagnostic applications, the ability of AuNPs to efficiently convert absorbed light energy into heat to generate enhanced acoustic waves can lead to significant enhancements in photoacoustic signal intensity. Integration of the PT effect of AuNPs with PCR may open new opportunities for technological innovation called photonic PCR, where light is used to enable fast and accurate temperature cycling for DNA amplification. Additionally, beyond the existing thermotherapy of AuNPs, the PT effect of AuNPs can be further applied to cancer immunotherapy. Controlled PT damage to cancer cells triggers an immune response, which is useful for obtaining better outcomes in combination with immune checkpoint inhibitors or vaccines. Therefore, this review examines applications to nanomedicine based on the PT effect among the unique optical properties of AuNPs, understands the basic principles, the advantages and disadvantages of each technology, and understands the importance of a multidisciplinary approach. Based on this, it is expected that it will help understand the current status and development direction of new nanoparticle-based disease diagnosis methods and treatment methods, and we hope that it will inspire the development of new innovative technologies.
Collapse
Affiliation(s)
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea;
- Department of Integrative Energy Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Brain Science Institute, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
10
|
Zhang F, Jia Y, Chen F, Zhao Y, Li L, Chang Z. Tumor-targeted bioactive nanoprobes visualizing of hydrogen peroxide for forecasting chemotherapy-exacerbated malignant prognosis. Front Bioeng Biotechnol 2023; 11:1226680. [PMID: 37635993 PMCID: PMC10450909 DOI: 10.3389/fbioe.2023.1226680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/17/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction: Fluorescent visualization of hydrogen peroxide in the tumor microenvironment (TME) is conducive to predicting malignant prognosis after chemotherapy. Two photon microscopy has been employed for in vivo hydrogen peroxide detection owing to its advantages of deep penetration and low phototoxicity. Methods: In this study, a two-photon fluorescent probe (TPFP) was protected by mesoporous silica nanoparticles (MSNs) and masked by cloaking the cancer cell membranes (CM), forming a tumor-targeted bioactive nanoprobe, termed MSN@TPFP@CM. Results: This multifunctional nanoprobe allowed for the effective and selective detection of excessive hydrogen peroxide production in chemotherapeutic Etoposide (VP-16)-challenged tumor cells using two-photon microscopy. After specific accumulation in tumors, VP-16-MSN@TPFP@CM monitored tumor-specific hydrogen peroxide levels and revealed a positive correlation between oxidative stress in the TME and chemotherapy-exacerbated malignant prognosis. Discussion: Given the recent translation of fluorescent imaging into early clinical trials and the high biocompatibility of bioactive nanoprobes, our approach may pave the way for specific imaging of oxidative stress in solid tumors after treatment and provide a promising technology for malignant prognosis predictions.
Collapse
Affiliation(s)
- Fan Zhang
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences, Suzhou, China
- Zhengzhou Institute of Biomedical Engineering and Technology, Zhengzhou, China
| | - Yong Jia
- School of Nursing, Jilin University, Changchun, Jilin, China
| | - Fangman Chen
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences, Suzhou, China
| | - Yawei Zhao
- School of Nursing, Jilin University, Changchun, Jilin, China
| | - Li Li
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences, Suzhou, China
- Zhengzhou Institute of Biomedical Engineering and Technology, Zhengzhou, China
| | - Zhimin Chang
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology Chinese Academy of Sciences, Suzhou, China
- Zhengzhou Institute of Biomedical Engineering and Technology, Zhengzhou, China
| |
Collapse
|
11
|
Xue Y, Ma X, Feng X, Roberts S, Zhu G, Huang Y, Fan X, Fan J, Chen X. Temperature-Derived Purification of Gold Nano-Bipyramids for Colorimetric Detection of Tannic Acid. ACS APPLIED NANO MATERIALS 2023; 6:11572-11580. [PMID: 37469507 PMCID: PMC10353004 DOI: 10.1021/acsanm.3c01593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/13/2023] [Indexed: 07/21/2023]
Abstract
Gold nanostructures have attracted broad attention. Among various nanostructures, gold nanobipyramids have shown great potential in sensing, biomedicine, environmental protection, chemical catalysis, and optics due to their unique physical and optical properties and ease of chemical functionalization. Compared with other plasmonic nanostructures, gold nanobipyramids possess narrow optical resonances, stronger plasmonic local field enhancement, and size- and shape-dependent surface plasmon resonance. However, the synthesis and purification of homogeneous gold nanobipyramids are very challenging. The gold nanobipyramids synthesized via the commonly used seed-mediated growth method have low yields and are often coproduced with spherical nanoparticles. In this study, we reported a temperature-derived purification method for the isolation of gold bipyramids. In the presence of salt, by altering the temperature of the solution, large gold bipyramids can be separated from small spherical nanoparticles. As a result, a yield of as high as 97% gold nanobipyramids can be achieved through a single round of purification, and correspondingly, the ratio between the longitudinal surface plasmon resonance (LSPR) and transverse SPR intensity significantly increases to as high as 6.7. The purified gold nanobipyramids can be used as a colorimetric probe in the detection of tannic acid with a detection limit of 0.86 μM and a linear detection range from 1.25 to 37.5 μM.
Collapse
Affiliation(s)
- Yuxiang Xue
- School
of Engineering, Institute for Bioengineering, University of Edinburgh, The King’s Buildings, EH9 3JL Edinburgh, U.K.
| | - Xinyao Ma
- Department
of Materials Science and Engineering, City
University of Hong Kong, 83 Tat Chee Ave, 00000 Kowloon Tong, Hong Kong, SAR, P. R. China
| | - Xue Feng
- School
of Engineering, Institute for Bioengineering, University of Edinburgh, The King’s Buildings, EH9 3JL Edinburgh, U.K.
| | - Sam Roberts
- School
of Engineering, Institute for Bioengineering, University of Edinburgh, The King’s Buildings, EH9 3JL Edinburgh, U.K.
| | - Guangyu Zhu
- Department
of Chemistry, City University of Hong Kong, 83 Tat Chee Ave, 00000 Kowloon Tong, Hong
Kong, SAR, P. R. China
| | - Yi Huang
- School
of Engineering, Institute for Materials Processing, University of Edinburgh, The King’s Buildings, EH9 3JL Edinburgh, U.K.
| | - Xianfeng Fan
- School
of Engineering, Institute for Materials Processing, University of Edinburgh, The King’s Buildings, EH9 3JL Edinburgh, U.K.
| | - Jun Fan
- Department
of Materials Science and Engineering, City
University of Hong Kong, 83 Tat Chee Ave, 00000 Kowloon Tong, Hong Kong, SAR, P. R. China
| | - Xianfeng Chen
- School
of Engineering, Institute for Bioengineering, University of Edinburgh, The King’s Buildings, EH9 3JL Edinburgh, U.K.
| |
Collapse
|
12
|
Xu G, Du X, Wang W, Qu Y, Liu X, Zhao M, Li W, Li YQ. Plasmonic Nanozymes: Leveraging Localized Surface Plasmon Resonance to Boost the Enzyme-Mimicking Activity of Nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204131. [PMID: 36161698 DOI: 10.1002/smll.202204131] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Nanozymes, a type of nanomaterials that function similarly to natural enzymes, receive extensive attention in biomedical fields. However, the widespread applications of nanozymes are greatly plagued by their unsatisfactory enzyme-mimicking activity. Localized surface plasmon resonance (LSPR), a nanoscale physical phenomenon described as the collective oscillation of surface free electrons in plasmonic nanoparticles under light irradiation, offers a robust universal paradigm to boost the catalytic performance of nanozymes. Plasmonic nanozymes (PNzymes) with elevated enzyme-mimicking activity by leveraging LSPR, emerge and provide unprecedented opportunities for biocatalysis. In this review, the physical mechanisms behind PNzymes are thoroughly revealed including near-field enhancement, hot carriers, and the photothermal effect. The rational design and applications of PNzymes in biosensing, cancer therapy, and bacterial infections elimination are systematically introduced. Current challenges and further perspectives of PNzymes are also summarized and discussed to stimulate their clinical translation. It is hoped that this review can attract more researchers to further advance the promising field of PNzymes and open up a new avenue for optimizing the enzyme-mimicking activity of nanozymes to create superior nanocatalysts for biomedical applications.
Collapse
Affiliation(s)
- Guopeng Xu
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Xuancheng Du
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Weijie Wang
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Yuanyuan Qu
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Xiangdong Liu
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Mingwen Zhao
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Weifeng Li
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Yong-Qiang Li
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
- Suzhou Research Institute, Shandong University, Suzhou, 215123, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China
| |
Collapse
|
13
|
Zhou Z, Li X, Hu T, Xue B, Chen H, Ma L, Liang R, Tan C. Molybdenum‐Based Nanomaterials for Photothermal Cancer Therapy. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Zhan Zhou
- College of Chemistry and Chemical Engineering Henan Key Laboratory of Function-Oriented Porous Materials Luoyang Normal University Luoyang 471934 P.R. China
| | - Xiangqian Li
- School of Chemical and Environmental Engineering (Key Lab of Ecological Restoration in Hilly Areas) Pingdingshan University Pingdingshan 467000 P.R. China
| | - Tingting Hu
- State Key Laboratory of Chemical Resource Engineering Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 P.R. China
| | - Baoli Xue
- Luoyang Key Laboratory of Organic Functional Molecules College of Food and Drug Luoyang Normal University Luoyang 471934 P.R. China
- College of Biological and Pharmaceutical Sciences China Three Gorges University Yichang 443002 P.R. China
| | - Hong Chen
- Luoyang Key Laboratory of Organic Functional Molecules College of Food and Drug Luoyang Normal University Luoyang 471934 P.R. China
- College of Biological and Pharmaceutical Sciences China Three Gorges University Yichang 443002 P.R. China
| | - Lufang Ma
- College of Chemistry and Chemical Engineering Henan Key Laboratory of Function-Oriented Porous Materials Luoyang Normal University Luoyang 471934 P.R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 P.R. China
| | - Chaoliang Tan
- Center of Super-Diamond and Advanced Films (COSDAF) Department of Chemistry City University of Hong Kong Kowloon Hong Kong SAR 999077 P.R. China
- Department of Electrical Engineering City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR 999077 P.R. China
- Shenzhen Research Institute City University of Hong Kong Shenzhen 518057 P.R. China
| |
Collapse
|
14
|
Catalase-mimicking synthetic nano-enzymes can reduce lipopolysaccharide-induced reactive oxygen generation and promote rapid detection of hydrogen peroxide and l-cysteine. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00588-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
15
|
Maji S, Yu S, Choi E, Lim JW, Jang D, Kim GY, Kim S, Lee H, Kim DH. Anisotropic Plasmonic Gold Nanorod-Indocyanine Green@Reduced Graphene Oxide-Doxorubicin Nanohybrids for Image-Guided Enhanced Tumor Theranostics. ACS OMEGA 2022; 7:15186-15199. [PMID: 35572761 PMCID: PMC9089692 DOI: 10.1021/acsomega.2c01306] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/16/2022] [Indexed: 06/15/2023]
Abstract
The unique physicochemical and localized surface plasmon resonance assets of gold nanorods (GNRs) have offered combined cancer treatments with real-time diagnosis by integrating diverse theragnostic modalities into a single nanoplatform. In this work, a unique multifunctional nanohybrid material based on GNRs was designed for in vitro and in vivo tumor imaging along with synergistic and combinatorial therapy of tumor. The hybrid material with size less than 100 nm was achieved by embedding indocyanine green (ICG) on mesoporous silica-coated GNRs with further wrapping of reduced graphene oxide (rGO) and then attached with doxorubicin (DOX) and polyethylene glycol. The nanohybrid unveiled noteworthy stability and competently protected the embedded ICG from further aggregation, photobleaching, and nucleophilic attack by encapsulation of GNRs-ICG with rGO. Such combination of GNRs-ICG with rGO and DOX served as a real-time near-infrared (NIR) contrast imaging agent for cancer diagnosis. The hybrid material exhibits high NIR absorption property along with three destined capabilities, such as, nanozymatic activity, photothermal activity, and an excellent drug carrier for drug delivery. The integrated properties of the nanohybrid were then utilized for the triple mode of combined therapeutics of tumor cells, through synergistic catalytic therapy and chemotherapy with combinatorial photothermal therapy to achieve the maximum cancer killing efficiency. It is assumed that the assimilated multimodal imaging and therapeutic capability in single nanoparticle platform is advantageous for future practical applications in cancer diagnosis, therapy, and molecular imaging.
Collapse
Affiliation(s)
- Swarup
Kumar Maji
- Department
of Chemistry, Khatra Adibasi Mahavidyalaya, Khatra 722140, West Bengal, India
- Department
of Chemistry and Nano Science, Ewha Womans
University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Subin Yu
- Department
of Chemistry and Nano Science, Ewha Womans
University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Eunshil Choi
- Chemical
and Biological Integrative Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-Gil, Seongbuk-gu, Seoul 02792, Republic
of Korea
| | - Ju Won Lim
- Department
of Chemistry and Nano Science, Ewha Womans
University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| | - Dohyub Jang
- Chemical
and Biological Integrative Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-Gil, Seongbuk-gu, Seoul 02792, Republic
of Korea
- Department
of Biomicrosystem Technology, 145 Anam-ro, Seongbuk-gu, Korea University, Seoul 02841, Republic
of Korea
| | - Ga-young Kim
- Chemical
and Biological Integrative Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-Gil, Seongbuk-gu, Seoul 02792, Republic
of Korea
| | - Sehoon Kim
- Chemical
and Biological Integrative Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-Gil, Seongbuk-gu, Seoul 02792, Republic
of Korea
- KU-KIST Graduate
School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Hyukjin Lee
- College
of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic
of Korea
| | - Dong Ha Kim
- Department
of Chemistry and Nano Science, Ewha Womans
University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea
| |
Collapse
|
16
|
Yang J, Dai H, Sun Y, Wang L, Qin G, Zhou J, Chen Q, Sun G. 2D material-based peroxidase-mimicking nanozymes: catalytic mechanisms and bioapplications. Anal Bioanal Chem 2022; 414:2971-2989. [PMID: 35234980 DOI: 10.1007/s00216-022-03985-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 01/11/2023]
Abstract
The boom in nanotechnology brings new insights into the development of artificial enzymes (nanozymes) with ease of modification, lower manufacturing cost, and higher catalytic stability than natural enzymes. Among various nanomaterials, two-dimensional (2D) nanomaterials exhibit promising enzyme-like properties for a plethora of bioapplications owing to their unique physicochemical characteristics of tuneable composition, ultrathin thickness, and huge specific surface area. Herein, we review the recent advances in several 2D material-based nanozymes, such as carbonaceous nanosheets, metal-organic frameworks (MOFs), transition metal dichalcogenides (TMDs), layered double hydroxides (LDHs), and transition metal oxides (TMOs), clarify the mechanisms of peroxidase (POD)-mimicking catalytic behaviors, and overview the potential bioapplications of 2D nanozymes.
Collapse
Affiliation(s)
- Jia Yang
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
| | - Henghan Dai
- Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Yue Sun
- Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Lumin Wang
- Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Gang Qin
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, 454003, China
| | - Jinyuan Zhou
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Qiang Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 352001, China. .,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325000, China.
| | - Gengzhi Sun
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, 454003, China. .,Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
17
|
Maji SK. Luminescence-Tunable ZnS-AgInS 2 Nanocrystals for Cancer Cell Imaging and Photodynamic Therapy. ACS APPLIED BIO MATERIALS 2022; 5:1230-1238. [PMID: 35176849 DOI: 10.1021/acsabm.1c01247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A highly luminescent I-III-VI group of semiconductor nanocrystals (NCs) has attracted considerable attention for applications in biomedical engineering and design of novel optoelectronic devices. In this work, high quality ZnS-AgInS2 (ZAIS) solid solution NCs were synthesized by thermal decomposition of a organometallic diethyldithiocarbamate precursor complex of (AgIn)xZn2(1-x) (S2CN(C2H5)2)4 in the presence of specific stabilizing and structure directing agents. By changing the composition of the precursor complex (value of x), the structure and optical property could easily be adjustable, thus leading to the formation of nanowire, nanorod, and tetrapod-like NCs and highly luminescent green to yellow to red color tunable NCs. The ZAIS NCs were further transferred to aqueous medium by 3-mercaptopropionic acid (MPA) capping without losing any optical properties. The color-tunable, water-soluble, and biocompatible ZAIS NCs were utilized for the in vitro cellular imaging of human cervical cancer cells (HeLa cells) and showed intense localization in the cell cytoplasm after 6 h of incubation. In addition, the inherent photocatalytic property of ZAIS NCs under light illumination showed promising photodynamic therapy of cancer cells, and thus, ZAIS NCs could be a promising candidate for future biomedical applications.
Collapse
Affiliation(s)
- Swarup Kumar Maji
- Department of Chemistry, Khatra Adibasi Mahavidyalaya, Khatra 722140 West Bengal, India
| |
Collapse
|
18
|
Iyengar SA, Puthirath AB, Swaminathan V. Realizing Quantum Technologies in Nanomaterials and Nanoscience. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022:e2107839. [PMID: 35119138 DOI: 10.1002/adma.202107839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/08/2021] [Indexed: 06/14/2023]
Abstract
A brief overview of quantum materials and their prospects for applications, in the near, mid, and far-term in the areas of quantum information science, spintronics, valleytronics, and twistronics and those involving topology are covered in this perspective. The material and processing challenges that will modulate the realism of the applications will be discussed as well.
Collapse
Affiliation(s)
- Sathvik Ajay Iyengar
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX, 77005, USA
| | - Anand B Puthirath
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX, 77005, USA
| | | |
Collapse
|
19
|
Presutti D, Agarwal T, Zarepour A, Celikkin N, Hooshmand S, Nayak C, Ghomi M, Zarrabi A, Costantini M, Behera B, Maiti TK. Transition Metal Dichalcogenides (TMDC)-Based Nanozymes for Biosensing and Therapeutic Applications. MATERIALS (BASEL, SWITZERLAND) 2022; 15:337. [PMID: 35009484 PMCID: PMC8746279 DOI: 10.3390/ma15010337] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/27/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023]
Abstract
Nanozymes, a type of nanomaterial with enzyme-like properties, are a promising alternative to natural enzymes. In particular, transition metal dichalcogenides (TMDCs, with the general formula MX2, where M represents a transition metal and X is a chalcogen element)-based nanozymes have demonstrated exceptional potential in the healthcare and diagnostic sectors. TMDCs have different enzymatic properties due to their unique nano-architecture, high surface area, and semiconducting properties with tunable band gaps. Furthermore, the compatibility of TMDCs with various chemical or physical modification strategies provide a simple and scalable way to engineer and control their enzymatic activity. Here, we discuss recent advances made with TMDC-based nanozymes for biosensing and therapeutic applications. We also discuss their synthesis strategies, various enzymatic properties, current challenges, and the outlook for future developments in this field.
Collapse
Affiliation(s)
- Dario Presutti
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; (D.P.); (N.C.)
| | - Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302, West Bengal, India;
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey; (A.Z.); (A.Z.)
| | - Nehar Celikkin
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; (D.P.); (N.C.)
| | - Sara Hooshmand
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Tuzla, Istanbul 34956, Turkey;
| | - Chinmay Nayak
- Department of Biotechnology and Bioinformatics, Sambalpur University, Sambalpur 768019, Odisha, India; (C.N.); (B.B.)
| | - Matineh Ghomi
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 61537-53843, Iran;
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey; (A.Z.); (A.Z.)
| | - Marco Costantini
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland; (D.P.); (N.C.)
| | - Birendra Behera
- Department of Biotechnology and Bioinformatics, Sambalpur University, Sambalpur 768019, Odisha, India; (C.N.); (B.B.)
| | - Tapas Kumar Maiti
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302, West Bengal, India;
| |
Collapse
|
20
|
Kumar PPP, Lim DK. Gold-Polymer Nanocomposites for Future Therapeutic and Tissue Engineering Applications. Pharmaceutics 2021; 14:70. [PMID: 35056967 PMCID: PMC8781750 DOI: 10.3390/pharmaceutics14010070] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 12/16/2022] Open
Abstract
Gold nanoparticles (AuNPs) have been extensively investigated for their use in various biomedical applications. Owing to their biocompatibility, simple surface modifications, and electrical and unique optical properties, AuNPs are considered promising nanomaterials for use in in vitro disease diagnosis, in vivo imaging, drug delivery, and tissue engineering applications. The functionality of AuNPs may be further expanded by producing hybrid nanocomposites with polymers that provide additional functions, responsiveness, and improved biocompatibility. Polymers may deliver large quantities of drugs or genes in therapeutic applications. A polymer alters the surface charges of AuNPs to improve or modulate cellular uptake efficiency and their biodistribution in the body. Furthermore, designing the functionality of nanocomposites to respond to an endo- or exogenous stimulus, such as pH, enzymes, or light, may facilitate the development of novel therapeutic applications. In this review, we focus on the recent progress in the use of AuNPs and Au-polymer nanocomposites in therapeutic applications such as drug or gene delivery, photothermal therapy, and tissue engineering.
Collapse
Affiliation(s)
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea;
- Department of Integrative Energy Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| |
Collapse
|
21
|
Fatrekar AP, Morajkar R, Krishnan S, Dusane A, Madhyastha H, Vernekar AA. Delineating the Role of Tailored Gold Nanostructures at the Biointerface. ACS APPLIED BIO MATERIALS 2021; 4:8172-8191. [PMID: 35005942 DOI: 10.1021/acsabm.1c00998] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Gold (Au) has emerged as a superior element, because of its widespread applications in electronic and medical fields. The desirable physical, chemical, optical, and inherent enzyme-like properties of Au are efficiently exploited for detection, diagnostic, and therapeutic purposes. Au offers a unique advantage of fabricating gold nanostructures (GNS) having exact physical, chemical, optical, and enzyme-like properties required for the specific biomedical application. In this Review, the emerging trend of GNS for various biomedical applications is highlighted. Some notable structural and chemical modifications achieved for the detection of biomolecules, pathogens, diagnosis of diseases, and therapeutic applications are discussed in brief. The limitations of GNS during biomedical usage are highlighted and the way forward to overcome these limitations are discussed.
Collapse
Affiliation(s)
- Adarsh P Fatrekar
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Chennai 600 020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| | - Rasmi Morajkar
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Chennai 600 020, India
| | | | - Apurva Dusane
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Chennai 600 020, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-2192, Japan
| | - Amit A Vernekar
- Inorganic and Physical Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Chennai 600 020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201 002, India
| |
Collapse
|
22
|
Yang W, Yang X, Zhu L, Chu H, Li X, Xu W. Nanozymes: Activity origin, catalytic mechanism, and biological application. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214170] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
23
|
Yu S, Jang D, Maji SK, Chung K, Lee JS, Marques Mota F, Wang J, Kim S, Kim DH. Sophisticated plasmon-enhanced photo-nanozyme for anti-angiogenic and tumor-microenvironment-responsive combinatorial photodynamic and photothermal cancer therapy. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Wang J, Sui L, Huang J, Miao L, Nie Y, Wang K, Yang Z, Huang Q, Gong X, Nan Y, Ai K. MoS 2-based nanocomposites for cancer diagnosis and therapy. Bioact Mater 2021; 6:4209-4242. [PMID: 33997503 PMCID: PMC8102209 DOI: 10.1016/j.bioactmat.2021.04.021] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 12/24/2022] Open
Abstract
Molybdenum is a trace dietary element necessary for the survival of humans. Some molybdenum-bearing enzymes are involved in key metabolic activities in the human body (such as xanthine oxidase, aldehyde oxidase and sulfite oxidase). Many molybdenum-based compounds have been widely used in biomedical research. Especially, MoS2-nanomaterials have attracted more attention in cancer diagnosis and treatment recently because of their unique physical and chemical properties. MoS2 can adsorb various biomolecules and drug molecules via covalent or non-covalent interactions because it is easy to modify and possess a high specific surface area, improving its tumor targeting and colloidal stability, as well as accuracy and sensitivity for detecting specific biomarkers. At the same time, in the near-infrared (NIR) window, MoS2 has excellent optical absorption and prominent photothermal conversion efficiency, which can achieve NIR-based phototherapy and NIR-responsive controlled drug-release. Significantly, the modified MoS2-nanocomposite can specifically respond to the tumor microenvironment, leading to drug accumulation in the tumor site increased, reducing its side effects on non-cancerous tissues, and improved therapeutic effect. In this review, we introduced the latest developments of MoS2-nanocomposites in cancer diagnosis and therapy, mainly focusing on biosensors, bioimaging, chemotherapy, phototherapy, microwave hyperthermia, and combination therapy. Furthermore, we also discuss the current challenges and prospects of MoS2-nanocomposites in cancer treatment.
Collapse
Affiliation(s)
- Jianling Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Lihua Sui
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Jia Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Lu Miao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Yubing Nie
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Kuansong Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Zhichun Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Qiong Huang
- Department of Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xue Gong
- Department of Radiology, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Yayun Nan
- Geriatric Medical Center, Ningxia People's Hospital, Yinchuan, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| |
Collapse
|
25
|
Yougbaré S, Chou HL, Yang CH, Krisnawati DI, Jazidie A, Nuh M, Kuo TR. Facet-dependent gold nanocrystals for effective photothermal killing of bacteria. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124617. [PMID: 33359972 DOI: 10.1016/j.jhazmat.2020.124617] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/21/2020] [Accepted: 11/16/2020] [Indexed: 05/19/2023]
Abstract
Gold-based plasmonic nanocrystals have been extensively developed for noninvasive photothermal therapy. In this study, gold nanorods (AuNRs) with (200) plane and gold nanobipyramids (AuNBPs) with (111) plane were utilized as photothermal agents for noninvasive photothermal therapy. With longitudinal surface plasma bands at ~808 nm, both of AuNRs and AuNBPs revealed photothermal capability and reversibility of laser response under 808-nm near-infrared (NIR) laser irradiation. Moreover, AuNBPs with (111) plane exhibited higher photothermal performance than that of AuNRs with (200) plane under NIR laser irradiation. Density function theory (DFT) simulations revealed that water adsorption energy followed the order Au(111) < Au(100), indicating that the water was easily desorbed on the Au(111) surface for photothermal heating. For the photothermal therapy against Escherichia coli (E. coli), AuNBPs also exhibited higher efficiency compared to that of AuNRs under NIR laser irradiation. Combination of experimental photothermal therapy and DFT simulations demonstrated that AuNBPs with (111) plane were better photothermal agents than that of AuNRs with (100) plane.
Collapse
Affiliation(s)
- Sibidou Yougbaré
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Institut de Recherche en Sciences de la Santé (IRSS-DRCO), 03 B.P 7192, Nanoro, Ouagadougou 03, Burkina Faso
| | - Hung-Lung Chou
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan.
| | - Chao-Hsuan Yang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | | | - Achmad Jazidie
- Department of Electrical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia; Universitas Nahdlatul Ulama Surabaya, Surabaya 60111, Indonesia
| | - Mohammad Nuh
- Department of Biomedical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
| | - Tsung-Rong Kuo
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
26
|
Su Y, Chu H, Tian J, Du Z, Xu W. Insight into the nanomaterials enhancement mechanism of nucleic acid amplification reactions. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Zare EN, Zheng X, Makvandi P, Gheybi H, Sartorius R, Yiu CKY, Adeli M, Wu A, Zarrabi A, Varma RS, Tay FR. Nonspherical Metal-Based Nanoarchitectures: Synthesis and Impact of Size, Shape, and Composition on Their Biological Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007073. [PMID: 33710754 DOI: 10.1002/smll.202007073] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Indexed: 06/12/2023]
Abstract
Metal-based nanoentities, apart from being indispensable research tools, have found extensive use in the industrial and biomedical arena. Because their biological impacts are governed by factors such as size, shape, and composition, such issues must be taken into account when these materials are incorporated into multi-component ensembles for clinical applications. The size and shape (rods, wires, sheets, tubes, and cages) of metallic nanostructures influence cell viability by virtue of their varied geometry and physicochemical interactions with mammalian cell membranes. The anisotropic properties of nonspherical metal-based nanoarchitectures render them exciting candidates for biomedical applications. Here, the size-, shape-, and composition-dependent properties of nonspherical metal-based nanoarchitectures are reviewed in the context of their potential applications in cancer diagnostics and therapeutics, as well as, in regenerative medicine. Strategies for the synthesis of nonspherical metal-based nanoarchitectures and their cytotoxicity and immunological profiles are also comprehensively appraised.
Collapse
Affiliation(s)
| | - Xuanqi Zheng
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025, Italy
| | - Homa Gheybi
- Institute of Polymeric Materials and Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, 53318-17634, Iran
| | - Rossella Sartorius
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Naples, 80131, Italy
| | - Cynthia K Y Yiu
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong SAR, China
| | - Mohsen Adeli
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, 68151-44316, Iran
| | - Aimin Wu
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, 34956, Turkey
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Palacký University in Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
| | - Franklin R Tay
- College of Graduate Studies, Augusta University, Augusta, GA, 30912, USA
| |
Collapse
|
28
|
Xu J, Cai R, Zhang Y, Mu X. Molybdenum disulfide-based materials with enzyme-like characteristics for biological applications. Colloids Surf B Biointerfaces 2021; 200:111575. [PMID: 33524697 DOI: 10.1016/j.colsurfb.2021.111575] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/04/2021] [Accepted: 01/10/2021] [Indexed: 01/15/2023]
Abstract
Nanozyme, a kind of nanomaterials with enzymatic activity, has been developing vigorously over the past years owing to its advantages such as low-cost, easy storage, ease of use in harsh environments and so on, compared with natural enzymes. At present, as a typical two-dimensional nanomaterial, molybdenum disulfide (MoS2) and their hybrids with unexpected enzyme-like activities have caused wide attention. In this review, we mainly investigated the enzyme-like activities of MoS2 based nanomaterials, including peroxidase-like activity, catalase-like activity and superoxide dismutase-like activity. Furthermore, we systematically introduce recent research progress of MoS2 based nanomaterials in the fields of biological applications such as radiation protection, cancer therapy, antibacterial, and wound healing. Finally, the current challenges and perspectives of MoS2 based nanomaterials in the future are also discussed and proposed. We expect this review may be significant to understand the properties of MoS2 based nanomaterials and the development of two-dimensional nanomaterials with enzyme mimicking activities.
Collapse
Affiliation(s)
- Jiangang Xu
- School of Science, Xi'an University of Posts and Telecommunications, Xi'an, 710121, China
| | - Ru Cai
- School of Science, Xi'an University of Posts and Telecommunications, Xi'an, 710121, China
| | - Yunguang Zhang
- School of Science, Xi'an University of Posts and Telecommunications, Xi'an, 710121, China.
| | - Xiaoyu Mu
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
29
|
Zu Y, Yao H, Wang Y, Yan L, Gu Z, Chen C, Gao L, Yin W. The age of bioinspired molybdenum‐involved nanozymes: Synthesis, catalytic mechanisms, and biomedical applications. VIEW 2021. [DOI: 10.1002/viw.20200188] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Yan Zu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics and National Center for Nanoscience and Technology Chinese Academy of Sciences Beijing China
| | - Huiqin Yao
- School of Basic Medicine Ningxia Medical University Yinchuan China
| | - Yifan Wang
- School of Basic Medicine Ningxia Medical University Yinchuan China
| | - Liang Yan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics and National Center for Nanoscience and Technology Chinese Academy of Sciences Beijing China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics and National Center for Nanoscience and Technology Chinese Academy of Sciences Beijing China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics and National Center for Nanoscience and Technology Chinese Academy of Sciences Beijing China
| | - Lizeng Gao
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics Chinese Academy of Sciences Beijing China
| | - Wenyan Yin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics and National Center for Nanoscience and Technology Chinese Academy of Sciences Beijing China
| |
Collapse
|
30
|
Jeong WY, Kang MS, Lee H, Lee JH, Kim J, Han DW, Kim KS. Recent Trends in Photoacoustic Imaging Techniques for 2D Nanomaterial-Based Phototherapy. Biomedicines 2021; 9:80. [PMID: 33467616 PMCID: PMC7830416 DOI: 10.3390/biomedicines9010080] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
A variety of 2D materials have been developed for therapeutic biomedical studies. Because of their excellent physicochemical properties, 2D materials can be used as carriers for delivering therapeutic agents into a lesion, leading to phototherapy. Various optical imaging techniques have been used for the monitoring of the treatment process. Among these, photoacoustic imaging has unique advantages including relatively deep imaging depth and large field of view with high spatial resolution. In this review article, we summarize the types of photoacoustic imaging systems used for phototherapy monitoring, then we explore contrast-enhanced photoacoustic images using 2D materials. Finally, photoacoustic image-guided phototherapies are discussed. We conclude that 2D material-based phototherapy can be efficiently monitored by photoacoustic imaging techniques.
Collapse
Affiliation(s)
- Woo Yeup Jeong
- School of Chemical Engineering, College of Engineering, Pusan National University, Busan 46241, Korea;
| | - Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.L.)
| | - Haeni Lee
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.L.)
| | - Jong Hun Lee
- Department of Food Science and Biotechnology, Gachon University, Seongnam, Gyeonggi 13120, Korea;
| | - Jeesu Kim
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.L.)
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.L.)
| | - Ki Su Kim
- School of Chemical Engineering, College of Engineering, Pusan National University, Busan 46241, Korea;
| |
Collapse
|
31
|
DiStefano JG, Murthy AA, Hao S, Dos Reis R, Wolverton C, Dravid VP. Topology of transition metal dichalcogenides: the case of the core-shell architecture. NANOSCALE 2020; 12:23897-23919. [PMID: 33295919 DOI: 10.1039/d0nr06660e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Non-planar architectures of the traditionally flat 2D materials are emerging as an intriguing paradigm to realize nascent properties within the family of transition metal dichalcogenides (TMDs). These non-planar forms encompass a diversity of curvatures, morphologies, and overall 3D architectures that exhibit unusual characteristics across the hierarchy of length-scales. Topology offers an integrated and unified approach to describe, harness, and eventually tailor non-planar architectures through both local and higher order geometry. Topological design of layered materials intrinsically invokes elements highly relevant to property manipulation in TMDs, such as the origin of strain and its accommodation by defects and interfaces, which have broad implications for improved material design. In this review, we discuss the importance and impact of geometry on the structure and properties of TMDs. We present a generalized geometric framework to classify and relate the diversity of possible non-planar TMD forms. We then examine the nature of curvature in the emerging core-shell architecture, which has attracted high interest due to its versatility and design potential. We consider the local structure of curved TMDs, including defect formation, strain, and crystal growth dynamics, and factors affecting the morphology of core-shell structures, such as synthesis conditions and substrate morphology. We conclude by discussing unique aspects of TMD architectures that can be leveraged to engineer targeted, exotic properties and detail how advanced characterization tools enable detection of these features. Varying the topology of nanomaterials has long served as a potent methodology to engineer unusual and exotic properties, and the time is ripe to apply topological design principles to TMDs to drive future nanotechnology innovation.
Collapse
Affiliation(s)
- Jennifer G DiStefano
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Xu P, Liang F. Nanomaterial-Based Tumor Photothermal Immunotherapy. Int J Nanomedicine 2020; 15:9159-9180. [PMID: 33244232 PMCID: PMC7684030 DOI: 10.2147/ijn.s249252] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, photothermal therapy (PTT) particularly nanomaterial-based PTT is a promising therapeutic modality and technique for cancer tumor ablation. In addition to killing tumor cells directly through heat, PTT also can induce immunogenic cell death (ICD) to activate the whole-body anti-tumor immune response, including the redistribution and activation of immune effector cells, the expression and secretion of cytokines and the transformation of memory T lymphocytes. When used in combination with immunotherapy, the efficacy of nanomaterial-based PTT can be improved. This article summarized the mechanism of nanomaterial-based PTT against cancer and how nanomaterial-based PTT impacts the tumor microenvironment and induces an immune response. Moreover, we reviewed recent advances of nanomaterial-based photothermal immunotherapy and discussed challenges and future outlook.
Collapse
Affiliation(s)
- Peng Xu
- The State Key Laboratory of Refractories and Metallurgy, Coal Conversion and New Carbon Materials Hubei Key Laboratory, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan430081, People’s Republic of China
| | - Feng Liang
- The State Key Laboratory of Refractories and Metallurgy, Coal Conversion and New Carbon Materials Hubei Key Laboratory, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan430081, People’s Republic of China
| |
Collapse
|
33
|
Lou-Franco J, Das B, Elliott C, Cao C. Gold Nanozymes: From Concept to Biomedical Applications. NANO-MICRO LETTERS 2020; 13:10. [PMID: 34138170 PMCID: PMC8187695 DOI: 10.1007/s40820-020-00532-z] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/02/2020] [Indexed: 05/02/2023]
Abstract
In recent years, gold nanoparticles have demonstrated excellent enzyme-mimicking activities which resemble those of peroxidase, oxidase, catalase, superoxide dismutase or reductase. This, merged with their ease of synthesis, tunability, biocompatibility and low cost, makes them excellent candidates when compared with biological enzymes for applications in biomedicine or biochemical analyses. Herein, over 200 research papers have been systematically reviewed to present the recent progress on the fundamentals of gold nanozymes and their potential applications. The review reveals that the morphology and surface chemistry of the nanoparticles play an important role in their catalytic properties, as well as external parameters such as pH or temperature. Yet, real applications often require specific biorecognition elements to be immobilized onto the nanozymes, leading to unexpected positive or negative effects on their activity. Thus, rational design of efficient nanozymes remains a challenge of paramount importance. Different implementation paths have already been explored, including the application of peroxidase-like nanozymes for the development of clinical diagnostics or the regulation of oxidative stress within cells via their catalase and superoxide dismutase activities. The review also indicates that it is essential to understand how external parameters may boost or inhibit each of these activities, as more than one of them could coexist. Likewise, further toxicity studies are required to ensure the applicability of gold nanozymes in vivo. Current challenges and future prospects of gold nanozymes are discussed in this review, whose significance can be anticipated in a diverse range of fields beyond biomedicine, such as food safety, environmental analyses or the chemical industry.
Collapse
Affiliation(s)
- Javier Lou-Franco
- Institute for Global Food Security, School of Biological Sciences, Queen's University of Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Bhaskar Das
- Institute for Global Food Security, School of Biological Sciences, Queen's University of Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, India
| | - Christopher Elliott
- Institute for Global Food Security, School of Biological Sciences, Queen's University of Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Cuong Cao
- Institute for Global Food Security, School of Biological Sciences, Queen's University of Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK.
| |
Collapse
|
34
|
Gonçalves ASC, Rodrigues CF, Moreira AF, Correia IJ. Strategies to improve the photothermal capacity of gold-based nanomedicines. Acta Biomater 2020; 116:105-137. [PMID: 32911109 DOI: 10.1016/j.actbio.2020.09.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 12/21/2022]
Abstract
The plasmonic photothermal properties of gold nanoparticles have been widely explored in the biomedical field to mediate a photothermal effect in response to the irradiation with an external light source. Particularly, in cancer therapy, the physicochemical properties of gold-based nanomaterials allow them to efficiently accumulate in the tumor tissue and then mediate the light-triggered thermal destruction of cancer cells with high spatial-temporal control. Nevertheless, the gold nanomaterials can be produced with different shapes, sizes, and organizations such as nanospheres, nanorods, nanocages, nanoshells, and nanoclusters. These gold nanostructures will present different plasmonic photothermal properties that can impact cancer thermal ablation. This review analyses the application of gold-based nanomaterials in cancer photothermal therapy, emphasizing the main parameters that affect its light-to-heat conversion efficiency and consequently the photothermal potential. The different shapes/organizations (clusters, shells, rods, stars, cages) of gold nanomaterials and the parameters that can be fine-tuned to improve the photothermal capacity are presented. Moreover, the gold nanostructures combination with other materials (e.g. silica, graphene, and iron oxide) or small molecules (e.g. indocyanine green and IR780) to improve the nanomaterials photothermal capacity is also overviewed.
Collapse
Affiliation(s)
- Ariana S C Gonçalves
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Carolina F Rodrigues
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - André F Moreira
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| | - Ilídio J Correia
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; CIEPQF - Departamento de Engenharia Química, Universidade de Coimbra, Rua Sílvio Lima, 3030-790 Coimbra, Portugal.
| |
Collapse
|
35
|
Wang L, Li Y, Zhao L, Qi Z, Gou J, Zhang S, Zhang JZ. Recent advances in ultrathin two-dimensional materials and biomedical applications for reactive oxygen species generation and scavenging. NANOSCALE 2020; 12:19516-19535. [PMID: 32966498 DOI: 10.1039/d0nr05746k] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Graphene and graphene-like two-dimensional (2D) nanomaterials, such as black phosphorus (BP), transition metal carbides/carbonitrides (MXene) and transition metal dichalcogenides (TMD), have been extensively studied in recent years due to their unique physical and chemical properties. With atomic-scale thickness, these 2D materials and their derivatives can react with ROS and even scavenge ROS in the dark. With excellent biocompatibility and biosafety, they show great application potential in the antioxidant field and ROS detection for diagnosis. They can also generate ROS under light and be applied in antibacterial, photodynamic therapy (PDT), and other biomedical fields. Understanding the degradation mechanism of 2D nanomaterials by ROS generated under ambient conditions is crucial to developing air stable devices and expanding their application ranges. In this review, we summarize recent advances in 2D materials with a focus on the relationship between their intrinsic structure and the ROS scavenging or generating ability. We have also highlighted important guidelines for the design and synthesis of highly efficient ROS scavenging or generating 2D materials along with their biomedical applications.
Collapse
Affiliation(s)
- Lifeng Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
36
|
Zhang L, Li M, Zhou Q, Dang M, Tang Y, Wang S, Fu J, Teng Z, Lu G. Computed tomography and photoacoustic imaging guided photodynamic therapy against breast cancer based on mesoporous platinum with insitu oxygen generation ability. Acta Pharm Sin B 2020; 10:1719-1729. [PMID: 33088691 PMCID: PMC7563995 DOI: 10.1016/j.apsb.2020.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/21/2020] [Accepted: 05/09/2020] [Indexed: 01/08/2023] Open
Abstract
Photodynamic therapy (PDT) has been widely used in cancer treatment. However, hypoxia in most solid tumors seriously restricts the efficacy of PDT. To improve the hypoxic microenvironment, we designed a novel mesoporous platinum (mPt) nanoplatform to catalyze hydrogen peroxide (H2O2) within the tumor cells in situ without an extra enzyme. During the fabrication, the carboxy terminus of the photosensitizer chlorin e6 (Ce6) was connected to the amino terminus of the bifunctional mercaptoaminopolyglycol (SH-PEG-NH2) by a condensation reaction, and then PEG-Ce6 was modified onto the mPt moiety via the mercapto terminal of SH-PEG-NH2. Material, cellular and animal experiments demonstrated that Pt@PEG-Ce6 catalyzed H2O2 to produce oxygen (O2) and that Ce6 transformed O2 to generate reactive oxygen species (ROS) upon laser irradiation. The Pt@PEG-Ce6 nanoplatform with uniform diameter presented good biocompatibility and efficient tumor accumulation. Due to the high atomic number and good near-infrared absorption for Pt, this Pt@PEG-Ce6 nanoplatform showed computed tomography (CT) and photoacoustic (PA) dual-mode imaging ability, thus providing an important tool for monitoring the tumor hypoxic microenvironment. Moreover, the Pt@PEG-Ce6 nanoplatform reduced the expression of hypoxia-inducible factor-1α (HIF-1α) and programmed death-1 (PD-1) in tumors, discussing the relationship between hypoxia, PD-1, and PDT for the first time.
Collapse
|
37
|
Zhao J, Liu Y, Sun J, Zhu H, Chen Y, Dong T, Sang R, Gao X, Yang W, Deng Y. Magnetic targeting cobalt nanowire-based multifunctional therapeutic system for anticancer treatment and angiogenesis. Colloids Surf B Biointerfaces 2020; 194:111217. [PMID: 32622255 DOI: 10.1016/j.colsurfb.2020.111217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/03/2020] [Accepted: 06/23/2020] [Indexed: 12/09/2022]
Abstract
In order to improve the anticancer therapeutic efficacy and postoperative recovery efficacy, the novel anticancer therapeutic system should have the ability to promote angiogenesis after anticancer therapy besides the excellent anticancer therapeutic efficacy. We present herein a magnetic targeting multifunctional anticancer therapeutic system based on cobalt nanowires (CoNWs) for anticancer therapy and angiogenesis. Magnetic characterization shows that the CoNWs can be concentrated in desired locations under the external magnetic field, which is favorable for anticancer target therapy. Besides, drug loading/release characterization reveals that the CoNWs interact with doxorubicin (DOX) by electrostatic interaction, and accordingly form a composite which can release DOX with temperature increase under near-infrared light (NIR) treatment. And anticancer test reveals that the nanowires loaded with the DOX (CoNWs-DOX) can produce an effective chemo-photothermal synergistic therapeutic effect against murine breast cancer cell lines (4T1) and human osteosarcoma cell lines (MG63) under NIR treatment. Furthermore, angiogenesis assessment reveals that the released cobalt ion from the nanowires can significantly enhance the angiogenesis efficacy after cancer treatment. These results suggest that the constructed anticancer therapeutic system provides a promising multifunctional platform for cancer treatment and postoperative recovery.
Collapse
Affiliation(s)
- Jiankui Zhao
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yunxiu Liu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Jiamin Sun
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Huang Zhu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yong Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Taosheng Dong
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Rui Sang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xiangyu Gao
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Weizhong Yang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Yi Deng
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
38
|
Multimodal theranostics augmented by transmembrane polymer-sealed nano-enzymatic porous MoS 2 nanoflowers. Int J Pharm 2020; 586:119606. [PMID: 32634458 DOI: 10.1016/j.ijpharm.2020.119606] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 12/21/2022]
Abstract
Developing an all-in-one multimodal theranostic platform that can synergistically integrate sensitive photoacoustic (PA) imaging, enhanced photothermal therapy (PTT) and photodynamic therapy (PDT) as well as the nano-enzyme activated chemodynamic therapy (CDT) presents a great challenge for the current nanomedicine design. Herein, a simple hydrothermal method was used to prepare porous molybdenum disulfide (MoS2) nanoflowers. These nanoflowers were assembled by three dimensional (3D)-stacked MoS2 nanosheets with plentiful pores and large surfaces, which thus exhibited enhanced photothermal conversion via light trapping and peroxidase (POD)-like activity via active defects exposure. Consequently, this 3D-MoS2 nanostructure could be well-sealed by polyethylene glycol-polyethylenimine polymer modified with nucleolar translocation signal sequence of the LIM Kinase 2 protein (LNP) via strong electrostatic interaction, which not only benefited to stably deliver anticancer drug doxorubicin (DOX) into the tumor cells for pH/NIR-responsive chemotherapy, but also provided strong photoacoustic, photothermal performances and stimulated generation of reactive oxygen species (ROS) for imaging-guided PTT/PDT/CDT combined therapy. This work promised a simple all-in-one multimodal theranostic platform to augment the potential antitumoral therapeutic outcomes.
Collapse
|
39
|
Wu K, Feng Y, Li Y, Li L, Liu R, Zhu L. S-doped reduced graphene oxide: a novel peroxidase mimetic and its application in sensitive detection of hydrogen peroxide and glucose. Anal Bioanal Chem 2020; 412:5477-5487. [PMID: 32588108 DOI: 10.1007/s00216-020-02767-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/25/2020] [Accepted: 06/11/2020] [Indexed: 11/30/2022]
Abstract
This article presents a novel peroxidase mimetic by doping S atoms into reduced graphene oxide (rGO), which was synthesized through a facile hydrothermal reaction without any templates or surfactants. The peroxidase-like activity of S-doped rGO (S-rGO) is greatly boosted compared with the pristine rGO, demonstrating the peroxidase-like active sites are dominantly originated in sulfur-containing groups. The steady-state kinetic studies further indicate that S-rGO obeys the typical Michaelis-Menten curves and has a much smaller Michaelis constant (Km) for hydrogen peroxide (H2O2) and 3, 3', 5, 5'-tetramethylbenzidine (TMB). In view of the outstanding performance of S-rGO as a peroxidase mimetic, an efficient and sensitive colorimetric detection platform for H2O2 and glucose has been successfully established. The linear detection for H2O2 is obtained in a range of 0.1-1 μM with an extremely lower detection limit of 0.042 μM, and glucose can be measured in a linear range of 1-100 μM, giving a detection limit of 0.38 μM. This study not only provides a new avenue for the reasonable design of heteroatom-doped carbon-based nanomaterials but also offers meaningful reference for detecting the important biomolecules in biotechnology. Graphical abstract.
Collapse
Affiliation(s)
- Keyan Wu
- Key Laboratory of Nanobiosensing & Nanobioanalysis at Universities of Jilin Province, School of Chemistry, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Yun Feng
- Key Laboratory of Nanobiosensing & Nanobioanalysis at Universities of Jilin Province, School of Chemistry, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Yusheng Li
- Key Laboratory of Nanobiosensing & Nanobioanalysis at Universities of Jilin Province, School of Chemistry, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Li Li
- Key Laboratory of Nanobiosensing & Nanobioanalysis at Universities of Jilin Province, School of Chemistry, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Rui Liu
- Key Laboratory of Nanobiosensing & Nanobioanalysis at Universities of Jilin Province, School of Chemistry, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Liande Zhu
- Key Laboratory of Nanobiosensing & Nanobioanalysis at Universities of Jilin Province, School of Chemistry, Northeast Normal University, Changchun, 130024, Jilin, China.
| |
Collapse
|
40
|
Wang R, Wang Y, Mao S, Hao X, Duan X, Wen Y. Different Morphology MoS2 Over the g-C3N4 as a Boosted Photo-Catalyst for Pollutant Removal Under Visible-Light. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01626-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
41
|
Fusco L, Gazzi A, Peng G, Shin Y, Vranic S, Bedognetti D, Vitale F, Yilmazer A, Feng X, Fadeel B, Casiraghi C, Delogu LG. Graphene and other 2D materials: a multidisciplinary analysis to uncover the hidden potential as cancer theranostics. Theranostics 2020; 10:5435-5488. [PMID: 32373222 PMCID: PMC7196289 DOI: 10.7150/thno.40068] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
Cancer represents one of the main causes of death in the world; hence the development of more specific approaches for its diagnosis and treatment is urgently needed in clinical practice. Here we aim at providing a comprehensive review on the use of 2-dimensional materials (2DMs) in cancer theranostics. In particular, we focus on graphene-related materials (GRMs), graphene hybrids, and graphdiyne (GDY), as well as other emerging 2DMs, such as MXene, tungsten disulfide (WS2), molybdenum disulfide (MoS2), hexagonal boron nitride (h-BN), black phosphorus (BP), silicene, antimonene (AM), germanene, biotite (black mica), metal organic frameworks (MOFs), and others. The results reported in the scientific literature in the last ten years (>200 papers) are dissected here with respect to the wide variety of combinations of imaging methodologies and therapeutic approaches, including drug/gene delivery, photothermal/photodynamic therapy, sonodynamic therapy, and immunotherapy. We provide a unique multidisciplinary approach in discussing the literature, which also includes a detailed section on the characterization methods used to analyze the material properties, highlighting the merits and limitations of the different approaches. The aim of this review is to show the strong potential of 2DMs for use as cancer theranostics, as well as to highlight issues that prevent the clinical translation of these materials. Overall, we hope to shed light on the hidden potential of the vast panorama of new and emerging 2DMs as clinical cancer theranostics.
Collapse
Affiliation(s)
- Laura Fusco
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, Padua, Italy
- Cancer Program, Sidra Medicine, Doha, Qatar
| | - Arianna Gazzi
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, Padua, Italy
| | - Guotao Peng
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Yuyoung Shin
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Sandra Vranic
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | | | - Flavia Vitale
- Department of Neurology, Bioengineering, Physical Medicine & Rehabilitation, Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, USA; Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, USA
| | - Acelya Yilmazer
- Department of Biomedical Engineering, Ankara University, Ankara, Turkey
- Stem Cell Institute, Ankara University, Ankara, Turkey
| | - Xinliang Feng
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Dresden, Germany
| | - Bengt Fadeel
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Cinzia Casiraghi
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Lucia Gemma Delogu
- Fondazione Istituto di Ricerca Pediatrica, Città della Speranza, Padua, Italy
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Dresden, Germany
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| |
Collapse
|
42
|
Zhang R, Liu Y, Kong L, Xu XY. Regulation of optical properties for fluorescent triphenylamine-silver hybrid based on SPR effect. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 223:117338. [PMID: 31306956 DOI: 10.1016/j.saa.2019.117338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
In this study, a two photon absorbing (TPA) material consisting silver nanoparticles and triphenylamine-thiol derivative (TBS) has been prepared through interfacial coordination effect according to soft-hard-acid-base principle. The interfacial structure and morphology of the hybrid are researched in detail. Linear and nonlinear optical properties of the hybrid are studied. Upon interfacial coordination, the hybrid shows red-shifted UV-Vis absorption, causing from enhanced electronic drawing strength due to existence of Ag atom. The results also indicate that the surface Plasmon resonance (SPR) effect of Ag nanoparticles (~6 nm) brings about enhancement in single photon fluorescence emission and two photon absorption. Compared with free TBS, Ag-TBS hybrids show higher TPA cross-section (δ), which is 8784 GM for TBS and up to 103876 GM for Ag-TBS hybrid, showing ~12 fold increase. Due to excellent TPA property, the hybrids have good application in the field of optical power limiting and its limiting threshold is 0.49 J/cm-2. This type of interfacial coordination induced hybrid provides a promising strategy to regulate linear optical properties and optimize nonlinear performance.
Collapse
Affiliation(s)
- Rui Zhang
- College of Chemistry and Chemical Engineering, AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230039, PR China
| | - Yun Liu
- College of Chemistry and Chemical Engineering, AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230039, PR China
| | - Lin Kong
- College of Chemistry and Chemical Engineering, AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230039, PR China.
| | - Xian-Yun Xu
- College of Chemistry and Chemical Engineering, AnHui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230039, PR China
| |
Collapse
|
43
|
Chateau D, Desert A, Lerouge F, Landaburu G, Santucci S, Parola S. Beyond the Concentration Limitation in the Synthesis of Nanobipyramids and Other Pentatwinned Gold Nanostructures. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39068-39076. [PMID: 31564089 DOI: 10.1021/acsami.9b12973] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Gold nanoparticles offer unique optoelectronic properties relevant for a wide range of processes and products, in biology and medicine (therapeutic agents, diagnostic, drug delivery), as well as in electronics, photovoltaics, and catalysis. So far, various synthesis methods proposed have led to rather limited concentration and purity of the colloidal suspensions, severely hindering their use. Here, we present a simple and versatile procedure for the synthesis of gold pentatwinned nanostructures, including nanobipyramids based on a seed-mediated growth process that overcomes the concentration limitations of current methods by 2 orders of magnitude. Moreover, our novel process offers quantitative yields while easily allowing a fine control of the particles' shape, size (with a high monodispersity), and plasmonic properties. Finally, we demonstrate that our method can be easily upscaled to produce large amounts of nanostructures, up to the gram scale, with minimal waste and postprocessing, thus facilitating their use for further applications and industrial developments.
Collapse
Affiliation(s)
- Denis Chateau
- Laboratoire de Chimie, Université de Lyon, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5182 , 46 allée d'Italie , 69364 Lyon , France
- Laboratoire de Physique, École Normale Supérieure de Lyon, CNRS UMR 5672 , 46 allée d'Italie , 69364 Lyon , France
| | - Anthony Desert
- Laboratoire de Chimie, Université de Lyon, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5182 , 46 allée d'Italie , 69364 Lyon , France
| | - Frédéric Lerouge
- Laboratoire de Chimie, Université de Lyon, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5182 , 46 allée d'Italie , 69364 Lyon , France
| | - Guillaume Landaburu
- Laboratoire de Chimie, Université de Lyon, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5182 , 46 allée d'Italie , 69364 Lyon , France
| | - Stéphane Santucci
- Laboratoire de Physique, École Normale Supérieure de Lyon, CNRS UMR 5672 , 46 allée d'Italie , 69364 Lyon , France
| | - Stephane Parola
- Laboratoire de Chimie, Université de Lyon, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5182 , 46 allée d'Italie , 69364 Lyon , France
| |
Collapse
|
44
|
Chow TH, Li N, Bai X, Zhuo X, Shao L, Wang J. Gold Nanobipyramids: An Emerging and Versatile Type of Plasmonic Nanoparticles. Acc Chem Res 2019; 52:2136-2146. [PMID: 31368690 DOI: 10.1021/acs.accounts.9b00230] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Gold nanobipyramids (Au NBPs) and gold nanorods (Au NRs) are two types of elongated plasmonic nanoparticles with their longitudinal dipolar plasmon wavelengths synthetically tunable from the visible region to the near-infrared region. Both have highly polarization-dependent absorption and scattering cross sections because of their anisotropic geometries. In terms of their differences, each Au NBP has five equally angularly separated twinning planes that are aligned parallel to the length direction, while the most common Au NRs are single-crystalline. As a result, Au NBPs possess two sharp end tips, while Au NRs have rounded or flat ends, resulting in very different plasmonic properties. In general, Au NBPs exhibit larger local electric field enhancements, larger optical cross sections, narrower line widths, better shape and size uniformity, and higher refractive index sensitivity than Au NRs. With the recent development of reliable methods for the growth of Au NBPs with high purity and uniformity, Au NBPs have been attracting much interest for the investigation of their intriguing plasmonic properties and applications. In this Account, we provide a concise introduction to Au NBPs, including their fascinating plasmonic properties, wet-chemistry growth methods, plasmonic applications, and structure-directing function. The synthesis of uniform Au NBPs with variable sizes is of vital importance to control their plasmonic properties. In the synthesis part, we summarize the recent developments on the synthesis of Au NBPs, with a focus on the role of seeds in the seed-mediated growth of pentatwinned Au NBPs and methods to improve their number purity. The excellent plasmonic properties of Au NBPs make them promising candidates for numerous applications. To further explore the largely improved functionalities of Au NBPs, different types of Au-NBP-based hybrid nanostructures have been prepared. They exhibit synergistic interactions between Au NBPs and the other components. We highlight the widespread plasmonic applications of Au NBPs and Au-NBP-based hybrid nanostructures in the fields of spectroscopy, photocatalysis, sensing, switching, and biomedical technologies. We next turn to the structure-directing function of Au NBPs to demonstrate the Au-NBP-directed growth of metal nanostructures and their applications. The structure-directing function is enabled by the unique pentatwinned crystalline structure of Au NBPs. Finally, we conclude with remarks on the future perspectives and research directions on Au NBPs as well as the remaining challenges. We hope that this Account will act as a platform to offer fascinating opportunities and stimulate fast-growing research on the various aspects of Au NBPs.
Collapse
Affiliation(s)
- Tsz Him Chow
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Nannan Li
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xiaopeng Bai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xiaolu Zhuo
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Lei Shao
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
45
|
Hu Y, Yang Y, Fan R, Lin K, Hao D, Xia D, Wang P. Enhanced Thermal Decomposition Properties and Catalytic Mechanism of Ammonium Perchlorate over CuO/MoS
2
Composite. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Yinghui Hu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin 150001 China
| | - Yulin Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin 150001 China
| | - Ruiqing Fan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin 150001 China
| | - Kaifeng Lin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin 150001 China
| | - Dongyu Hao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin 150001 China
| | - Debin Xia
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin 150001 China
| | - Ping Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin 150001 China
| |
Collapse
|
46
|
Bian B, Liu Q, Yu S. Peroxidase mimetic activity of porphyrin modified ZnFe 2O 4/reduced graphene oxide and its application for colorimetric detection of H 2O 2 and glutathione. Colloids Surf B Biointerfaces 2019; 181:567-575. [PMID: 31195312 DOI: 10.1016/j.colsurfb.2019.06.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/30/2019] [Accepted: 06/04/2019] [Indexed: 01/22/2023]
Abstract
Artificial nanoenzymes which can overcome some drawbacks of natural enzymes is a challenging topic in the biosensor field. Herein, we demonstrated 5, 10, 15, 20-tetrakis (4-carboxylpheyl)-porphyrin modified magnetic ZnFe2O4 nanoparticles loaded on the surface of reduced graphene oxide (Por-ZnFe2O4/rGO), which exhibited intrinsic peroxidase-like activity and rapidly oxidized the peroxidase substrate 3, 3', 5, 5'-tetramethylbenzidine (TMB) into a blue product (OxTMB) distinguished by naked eyes. Interestingly, by comparative study of different nanomaterials ZnFe2O4 nanoparticles, ZnFe2O4/rGO and Por-ZnFe2O4, Por-ZnFe2O4/rGO was proved to possess the highest peroxidase-like activity. Electron spin resonance (ESR) verified the catalytic activity of Por-ZnFe2O4/rGO for H2O2 was due to hydroxyl radical from decomposition of H2O2. Temperature and pH strongly affected the peroxidase-like activity of Por-ZnFe2O4/rGO nanocomposites. Under optimal conditions (pH = 4, 40 °C), the constructed sensor based on the catalytic activity of the Por-ZnFe2O4/rGO could be conveniently used for colorimetric detection of H2O2 in the range of 0.7-30 μM with the detection limit of 0.54 μM. Moreover, the colorimetric sensor based on Por-ZnFe2O4/rGO exhibited a good linear response to glutathione (GHS) in the range of 2-40 μM with a low detection limit of 0.76 μM. The detection of GHS can be easily realized through the obvious color change by naked eyes without any complicated instrumentation.
Collapse
Affiliation(s)
- Bing Bian
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; College of Chemical and Environmental Engineering, State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China
| | - Qingyun Liu
- College of Chemical and Environmental Engineering, State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Shitao Yu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|