1
|
Alidaei-Sharif H, Babazadeh-Mamaqani M, Mohammadi-Jorjafki M, Roghani-Mamaqani H, Salami-Kalajahi M. Multi-Responsive Polymer Nanoparticles: A Versatile Platform for Double-Security Anticounterfeiting and Smart Food Packaging. Macromol Rapid Commun 2024; 45:e2400561. [PMID: 39461898 DOI: 10.1002/marc.202400561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/05/2024] [Indexed: 10/29/2024]
Abstract
Potential applications of colloidal polymer nanoparticles in the preparation of smart inks are investigated by physical incorporation of the oxazolidine molecules. Precise adjusting the polymer chain flexibility and polarity is achieved by controlling the ratio of methyl methacrylate and butyl acrylate monomers in the polymerization reaction. In addition, nanofibrous indicators of acid-base vapors are prepared from the latex nanoparticles. This can be beneficial for creating materials that sense and respond to environmental changes, such as humidity or moisture and acidity. Thermochromic inks are prepared by microencapsulating crystal violet lactone dye (CVL) in polymer matrices to prevent their release into the aqueous media. Combining two distinct systems with varying triggers, such as light and temperature, provides an effective strategy for double-encryption anticounterfeiting and crack and scratch detection and indication applications. Preparing labels impregnated with double-responsive inks, a novel approach is developed for food spoilage detection and preservation indication. Labels are manufactured using polymer nanoparticles, which contain photoluminescent oxazolidine molecules, as well as a trinary mixture of CVL within core-shell latex particles as the thermochromic dye. The combination of these two responsive elements transforms traditional packaging into a dynamic and interactive sentinel for the food it holds.
Collapse
Affiliation(s)
- Hossein Alidaei-Sharif
- Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, P.O. Box 51335-1996, Iran
| | - Milad Babazadeh-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, P.O. Box 51335-1996, Iran
| | - Moein Mohammadi-Jorjafki
- Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, P.O. Box 51335-1996, Iran
| | - Hossein Roghani-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, P.O. Box 51335-1996, Iran
- Institute of Polymeric Materials, Sahand University of Technology, Tabriz, P.O. Box 51335-1996, Iran
| | - Mehdi Salami-Kalajahi
- Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, P.O. Box 51335-1996, Iran
- Institute of Polymeric Materials, Sahand University of Technology, Tabriz, P.O. Box 51335-1996, Iran
| |
Collapse
|
2
|
Qu T, West KN, Rupar PA. Rapid synthesis of functional poly(ester amide)s through thiol-ene chemistry. RSC Adv 2023; 13:22928-22935. [PMID: 37520100 PMCID: PMC10375450 DOI: 10.1039/d3ra03478j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023] Open
Abstract
Poly(ester amide)s (PEAs) bearing various side chains were synthesized by post-polymerization modification of PA-1, a vinylidene containing PEA. The thiols 1-dodecanethiol (1A-SH), 2-phenylethanethiol (1B-SH), 2-mercaptoethanol (1C-SH), thioglycolic acid (1D-SH), furfuryl mercaptan (1E-SH) and sodium-2-mercaptoethanesulfonate (1F-SH) were reacted with PA-1 to form PEAs PA-1A through PA-1F respectively. PEAs containing non-polar thiol side chains (PA-1A, PA-1B, PA-1E), showed little change in solubility compared to PA-1, while PEAs with more polar side chains improved solubility in more polar solvents. PA-1F, functionalized with sodium-2-mercaptoethanesulfonate, became water-soluble. The introduction of pendant functional groups impacted the thermal behaviors of PEAs in a wide range. The PEAs were thermally stable up to 368 °C, with glass transition temperatures (Tg) measured between 117 to 152 °C. Moreover, to demonstrate the versatility of the PEAs, thermal reprocessable networks and polyurethanes were successfully fabricated by reacting with a bismaleimide (1,6-bis(maleimido)hexane, 1,6-BMH) and a diisocyanate (4,4'-diphenylmethane diisocyanate, 4,4'-MDI), respectively. This study paves the way for the facile synthesis of functional poly(ester amide)s with great potential in many fields.
Collapse
Affiliation(s)
- Taoguang Qu
- Department of Chemistry & Biochemistry, The University of Alabama Tuscaloosa Alabama 35487-0336 USA
| | - Kevin N West
- Department of Chemical & Biomolecular Engineering, The University of South Alabama Mobile Alabama 36688-0001 USA
| | - Paul A Rupar
- Department of Chemistry & Biochemistry, The University of Alabama Tuscaloosa Alabama 35487-0336 USA
| |
Collapse
|
3
|
Kalaburgi B, Radha Krushna B, Subramanian B, Daruka Prasad B, Manjunatha K, Yun Wu S, Shetty A, Nagabhushana H. Orange-red emitting MoO3:Sm3+ transparent nano-composite films for anti-counterfeiting and data secure applications. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.112031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
4
|
Alidaei-Sharif H, Roghani-Mamaqani H, Babazadeh-Mamaqani M, Sahandi-Zangabad K, Abdollahi A, Salami-Kalajahi M. Photochromic polymer nanoparticles as highly efficient anticounterfeiting nanoinks for development of photo-switchable encoded tags. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Xie J, Sun X, Guo X, Feng X, Chen K, Shu X, Wang C, Sun W, Liu Y, Shang B, Liu X, Chen D, Xu W, Li Z. Water-borne, durable and multicolor silicon nanoparticles/sodium alginate inks for anticounterfeiting applications. Carbohydr Polym 2023; 301:120307. [PMID: 36436869 DOI: 10.1016/j.carbpol.2022.120307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/08/2022]
Abstract
Recently, water-borne fluorescent inks have attracted extensive attention in anti-counterfeiting applications due to their convenient implementation and eco-friendliness. However, due to poor service durability, the latent authorization information from the inks is easily damaged, and even disappears when encountering water. Moreover, most of the existing fluorescent inks are monochromic, toxic, and allergic to skin, thus are unsuitable for their sustainability during real-life applications. Herein, this work presents environment-friendly, durable, and multicolor fluorescent anti-counterfeiting silicon nanoparticles (SiNPs)/sodium alginate (SA) inks. The multicolor SiNPs are synthesized by a one-pot method with defined morphologies and optical properties. Subsequently, SA is employed as the binder to prepare the fluorescent inks with optimized rheological properties. Practicability results show that the SiNPs/SA inks not only exhibit excellent printability, but also impart authentic information with superior covert performance. More notably, spraying solution of calcium dichloride can further improve fluorescent fastnesses of the SiNPs/SA inks by ionic crosslinking.
Collapse
Affiliation(s)
- Jing Xie
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Xuening Sun
- State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430073, PR China
| | - Xin Guo
- State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430073, PR China
| | - Xiang Feng
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Kailong Chen
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Xin Shu
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Chenhao Wang
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
| | - Wei Sun
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
| | - Yang Liu
- State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430073, PR China.
| | - Bin Shang
- State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430073, PR China
| | - Xin Liu
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, PR China; State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430073, PR China
| | - Dongzhi Chen
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, PR China; State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430073, PR China.
| | - Weilin Xu
- State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430073, PR China
| | - Zhujun Li
- College of Textiles, Guangdong Polytechnic, Guangzhou 528041, PR China
| |
Collapse
|
6
|
Gao M, Li J, Peng N, Jiang L, Zhao S, Fu DY, Li G. Multi-stimuli responsive lanthanides-based luminescent hydrogels for advanced information encryption. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Alidaei-Sharif H, Roghani-Mamaqani H, Babazadeh-Mamaqani M, Sahandi-Zangabad K, Salami-Kalajahi M. Photoluminescent Polymer Nanoparticles Based on Oxazolidine Derivatives for Authentication and Security Marking of Confidential Notes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13782-13792. [PMID: 36318093 DOI: 10.1021/acs.langmuir.2c01947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Colloidal materials have widely been used to develop innovative anticounterfeiting nanoinks for information encryption. Latex nanoparticles based on methyl methacrylate (MMA) and 2-hydroxyethyl methacrylate (HEMA) bearing hydroxyl functional groups were synthesized via semicontinuous miniemulsion polymerization. The size determination of the nanoparticles and microscopic results showed mostly spherical nanoparticles with a narrow size distribution and a mean size of about 80 nm. Two oxazolidine derivatives were physically doped at the surface of the nanoparticles to prepare photoluminescent polymer nanoparticles. Hydroxyl functional groups at the surface of the nanoparticles led to their hydrogen bonding interactions with the doped luminescent compounds. Optical analysis of the photoluminescent nanoparticles displayed different fluorescence emission and UV-vis absorbance intensities based on the amount of polar groups located at the surface of colloidal nanoparticles. Reducing the particle size to below 100 nm along with increasing the surface area can assist the decrease of the light reflectance and improvement of the latex nanoparticles' efficiency in the anticounterfeiting industry. This preparation methodology can efficiently provide remarkable photoreversible anticounterfeiting nanoinks used in different applications, such as print marking, security encoded tags, labeling, probing, and handwriting.
Collapse
Affiliation(s)
- Hossein Alidaei-Sharif
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz 51368, Iran
| | - Hossein Roghani-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz 51368, Iran
- Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz 51386, Iran
| | - Milad Babazadeh-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz 51368, Iran
| | - Keyvan Sahandi-Zangabad
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz 51368, Iran
| | - Mehdi Salami-Kalajahi
- Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz 51368, Iran
- Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz 51386, Iran
| |
Collapse
|
8
|
Effects of Neutral, Anionic and Cationic Polymer Brushes Grafted from Poly(para-phenylene vinylene) and Poly(para-phenylene ethynylene) on the Polymer’s Photoluminescent Properties. Polymers (Basel) 2022; 14:polym14142767. [PMID: 35890546 PMCID: PMC9322352 DOI: 10.3390/polym14142767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
The conformation of a fluorescent polymer, in the solid state or in solution, plays a critical role in the polymer’s fluorescent properties. Thus, grafted side chains on a fluorescent polymer can directly influence its optical properties. In this study, the effect of grafted polymeric side chains on the photoluminescent properties of poly(para-phenylene vinylene) (PPV) and poly(para-phenylene ethynylene) (PPE) were investigated. Low- and high-molecular-weight grafts of neutral poly(n-butyl acrylate), cationic poly(trimethylaminoethyl methacrylate) and anionic poly(sulfopropyl acrylate) were grafted onto PPVs and PPEs, and the effect of the grafting on the graft copolymer’s absorption and emission wavelengths, the fluorescence intensity and the quantum yield were studied. The results indicate that in the case of the ionic grafts, contrary to the expectations, the polymers have a reduced quantum yield. This contrasts with the copolymers with uncharged side chains (PnBA), where a major increase in the quantum yield is seen for the self-quenching conjugated pristine polymers. These results reinforce that the molecular conformation of the polymer in a solid or solution plays a critical role in fluorescent polymers photoluminescent properties.
Collapse
|
9
|
A Self-Color-Changing Film with Periodic Nanostructure for Anti-Counterfeit Application. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A self-color-changing film aimed at enhanced security and anti-counterfeit packaging is presented. Its function is to change color automatically when flipped under visible light. It is low-cost, takes a few seconds to check by the naked eye, and does not need any special tools to evaluate. The design of the color-changing, anti-counterfeiting film is based on a frequency-selective surface (FSS). The film is designed with aluminum nanocubes. They are laid out as an array in a plane with equal distance from one another. This arrangement allows us to select certain wavelengths of light to pass through by the size of the cubes and the separation distance between them. The performance is evaluated by a finite element analysis (FEA) method. The results show that the intersection of transmittance and the reflectance curves cause the film to change its color automatically when flipped. We also propose a method to predict the color of the film based on the transmittance values. The accuracy of this method is verified by actual colors from experiments with an error of no more than 12.8%, analyzed by the CIE chromaticity diagram.
Collapse
|
10
|
Ge P, Chen S, Tian Y, Liu S, Yue X, Wang L, Xu C, Sun K. Upconverted persistent luminescent Zn 3Ga 2SnO 8: Cr 3+, Yb 3+, Er 3+ phosphor for composite anti-counterfeiting ink. APPLIED OPTICS 2022; 61:5681-5685. [PMID: 36255798 DOI: 10.1364/ao.456302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/31/2022] [Indexed: 06/16/2023]
Abstract
Herein, a novel colorless anti-counterfeiting luminous ink composite material, to the best of our knowledge, was prepared by incorporating upconverted persistent luminescent Zn3Ga2SnO8:1%Cr3+, 5%Yb3+, 0.5%Er3+ (ZGSO: Cr,Yb,Er) phosphors into a resin solution, followed by stirring. Owing to its small particle size and uniform distribution, ZGSO: Cr, Yb, Er exhibits long-lasting, persistent near-infrared emission at 696 nm following the stoppage of excitation by a 274 nm ultraviolet light and a 980 nm excitation. ZGSO: Cr, Yb, Er composites were prepared and exhibited characteristic peaks corresponding to upconversion and an afterglow curve following excitation at 980 nm. With various special luminescent modes, sharp emission peaks, and emission intensity varying over time, the emission light of composite ink is easy to detect and not easily confused. Furthermore, the prepared composite ink can be calligraphic, visualized, and observable, and has good light-emitting performance following UV excitation. Our work provides a meaningful way to fabricate multifunctional anti-counterfeiting luminous ink composites with an intense persistent luminescence for use in anti-counterfeiting signs, inspection imaging, and other complex industrial applications.
Collapse
|
11
|
Water-soluble non-conjugated polymer dots with strong green fluorescence for sensitive detection of organophosphate pesticides. Anal Chim Acta 2022; 1206:339792. [DOI: 10.1016/j.aca.2022.339792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/19/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022]
|
12
|
Gao M, Li J, Xia D, Jiang L, Peng N, Zhao S, Li G. Lanthanides-based security inks with reversible luminescent switching and self-healing properties for advanced anti-counterfeiting. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Zhao X, Yang S, Deng J, Zhang J. Reversibly stealth QR code based on N-methylmaleimide-vinyl acetate copolymers under the condition of acid-base change. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Yu JS, Kim JH. Hacking detection based on the elastic properties of liquid crystals in different phases. OPTICS EXPRESS 2021; 29:39352-39361. [PMID: 34809301 DOI: 10.1364/oe.441941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
We present a security device that can detect and block hacking using the characteristics of liquid crystals. This device is based on a liquid crystal cell consisting of a uniformly aligned layer and a photo-alignment layer. To inscribe a pattern, the device is illuminated when the liquid crystal is in the smectic phase. The resulting image is invisible after light irradiation. Heating to the nematic phase improves this alignment and reveals the recorded pattern. Returning to the smectic phase distorts the pattern. Because the pattern is not shown without heating and the trace of the pattern does not disappear once viewed, it is possible to detect whether data has been hacked. The device is easy to fabricate, cost-effective, and sensitive to outside intrusion.
Collapse
|
15
|
Hao X, Xiang D, Jin Z. Amorphous Co 3O 4 quantum dots hybridizing with 3D hexagonal CdS single crystals to construct a 0D/3D p-n heterojunction for a highly efficient photocatalytic H 2 evolution. Dalton Trans 2021; 50:10501-10514. [PMID: 34259290 DOI: 10.1039/d1dt01333e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Herein, a novel amorphous monodisperse Co3O4 quantum dots/3D hexagonal CdS single crystals (0D/3D Co3O4 QDs/CdS) p-n heterojunction was constructed by a simple hydrothermal and electrostatic self-assembly method. The amorphous monodispersed Co3O4 QDs (≈4.5 nm) are uniformly and tightly attached to the surface of the hexagonal CdS single crystals. The sample, 0.5% CQDs/CdS exhibits outstanding hydrogen evolution activity of 17.5 mmol h-1 g-1 with a turnover number (TON) of 4214, up to 10.3 times higher than that of pure CdS. The enhanced photocatalytic activity can be attributed to the synergistic effect of the p-n heterostructure and the quantum confinement effect of Co3O4 QDs, which significantly promoted the separation efficiency of photo-generated electrons and holes. Additionally, the sulfur vacancy also can act as electron trappers to improve carrier separation and electron transfer. The photoelectrochemical and time-resolved fluorescence (TRPL) results further certify the effective spatial charge separation. This work gives an insight into the design of the 0D/3D Co3O4 QDs/CdS p-n heterostructure for a highly efficient photocatalysis.
Collapse
Affiliation(s)
- Xuqiang Hao
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, P.R. China. and Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, P.R. China and Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P.R. China
| | - Dingzhou Xiang
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, P.R. China. and Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, P.R. China and Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P.R. China
| | - Zhiliang Jin
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, P.R. China. and Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, P.R. China and Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P.R. China
| |
Collapse
|
16
|
Hierarchically Grown Ni–Mo–S Modified 2D CeO2 for High-Efficiency Photocatalytic Hydrogen Evolution. Catal Letters 2021. [DOI: 10.1007/s10562-021-03703-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
17
|
Jiang G, Zheng C, Yan T, Jin Z. Cd 0.8Mn 0.2S/MoO 3 composites with an S-scheme heterojunction for efficient photocatalytic hydrogen evolution. Dalton Trans 2021; 50:5360-5369. [PMID: 33881092 DOI: 10.1039/d1dt00799h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-performance and noble metal-free MoO3/Cd0.8Mn0.2S nanocomposites were synthesized via a simple direct physical mixing process. Consequently, from the many characterization methods, the obtained MoO3/Cd0.8Mn0.2S composites exhibited excellent photocatalytic hydrogen production performance and stability. The enhanced photocatalytic activity of the MoO3/Cd0.8Mn0.2S catalyst could be ascribed to the close contact interfaces and well-matched band structure of MoO3 and Mn0.8Cd0.2S, which is beneficial to the transport and separation of photonic excitons. Besides, the hydrogen production performance of the MoO3/Cd0.8Mn0.2S composite catalyst was 1.7 times higher than that of the pure MoO3. Based on the results of time-resolved fluorescence (TRPL) and electrochemical measurements, the possible S-scheme heterojunction mechanism of the photocatalytic hydrogen evolution of MoO3/Cd0.8Mn0.2S was proposed. This work has contributed to the transformation of solar energy into chemical energy.
Collapse
Affiliation(s)
- Guoping Jiang
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P.R.China.
| | - Chaoyue Zheng
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P.R.China.
| | - Teng Yan
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P.R.China.
| | - Zhiliang Jin
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P.R.China.
| |
Collapse
|
18
|
Fu X, Li G, Cai S, Yang H, Lin K, He M, Wen J, Li H, Xiong Y, Chen D, Liu X. Color-switchable hybrid dots/hydroxyethyl cellulose ink for anti-counterfeiting applications. Carbohydr Polym 2021; 251:117084. [PMID: 33142625 DOI: 10.1016/j.carbpol.2020.117084] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 01/31/2023]
Abstract
Many anti-counterfeiting inks have been explored recently, most of them are commonly involved in weak fastness, high cost and long-term toxicity, impeding their real-life applications. Herein, an environment-friendly and inexpensive anti-counterfeiting ink with excellent fastness is reported. The untifake ink is developed by combining hybrid dots (silicon/carbon) with hydroxyethyl cellulose (HEC) binder. Interestingly, the HEC binder can effectively prevent from aggregation-induced quenching of hybrid dots. Subsequently, the customized patterns are successfully transferred onto different surfaces of various substrates including cotton fabric, cellulosic paper, glass, metal, silicon wafer and PET film, using the as-prepared ink by screen-printing technique, exhibiting that the hybrid dots/HEC ink possesses widespread practicability. Notably, fluorescent color of these patterns can be switchable by adjusting environmental pH-value, further imparting the as-prepared ink with excellent covert performance. This new fluorescent hybrid dots/HEC ink will be promising candidates for high-level anti-counterfeiting applications including food packaging, apparel and documents.
Collapse
Affiliation(s)
- Xijun Fu
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, PR China; School of Printing and Packaging, Wuhan University, Wuhan, 430072, PR China
| | - Guoqing Li
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, PR China
| | - Shaoyong Cai
- School of Printing and Packaging, Wuhan University, Wuhan, 430072, PR China
| | - Heng Yang
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, PR China
| | - Kang Lin
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, PR China
| | - Miao He
- School of Printing and Packaging, Wuhan University, Wuhan, 430072, PR China
| | - Junwei Wen
- School of Printing and Packaging, Wuhan University, Wuhan, 430072, PR China
| | - Houbin Li
- School of Printing and Packaging, Wuhan University, Wuhan, 430072, PR China
| | - Yabo Xiong
- School of Printing and Packaging, Wuhan University, Wuhan, 430072, PR China
| | - Dongzhi Chen
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, PR China; State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430073, PR China.
| | - Xinghai Liu
- School of Printing and Packaging, Wuhan University, Wuhan, 430072, PR China.
| |
Collapse
|
19
|
Li Z, Liu L, Liu Y. An AIE-active dual fluorescent switch with negative photochromism for information display and encryption. NEW J CHEM 2021. [DOI: 10.1039/d1nj01637g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A negative photochromic molecular switch with AIE and two-color fluorescence conversion properties was synthesized.
Collapse
Affiliation(s)
- Zhize Li
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Lulu Liu
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| | - Yifei Liu
- College of Chemistry
- Jilin University
- Changchun
- P. R. China
| |
Collapse
|
20
|
Abdollahi A, Roghani-Mamaqani H, Razavi B, Salami-Kalajahi M. Photoluminescent and Chromic Nanomaterials for Anticounterfeiting Technologies: Recent Advances and Future Challenges. ACS NANO 2020; 14:14417-14492. [PMID: 33079535 DOI: 10.1021/acsnano.0c07289] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Counterfeiting and inverse engineering of security and confidential documents, such as banknotes, passports, national cards, certificates, and valuable products, has significantly been increased, which is a major challenge for governments, companies, and customers. From recent global reports published in 2017, the counterfeiting market was evaluated to be $107.26 billion in 2016 and forecasted to reach $206.57 billion by 2021 at a compound annual growth rate of 14.0%. Development of anticounterfeiting and authentication technologies with multilevel securities is a powerful solution to overcome this challenge. Stimuli-chromic (photochromic, hydrochromic, and thermochromic) and photoluminescent (fluorescent and phosphorescent) compounds are the most significant and applicable materials for development of complex anticounterfeiting inks with a high-security level and fast authentication. Highly efficient anticounterfeiting and authentication technologies have been developed to reach high security and efficiency. Applicable materials for anticounterfeiting applications are generally based on photochromic and photoluminescent compounds, for which hydrochromic and thermochromic materials have extensively been used in recent decades. A wide range of materials, such as organic and inorganic metal complexes, polymer nanoparticles, quantum dots, polymer dots, carbon dots, upconverting nanoparticles, and supramolecular structures, could display all of these phenomena depending on their physical and chemical characteristics. The polymeric anticounterfeiting inks have recently received significant attention because of their high stability for printing on confidential documents. In addition, the printing technologies including hand-writing, stamping, inkjet printing, screen printing, and anticounterfeiting labels are discussed for introduction of the most efficient methods for application of different anticounterfeiting inks. This review would help scientists to design and develop the most applicable encryption, authentication, and anticounterfeiting technologies with high security, fast detection, and potential applications in security marking and information encryption on various substrates.
Collapse
Affiliation(s)
- Amin Abdollahi
- Faculty of Polymer Engineering, Sahand University of Technology, 51335-1996 Tabriz, Iran
| | - Hossein Roghani-Mamaqani
- Faculty of Polymer Engineering, Sahand University of Technology, 51335-1996 Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, 51335-1996 Tabriz, Iran
| | - Bahareh Razavi
- Faculty of Polymer Engineering, Sahand University of Technology, 51335-1996 Tabriz, Iran
| | - Mehdi Salami-Kalajahi
- Faculty of Polymer Engineering, Sahand University of Technology, 51335-1996 Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, 51335-1996 Tabriz, Iran
| |
Collapse
|
21
|
Zhou ZH, Chen KH, Gao S, Yang ZW, He LN. Ionic Liquid-Modified Porous Organometallic Polymers as Efficient and Selective Photocatalysts for Visible-Light-Driven CO 2 Reduction. RESEARCH 2020; 2020:9398285. [PMID: 33063016 PMCID: PMC7533041 DOI: 10.34133/2020/9398285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/31/2020] [Indexed: 11/28/2022]
Abstract
In the photoreduction of CO2 to CO, the competitive H2 evolution is always inevitable due to the approximate reduction potentials of H+/H2 and CO2/CO, which results in poor selectivity for CO production. Herein, imidazolium-type ionic liquid- (IL-) modified rhenium bipyridine-based porous organometallic polymers (Re-POMP-IL) were designed as efficient and selective photocatalysts for visible-light CO2 photoreduction to CO based on the affinity of IL with CO2. Photoreduction studies demonstrated that CO2 photoreduction promoted by Re-POMP-IL functioning as the catalyst exhibits excellent CO selectivity up to 95.5% and generate 40.1 mmol CO/g of Re-POMP-IL1.0 (obtained by providing equivalent [(5,5′-divinyl-2,2′-bipyridine)Re(CO)3Cl] and 3-ethyl-1-vinyl-1H-imidazol-3-ium bromide) at 12 h, outperforming that attained with the corresponding Re-POMP analogue without IL, which highlights the crucial role of IL. Notably, CO2 adsorption, light harvesting, and transfer of photogenerated charges as key steps for CO2RR were studied by employing POMPs modified with different amounts of IL as photocatalysts, among which the CO2 affinity as an important factor for POMPs catalyzed CO2 reduction is revealed. Overall, this work provides a practical pathway to improve the CO2 photoreduction efficiency and CO selectivity by employing IL as a regulator.
Collapse
Affiliation(s)
- Zhi-Hua Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Kai-Hong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Song Gao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhi-Wen Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Liang-Nian He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
22
|
Jiao L, Zhang M, Li H. Preparation of 1, 3, 6, 8-Pyrenesulfonic Acid Tetrasodium Salt Dye-Doped Silica Nanoparticles and Their Application in Water-Based Anti-Counterfeit Ink. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4074. [PMID: 32937831 PMCID: PMC7560414 DOI: 10.3390/ma13184074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 05/25/2023]
Abstract
In order to improve the luminescent stability of water-based anti-counterfeit ink, a new fluorescent material is prepared by doping dye into silica nanoparticles. Water soluble anionic dye 1, 3, 6, 8-pyrenesulfonic acid sodium salt (PTSA) is selected as the dopant. In this work, PTSA is successfully trapped into silica nanoparticles (SiNPs) by the reverse microemulsion method using cationic polyelectrolyte poly (dimethyl diallyl ammonium chloride; PDADMAC) as a bridge. The UV absorption spectra, fluorescence emission spectra and fluorescent decay curves are used to describe the luminescent properties of the PTSA-doped silica nanoparticles (PTSA-SiNPs). In addition, the as-prepared PTSA-SiNPs and polyurethane waterborne emulsion are used to prepare water-based anti-counterfeit ink, and fluorescent patterns are successfully printed through screen-printing. The samples printed by the ink exhibit desirable fluorescence properties, heat stability, robust photostability, and a fluorescent anti-counterfeit effect, which makes the PTSA-SiNPs promising luminescent materials for anti-counterfeit applications.
Collapse
Affiliation(s)
- Liyong Jiao
- School of Printing and Packaging, Wuhan University, Wuhan 430072, China
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China;
| | - Mengnan Zhang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China;
| | - Houbin Li
- School of Printing and Packaging, Wuhan University, Wuhan 430072, China
| |
Collapse
|
23
|
Wu T, Xie M, Huang J, Yan Y. Putting Ink into Polyion Micelles: Full-Color Anticounterfeiting with Water/Organic Solvent Dual Resistance. ACS APPLIED MATERIALS & INTERFACES 2020; 12:39578-39585. [PMID: 32805932 DOI: 10.1021/acsami.0c10355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Anticounterfeiting paintings are usually with limited colors and easy blurring and need to be dispersed in an environmentally unfriendly organic solvent. We report a set of water-based polyion micellar inks to solve all these problems. Upon complexation of reversible coordination polymers formed with rare earth metal ions Eu3+ and Tb3+ and the aggregation-induced emission ligand tetraphenylethylene-L2EO4 with oppositely charged block polyelectrolyte P2MVP29-b-PEO205, we are able to generate polyion micelles displaying three elementary emission colors of red (R) (ΦEu3+ = 24%), green (G) (ΦTb3+ = 7%), and blue (B) (ΦTPE = 9%). Full-spectrum emission and white light emission (0.34, 0.34) become possible by simply mixing the R, G, and B micelles at the desired fraction. Strikingly, the micellar inks remain stable even after soaking in water or organic solvents (ethyl acetate, ethanol, etc.) for 24 h. We envision that polyion micelles would open a new paradigm in the field of anticounterfeiting.
Collapse
Affiliation(s)
- Tongyue Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Mengqi Xie
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jianbin Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yun Yan
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
24
|
Mahapatra M, Dutta A, Mitra M, Karmakar M, Ghosh NN, Chattopadhyay PK, Singha NR. Intrinsically Fluorescent Biocompatible Terpolymers for Detection and Removal of Bi(III) and Cell Imaging. ACS APPLIED BIO MATERIALS 2020; 3:6155-6166. [DOI: 10.1021/acsabm.0c00718] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Manas Mahapatra
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Arnab Dutta
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Madhushree Mitra
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Mrinmoy Karmakar
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Narendra Nath Ghosh
- Department of Chemistry, University of Gour Banga, Mokdumpur 732103, West Bengal, India
| | - Pijush Kanti Chattopadhyay
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Nayan Ranjan Singha
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| |
Collapse
|
25
|
Sun XW, Wang ZH, Li YJ, Yang HL, Gong GF, Zhang YM, Yao H, Wei TB, Lin Q. Transparency and AIE tunable supramolecular polymer hydrogel acts as TEA-HCl vapor controlled smart optical material. SOFT MATTER 2020; 16:5734-5739. [PMID: 32525181 DOI: 10.1039/d0sm00522c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Stimuli-responsive optical materials attract lots of attention due to their broad applications. Herein, a novel smart stimuli-responsive supramolecular polymer was successfully constructed using a simple tripodal quaternary ammonium-based gelator (TH). The TH self-assembles into a supramolecular polymer hydrogel (TH-G) and shows aggregation-induced emission (AIE) properties. Interestingly, the transparency and fluorescence of the TH-G xerogel film (TH-GF) could be reversibly regulated by use of triethylamine (TEA) and hydrochloric acid (HCl) vapor. When alternately fumed with TEA and HCl vapor, the optical transmittance of the TH-GF was changed from 8.9% to 92.7%. Meanwhile, the fluorescence of the TH-G shows an "ON/OFF" switch. The reversible switching of the transparency and the fluorescence of the TH-GF is attributed to the assembly and disassembly of the supramolecular polymer TH-G. Based on these stimuli-response properties, the TH-GF could act as an optical material and shows potential applications as smart windows or fluorescent display material controlled by TEA and HCl vapor.
Collapse
Affiliation(s)
- Xiao-Wen Sun
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Zhong-Hui Wang
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Ying-Jie Li
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Hai-Long Yang
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Guan-Fei Gong
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - You-Ming Zhang
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Hong Yao
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Tai-Bao Wei
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | - Qi Lin
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| |
Collapse
|
26
|
Mitra M, Mahapatra M, Dutta A, Chattopadhyay PK, Deb M, Deb Roy JS, Roy C, Banerjee S, Singha NR. Light-Emitting Multifunctional Maleic Acid- co-2-( N-(hydroxymethyl)acrylamido)succinic Acid- co- N-(hydroxymethyl)acrylamide for Fe(III) Sensing, Removal, and Cell Imaging. ACS OMEGA 2020; 5:3333-3345. [PMID: 32118148 PMCID: PMC7045568 DOI: 10.1021/acsomega.9b03536] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/28/2020] [Indexed: 05/04/2023]
Abstract
The intrinsically fluorescent highly hydrophilic multifunctional aliphatic terpolymer, maleic acid (MA)-co-2-(N-(hydroxymethyl)acrylamido)succinic acid (NHASA)-co-N-(hydroxymethyl)acrylamide (NHMA), that is, 1, was designed and synthesized via C-C/N-C-coupled in situ allocation of a fluorophore monomer, that is, NHASA, composed of amido and carboxylic acid functionalities in the polymerization of two nonemissive MA and NHMA. The scalable and reusable intrinsically fluorescent biocompatible 1 was suitable for sensing and high-performance adsorptive exclusion of Fe(III), along with the imaging of Madin-Darby canine kidney cells. The structure of 1, in situ fluorophore monomer, aggregation-induced enhanced emission, cell-imaging ability, and superadsorption mechanism were studied via microstructural analyses using 1H/13C NMR, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, atomic absorption spectroscopy, ultraviolet-visible spectroscopy, thermogravimetric analysis, dynamic light scattering, high-resolution transmission electron microscopy, solid-state fluorescence, fluorescence lifetime, and fluorescence imaging, along with measuring kinetics, isotherms, and thermodynamic parameters. The location, electronic structures, and geometries of the fluorophore and absorption and emission properties of 1 were investigated using density functional theory and natural transition orbital analyses. The limit of detection and the maximum adsorption capacity were 2.45 × 10-7 M and 542.81 mg g-1, respectively.
Collapse
Affiliation(s)
- Madhushree Mitra
- Department
of Leather Technology, Government College of Engineering and Leather
Technology (Post Graduate), Maulana Abul
Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Manas Mahapatra
- Advanced
Polymer Laboratory, Department of Polymer Science and Technology,
Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West
Bengal, India
| | - Arnab Dutta
- Advanced
Polymer Laboratory, Department of Polymer Science and Technology,
Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West
Bengal, India
| | - Pijush Kanti Chattopadhyay
- Department
of Leather Technology, Government College of Engineering and Leather
Technology (Post Graduate), Maulana Abul
Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Mousumi Deb
- Advanced
Polymer Laboratory, Department of Polymer Science and Technology,
Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West
Bengal, India
| | - Joy Sankar Deb Roy
- Advanced
Polymer Laboratory, Department of Polymer Science and Technology,
Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West
Bengal, India
| | - Chandan Roy
- Department
of Leather Technology, Government College of Engineering and Leather
Technology (Post Graduate), Maulana Abul
Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
- Advanced
Polymer Laboratory, Department of Polymer Science and Technology,
Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West
Bengal, India
| | - Snehasis Banerjee
- Department
of Chemistry, Government College of Engineering and Leather Technology
(Post Graduate), Maulana Abul Kalam Azad
University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Nayan Ranjan Singha
- Advanced
Polymer Laboratory, Department of Polymer Science and Technology,
Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West
Bengal, India
| |
Collapse
|
27
|
Zhao H, Qin X, Zhao L, Dong S, Gu L, Sun W, Wang D, Zheng Y. Invisible Inks for Secrecy and Anticounterfeiting: From Single to Double-encryption by Hydrochromic Molecules. ACS APPLIED MATERIALS & INTERFACES 2020; 12:8952-8960. [PMID: 31972084 DOI: 10.1021/acsami.0c00462] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Secret information recorded by traditional single-encrypted invisible inks is easily cracked because the inks can switch only between "NONE" and "TRUTH". Developing double-encrypted systems makes the information reversibly switchable between "FALSE" and "TRUTH", which is helpful to ensure the safety of the secret information during transport. Here, we prepared heat-developed invisible inks by hydrochromic molecules donor-acceptor Stenhouse adducts (DASAs) and oxazolidines (OXs) and promoted the invisible inks from single to double encryption. DASAs coordinate with water molecules and form stable colorless cyclic DASA·xH2O molecules, which lose coordinated water molecules after heating and switch to colored linear DASAs. In contrast, OXs are colored with water and are colorless after heating. Single-encrypted secrecy was realized by DASA invisible inks. The information is invisible under the encrypted state and becomes bright purple after heating. Vapor treating re-encrypted the information in ∼5 min. Furthermore, the single-encryption was promoted to double-encryption by a DASA/OX invisible inks system. Heating and vapor treating switch the information between the "FALSE" and "TRUTH" reversibly. The DASA/OX invisible ink system is applied for secrecy of texts, graphic images, and quick response (QR) codes.
Collapse
Affiliation(s)
- Haiquan Zhao
- School of Optoelectronic Science and Engineering of UESTC , University of Electronic Science and Technology of China , Chengdu 610054 , China
| | - Xingchen Qin
- School of Optoelectronic Science and Engineering of UESTC , University of Electronic Science and Technology of China , Chengdu 610054 , China
| | - Lei Zhao
- School of Optoelectronic Science and Engineering of UESTC , University of Electronic Science and Technology of China , Chengdu 610054 , China
- Department of Chemistry and Biochemistry , California State University Northridge , Northridge , California 91330-8262 , United States
| | - Shumin Dong
- School of Optoelectronic Science and Engineering of UESTC , University of Electronic Science and Technology of China , Chengdu 610054 , China
| | - Lianghong Gu
- School of Optoelectronic Science and Engineering of UESTC , University of Electronic Science and Technology of China , Chengdu 610054 , China
- School of Materials Science and Engineering , Xihua University , Chengdu , 610039 , China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian , 116024 , China
| | - Dongsheng Wang
- School of Optoelectronic Science and Engineering of UESTC , University of Electronic Science and Technology of China , Chengdu 610054 , China
- State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , China
| | - Yonghao Zheng
- School of Optoelectronic Science and Engineering of UESTC , University of Electronic Science and Technology of China , Chengdu 610054 , China
| |
Collapse
|
28
|
Dutta A, Mahapatra M, Deb M, Mitra M, Dutta S, Chattopadhyay PK, Banerjee S, Sil PC, Maiti DK, Singha NR. Fluorescent Terpolymers Using Two Non-Emissive Monomers for Cr(III) Sensors, Removal, and Bio-Imaging. ACS Biomater Sci Eng 2020; 6:1397-1407. [PMID: 33455376 DOI: 10.1021/acsbiomaterials.9b01849] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Arnab Dutta
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Manas Mahapatra
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Mousumi Deb
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Madhushree Mitra
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology,
Salt Lake City, Kolkata 700106, West Bengal, India
| | - Sayanta Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Pijush Kanti Chattopadhyay
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology,
Salt Lake City, Kolkata 700106, West Bengal, India
| | - Snehasis Banerjee
- Department of Chemistry, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Parames C. Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Dilip K. Maiti
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, West Bengal, India
| | - Nayan Ranjan Singha
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| |
Collapse
|
29
|
Mitra M, Mahapatra M, Dutta A, Deb M, Dutta S, Chattopadhyay PK, Roy S, Banerjee S, Sil PC, Singha NR. Fluorescent Guar Gum-g-Terpolymer via In Situ Acrylamido-Acid Fluorophore-Monomer in Cell Imaging, Pb(II) Sensor, and Security Ink. ACS APPLIED BIO MATERIALS 2020; 3:1995-2006. [PMID: 35025321 DOI: 10.1021/acsabm.9b01146] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Madhushree Mitra
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
- Department of Chemical Engineering, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, West Bengal, India
| | - Manas Mahapatra
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Arnab Dutta
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Mousumi Deb
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Sayanta Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India
| | - Pijush Kanti Chattopadhyay
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Subhasis Roy
- Department of Chemical Engineering, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, West Bengal, India
| | - Snehasis Banerjee
- Department of Chemistry, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal,India
| | - Parames C. Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India
| | - Nayan Ranjan Singha
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| |
Collapse
|
30
|
Mahapatra M, Dutta A, Roy JSD, Das U, Banerjee S, Dey S, Chattopadhyay PK, Maiti DK, Singha NR. Multi‐C−C/C−N‐Coupled Light‐Emitting Aliphatic Terpolymers: N−H‐Functionalized Fluorophore Monomers and High‐Performance Applications. Chemistry 2019; 26:502-516. [PMID: 31599070 DOI: 10.1002/chem.201903935] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Manas Mahapatra
- Advanced Polymer LaboratoryDepartment of Polymer Science and TechnologyGovernment College of Engineering and Leather TechnologyMaulana Abul Kalam Azad University of Technology Salt Lake, Kolkata 700106 West Bengal India
| | - Arnab Dutta
- Advanced Polymer LaboratoryDepartment of Polymer Science and TechnologyGovernment College of Engineering and Leather TechnologyMaulana Abul Kalam Azad University of Technology Salt Lake, Kolkata 700106 West Bengal India
| | - Joy Sankar Deb Roy
- Advanced Polymer LaboratoryDepartment of Polymer Science and TechnologyGovernment College of Engineering and Leather TechnologyMaulana Abul Kalam Azad University of Technology Salt Lake, Kolkata 700106 West Bengal India
| | - Ujjal Das
- Department of PhysiologyUniversity of Calcutta 92 A.P.C. Road Kolkata 700009 West Bengal India
| | - Snehasis Banerjee
- Department of ChemistryGovernment College of Engineering and Leather TechnologyMaulana Abul Kalam Azad University of Technology Salt Lake, Kolkata 700106 West Bengal India
| | - Sanjit Dey
- Department of PhysiologyUniversity of Calcutta 92 A.P.C. Road Kolkata 700009 West Bengal India
| | - Pijush Kanti Chattopadhyay
- Department of Leather TechnologyGovernment College of Engineering and Leather TechnologyMaulana Abul Kalam Azad University of Technology Salt Lake, Kolkata 700106 West Bengal India
| | - Dilip K. Maiti
- Department of ChemistryUniversity of Calcutta 92 A.P.C. Road Kolkata 700009 West Bengal India
| | - Nayan Ranjan Singha
- Advanced Polymer LaboratoryDepartment of Polymer Science and TechnologyGovernment College of Engineering and Leather TechnologyMaulana Abul Kalam Azad University of Technology Salt Lake, Kolkata 700106 West Bengal India
| |
Collapse
|
31
|
Li Z, Chen H, Li B, Xie Y, Gong X, Liu X, Li H, Zhao Y. Photoresponsive Luminescent Polymeric Hydrogels for Reversible Information Encryption and Decryption. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901529. [PMID: 31728289 PMCID: PMC6839628 DOI: 10.1002/advs.201901529] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/21/2019] [Indexed: 05/04/2023]
Abstract
Conventional luminescent information is usually visible under either ambient or UV light, hampering their potential application in smart confidential information protection. In order to address this challenge, herein, light-triggered luminescence ON-OFF switchable hybrid hydrogels are successfully constructed through in situ copolymerization of acrylamide, lanthanide complex, and diarylethene photochromic unit. The open-close behavior of the diarylethene ring in the polymer could be controlled by UV and visible light irradiation, where the close form of the ring features fluorescence resonance energy transfer with the lanthanide complex. The hydrogel-based blocks with tunable emission colors are then employed to construct 3D information codes, which can be read out under a 254 nm UV lamp. The exposure to 300 nm UV light leads to the luminescence quenching of the hydrogels, thus erasing the encoded information. Under visible light (>450 nm) irradiation, the luminescence is recovered to make the confidential information readable again. Thus, by simply alternating the exposure to UV and visible lights, the luminescence signals could become invisible and visible reversibly, allowing for reversible multiple information encryption and decryption.
Collapse
Affiliation(s)
- Zhiqiang Li
- National‐Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources UtilizationTianjin Key Laboratory of Chemical Process SafetySchool of Chemical Engineering and TechnologyHebei University of TechnologyGuangrong Dao 8, Hongqiao DistrictTianjin300130P. R. China
| | - Hongzhong Chen
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University21 Nanyang LinkSingapore637371Singapore
| | - Bin Li
- National‐Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources UtilizationTianjin Key Laboratory of Chemical Process SafetySchool of Chemical Engineering and TechnologyHebei University of TechnologyGuangrong Dao 8, Hongqiao DistrictTianjin300130P. R. China
| | - Yanmiao Xie
- College of ComputerNankai UniversityNo. 38 Tongyan Road, Jinnan DistrictTianjin300350P. R. China
| | - Xiaoli Gong
- College of ComputerNankai UniversityNo. 38 Tongyan Road, Jinnan DistrictTianjin300350P. R. China
| | - Xiao Liu
- National‐Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources UtilizationTianjin Key Laboratory of Chemical Process SafetySchool of Chemical Engineering and TechnologyHebei University of TechnologyGuangrong Dao 8, Hongqiao DistrictTianjin300130P. R. China
| | - Huanrong Li
- National‐Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources UtilizationTianjin Key Laboratory of Chemical Process SafetySchool of Chemical Engineering and TechnologyHebei University of TechnologyGuangrong Dao 8, Hongqiao DistrictTianjin300130P. R. China
| | - Yanli Zhao
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University21 Nanyang LinkSingapore637371Singapore
| |
Collapse
|
32
|
Bara JE, O'Harra KE. Recent Advances in the Design of Ionenes: Toward Convergence with High‐Performance Polymers. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900078] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jason E. Bara
- Department of Chemical & Biological Engineering University of Alabama Tuscaloosa AL 35487‐0203 USA
| | - Kathryn E. O'Harra
- Department of Chemical & Biological Engineering University of Alabama Tuscaloosa AL 35487‐0203 USA
| |
Collapse
|