1
|
Musharaf HM, Roshan U, Mudugamuwa A, Trinh QT, Zhang J, Nguyen NT. Computational Fluid-Structure Interaction in Microfluidics. MICROMACHINES 2024; 15:897. [PMID: 39064408 PMCID: PMC11278627 DOI: 10.3390/mi15070897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
Micro elastofluidics is a transformative branch of microfluidics, leveraging the fluid-structure interaction (FSI) at the microscale to enhance the functionality and efficiency of various microdevices. This review paper elucidates the critical role of advanced computational FSI methods in the field of micro elastofluidics. By focusing on the interplay between fluid mechanics and structural responses, these computational methods facilitate the intricate design and optimisation of microdevices such as microvalves, micropumps, and micromixers, which rely on the precise control of fluidic and structural dynamics. In addition, these computational tools extend to the development of biomedical devices, enabling precise particle manipulation and enhancing therapeutic outcomes in cardiovascular applications. Furthermore, this paper addresses the current challenges in computational FSI and highlights the necessity for further development of tools to tackle complex, time-dependent models under microfluidic environments and varying conditions. Our review highlights the expanding potential of FSI in micro elastofluidics, offering a roadmap for future research and development in this promising area.
Collapse
Affiliation(s)
- Hafiz Muhammad Musharaf
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia; (H.M.M.); (U.R.); (A.M.); (Q.T.T.)
| | - Uditha Roshan
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia; (H.M.M.); (U.R.); (A.M.); (Q.T.T.)
| | - Amith Mudugamuwa
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia; (H.M.M.); (U.R.); (A.M.); (Q.T.T.)
| | - Quang Thang Trinh
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia; (H.M.M.); (U.R.); (A.M.); (Q.T.T.)
| | - Jun Zhang
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia; (H.M.M.); (U.R.); (A.M.); (Q.T.T.)
- School of Engineering and Built Environment, Griffith University, Brisbane, QLD 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia; (H.M.M.); (U.R.); (A.M.); (Q.T.T.)
| |
Collapse
|
2
|
Choudhury P, Ghosh S, Biswas K, Basu B. A suitably fabricated ternary nanocomposite (Cu-CuO@rGO-SiO 2) as a sustainable and common heterogeneous catalyst for C-S, C-O and C-N coupling reactions. NANOSCALE 2024; 16:11592-11603. [PMID: 38857109 DOI: 10.1039/d4nr01116c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
A hybrid composite based on π-electron rich reduced graphene oxide (rGO) and mesoporous silica (SiO2) was prepared and decorated with copper species to afford a ternary nanocomposite material (Cu-CuO@rGO-SiO2). This copper-based nanocomposite was successfully used as a robust and multi-tasking heterogeneous catalyst for most common cross-coupling reactions (e.g. C-S, C-O and C-N coupling). A broad range of catalytic activities are believed to be originated from the synergism of different co-existing copper species (Cu(0) and CuO) and facile charge transfer from the metal ions towards rGO-SiO2 matrices, as established from XPS and other studies.
Collapse
Affiliation(s)
- Prasun Choudhury
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India.
| | - Sujit Ghosh
- Raiganj Surendranath Mahavidyalaya, Raiganj, Uttar Dinajpur 733134, India
| | - Kinkar Biswas
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India.
| | - Basudeb Basu
- Formerly Department of Chemistry, University of North Bengal, Darjeeling 734013, India.
| |
Collapse
|
3
|
Isinkaralar K. Improving the adsorption performance of non-polar benzene vapor by using lignin-based activated carbon. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108706-108719. [PMID: 37752402 DOI: 10.1007/s11356-023-30046-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/19/2023] [Indexed: 09/28/2023]
Abstract
Both indoor and outdoor contamination continually contain benzene vapor. It has primary concerns about long-term health risks to the living environment. Benzene is a crucial airborne pollutant in the environment due to its apparent acute toxicity, high volatility, and poor degradability. It is especially urgent to restrain benzene emissions due to the persistent concentration increase and stringent processes. Benzene adsorption is a highly efficient mechanism with low cost, low energy consumption, and a simple process. In this study, biomass-derived porous carbon materials (TCACs) were synthesized by pyrolysis activation combined with H3PO4, HNO3, and HCl. TCAC44 has the best activation conclusion, showing that surface area and pore volume were 1107 m2/g and 0.58 cm3/g treated with H3PO4 and so was chosen for subsequent benzene adsorption/desorption tests. The adsorption capacities of benzene for TCAC44 were increased from 58 mg/g for 35 °C + 95% RH to 121 mg/g for 25 °C + 15% RH and presented a higher adsorption capacity of benzene than TCAC101 and TCAC133. Otherwise, well recyclability of TCAC44 was revealed as the benzene adsorption capacity reductions were 22.49% after five adsorption-desorption cycles. Furthermore, the present study established the property-application relationships to promote and encourage future research on the newly synthesized innovative TCAC44 for benzene removal.
Collapse
Affiliation(s)
- Kaan Isinkaralar
- Department of Environmental Engineering, Faculty of Engineering and Architecture, Kastamonu University, 37150, Kastamonu, Türkiye.
| |
Collapse
|
4
|
Chen Y, Sun D, Du L, Jiao Y, Han W, Tian G. Sandwich-Structured Hybrid of NiCo Nanoparticles-Embedded Carbon Nanotubes Grafted on C 3N 4 Nanosheets for Efficient Photodehydrogenative Coupling Reactions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24425-24434. [PMID: 35603740 DOI: 10.1021/acsami.2c04826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Exploring cheap and efficient hybrid catalysts offers exciting opportunities for enhancing the performance of photocatalysts in the green organic synthesis field. Herein, a facile and effective approach is designed for the synthesis of a sandwich-structured hybrid in which NiCo bimetallic nanoparticles are embedded in the tip of nitrogen-doped carbon nanotubes (N-CNTs) grafted on both sides of a nitrogen deficient C3N4 (Nv-C3N4) nanosheet for photodehydrogenative coupling reactions. Such a brand-new type of sandwich-structured hybrid comprises Nv-C3N4 nanosheets and surrounding N-CNTs embedded with NiCo nanoparticles at their tips. Remarkably, the resultant hybrid exhibits integrated functionalities, abundant active sites, enhanced visible light absorption, and excellent interfacial charge transfer ability. As a result, the optimized NiCo@N-CNTs@Nv-C3N4 photocatalyst shows significantly improved photodehydrogenative coupling performance of amines to imines compared to the control single-metal-based catalysts (Ni@N-CNTs@Nv-C3N4 and Co@N-CNTs@Nv-C3N4). The mechanistic investigation through experimental and computational study demonstrates that, compared with single-metal-based hybrids, the NiCo bimetallic hybrid exhibits stronger amine adsorption and weaker photogenerated hydrogen atom adsorption, thus promoting the dehydrogenative activation of primary amines and fast generation of imines. This work presents a promising insight for designing and preparing efficient photocatalysts to trigger organic synthesis in high yields.
Collapse
Affiliation(s)
- Yajie Chen
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080 P.R. China
| | - Dan Sun
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080 P.R. China
| | - Lizhi Du
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080 P.R. China
| | - Yuzhen Jiao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080 P.R. China
| | - Wei Han
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080 P.R. China
| | - Guohui Tian
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080 P.R. China
| |
Collapse
|
5
|
Sayahi MH, Toosibashi M, Bahmaei M, Lijan H, Ma'Mani L, Mahdavi M, Bahadorikhalili S. Pd@Py2PZ@MSN as a Novel and Efficient Catalyst for C–C Bond Formation Reactions. Front Chem 2022; 10:838294. [PMID: 35433633 PMCID: PMC9008749 DOI: 10.3389/fchem.2022.838294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, a novel catalyst is introduced based on the immobilization of palladium onto dipyrido (3,2-a:2′,3′-c) phenazine–modified mesoporous silica nanoparticles. The dipyrido (3,2-a:2′,3′-c) phenazine (Py2PZ) ligand is synthesized in a simple method from the reaction of 1,10-phenanthroline-5,6-dione and 3,4-diaminobenzoic acid as starting materials. The ligand is used to functionalize mesoporous silica nanoparticles (MSNs) and modify their surface chemistry for the immobilization of palladium. The palladium-immobilized dipyrido (3,2-a:2′,3′-c) phenazine–modified mesoporous silica nanoparticles (Pd@Py2PZ@MSNs) are synthesized and characterized by several characterization techniques, including TEM, SEM, FT-IR, TGA, ICP, XRD, and EDS analyses. After the careful characterization of Pd@Py2PZ@MSNs, the activity and efficiency of this catalyst is examined in carbon–carbon bond formation reactions. The results are advantageous in water and the products are obtained in high isolated yields. In addition, the catalyst showed very good reusability and did not show significant loss in activity after 10 sequential runs.
Collapse
Affiliation(s)
- Mohammad Hosein Sayahi
- Department of Chemistry, Payame Noor University (PNU), Tehran, Iran
- *Correspondence: Mohammad Hosein Sayahi, ; Saeed Bahadorikhalili,
| | | | - Mehdi Bahmaei
- Department of Chemistry, Payame Noor University (PNU), Tehran, Iran
| | - Hosein Lijan
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Leila Ma'Mani
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Bahadorikhalili
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain
- *Correspondence: Mohammad Hosein Sayahi, ; Saeed Bahadorikhalili,
| |
Collapse
|
6
|
Dinh VP, Xuan TD, Hung NQ, Luu TT, Do TTT, Nguyen TD, Nguyen VD, Anh TTK, Tran NQ. Primary biosorption mechanism of lead (II) and cadmium (II) cations from aqueous solution by pomelo (Citrus maxima) fruit peels. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:63504-63515. [PMID: 32720021 DOI: 10.1007/s11356-020-10176-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
The present work investigates the primary adsorption mechanisms of lead (II) and cadmium (II) cations onto pomelo fruit peel (PFP) from aqueous solution. pH, adsorption time, ion strength, and initial metal cation concentrations, which are factors affecting the uptake of these cations, are investigated. Results show that pH and ion strengths strongly affect the removal of these cations from aqueous solution. Different isotherm adsorption models, such as Langmuir, Freundlich, and Sips, are utilized to fit the experimental data in order to determine the adsorption in nature. The Langmuir monolayer adsorption capacities are found to be 47.18 mg/g for lead (II) and 13.35 mg/g for cadmium (II). Kinetic and thermodynamic studies based on a combination of FT-IR and TG-DSC spectroscopies demonstrate that electrostatic attraction plays a primary adsorption mechanism of lead (II) and cadmium (II) cations onto pomelo fruit peel.
Collapse
Affiliation(s)
- Van-Phuc Dinh
- Future Materials & Devices Laboratory, Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, 700000, Vietnam.
- Faculty of Natural Sciences, Duy Tan University, Da Nang, 550000, Vietnam.
| | - Tran Dong Xuan
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, 700000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang, 550000, Vietnam
| | - Nguyen Quang Hung
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, 700000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang, 550000, Vietnam
| | - Thi-Thuy Luu
- Future Materials & Devices Laboratory, Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, 700000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang, 550000, Vietnam
| | - Thi-Thanh-Thao Do
- Future Materials & Devices Laboratory, Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, 700000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang, 550000, Vietnam
| | - Trinh Duy Nguyen
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, Vietnam
| | - Van-Dong Nguyen
- Faculty of Chemistry, University of Science, VNU-HCMC, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, 700000, Vietnam
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Tran Thi Kieu Anh
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology-VNU-HCM, 268 Ly Thuong Kiet Street., District 10, Ho Chi Minh City, 700000, Vietnam
| | - Ngoc Quyen Tran
- Institute of Applied Materials Science, VAST, TL29, Thanh Loc Ward, Dist. 12, Ho Chi Minh City, 700000, Vietnam
- Graduate University of Science and Technology, VAST, TL29, Thanh Loc Ward, Dist. 12, Ho Chi Minh City, 700000, Vietnam
| |
Collapse
|
7
|
The Development of Graphene/Silica Hybrid Composites: A Review for Their Applications and Challenges. CRYSTALS 2021. [DOI: 10.3390/cryst11111337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Graphene and silica are two materials that have wide uses and applications because of their unique properties. Graphene/silica hybrid composite, which is a combination of the two, has the good properties of a combination of graphene and silica while reducing the detrimental properties of both, so that it has promising future prospects in various fields. It is very important to design a synthesis method for graphene/silica composite hybrid materials to adapt to its practical application. In this review, the synthesis strategies of graphene, silica, and hybrid graphene/silica composites such as hydrothermal, sol-gel, hydrolysis, and encapsulation methods along with their results are studied. The application of this composite is also discussed, which includes applications such as adsorbents, energy storage, biomedical fields, and catalysts. Furthermore, future research challenges and futures need to be developed so that hybrid graphene/silica composites can be obtained with promising new application prospects.
Collapse
|
8
|
Dao DQ, Ngo TC, Le TTH, Trinh QT, Nguyen TLA, Huy BT, Tri NN, Trung NT, Nguyen MT. SERS Chemical Enhancement of 2,4,5-Trichlorophenoxyacetic Acid Adsorbed on Silver Substrate. J Phys Chem A 2021; 125:8529-8541. [PMID: 34554758 DOI: 10.1021/acs.jpca.1c04957] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) was employed to gain an understanding of the chemical enhancement mechanism of 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), an Agent Orange, adsorbed on a silver substrate surface. Experimental measurements were performed using a micro-Raman spectrophotometer with an excitation wavelength of 532 nm and successfully detected 2,4,5-T at a relatively low concentration of 0.4 nM. Density functional theory (DFT) calculations on the interactions of the 2,4,5-T molecule with some small silver clusters, Agn with n = 4, 8, and 20, as well as with extended Ag surfaces, demonstrate that the most stable adsorption configuration is formed via coordination of Cl9 sites and carbonyl C═O group on the 2,4,5-T ligand to the Ag atoms on surfaces. Analyses of charge transfer mechanism and frontier orbitals distributions show an electron transfer from 2,4,5-T to the cluster in the ground state, and an inversed trend occurs for the excited singlet state process, consequently leading to a chemical enhancement of SERS signals. The obtained results are of importance for subsequent work in guiding the design of mobile sensors specifically used for services of rapid screening and detection of these toxic compounds present in the environment, as well as agricultural and food products. Extensive computations pointed out that small silver clusters, in particular of Ag20 size, can be used as appropriate models for a metal nanoparticle surface.
Collapse
Affiliation(s)
- Duy Quang Dao
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam.,Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Viet Nam
| | - Thi Chinh Ngo
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam.,Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Viet Nam
| | - Thi Thuy Huong Le
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), Ha Noi 100000, Viet Nam.,Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), Ha Noi 100000, Viet Nam
| | - Quang Thang Trinh
- Institute of High Performance Computing (IHPC), Agency for Science Technology and Research (A*STAR), #16-16 Connexis, 1 Fusionopolis Way, Singapore 138632, Singapore
| | - Thi Le Anh Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam.,Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Viet Nam
| | - Bui The Huy
- Department of Chemistry, Changwon National University, Changwon 51140, Republic of Korea
| | - Nguyen Ngoc Tri
- Laboratory of Computational Chemistry and Modelling (LCCM), and Department of Chemistry, Quy Nhon University, Quy Nhon 591300, Viet Nam
| | - Nguyen Tien Trung
- Laboratory of Computational Chemistry and Modelling (LCCM), and Department of Chemistry, Quy Nhon University, Quy Nhon 591300, Viet Nam
| | - Minh Tho Nguyen
- Institute for Computational Science and Technology (ICST), Ho Chi Minh City 700000, Vietnam.,Department of Chemistry, KU Leuven, B-3001 Leuven, Belgium
| |
Collapse
|
9
|
Selmi A, Aydi R, Kammoun O, Bougatef H, Bougatef A, Miled N, Alghamdi OA, Kammoun M. Synthesis, crystal structure, molecular docking studies and biological evaluation of aryl substituted dihydroisoquinoline imines as a potent angiotensin converting enzyme inhibitor. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
|
11
|
Mesoporous amine functionalized SiO2 supported Cu nanocatalyst and a kinetic-mechanistic degradation study of azo dyes. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126403] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Silver nanoparticles embedded on in-vitro biomineralized vaterite: A highly efficient catalyst with enhanced catalytic activity towards 4-Nitrophenol reduction. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111433] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Arias KS, Liu L, Garcia-Ortiz A, Climent MJ, Concepcion P, Iborra S, Corma A. Bimetallic CuFe nanoparticles as active and stable catalysts for chemoselective hydrogenation of biomass-derived platform molecules. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00339a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemoselective hydrogenation of 5-(hydroxymethyl)furfural (HMF) to 2,5-bis(hydroxymethyl)furan (BHMF) has been efficiently performed using bimetallic CuFe nanoparticles covered by thin carbon layers as catalysts.
Collapse
Affiliation(s)
- Karen S. Arias
- Instituto de Tecnología Química
- Universitat Politècnica de Valencia-Consejo Superior de Investigaciones Científicas (UPV-CSIC)
- Spain
| | - Lichen Liu
- Instituto de Tecnología Química
- Universitat Politècnica de Valencia-Consejo Superior de Investigaciones Científicas (UPV-CSIC)
- Spain
| | - Andrea Garcia-Ortiz
- Instituto de Tecnología Química
- Universitat Politècnica de Valencia-Consejo Superior de Investigaciones Científicas (UPV-CSIC)
- Spain
| | - Maria J. Climent
- Instituto de Tecnología Química
- Universitat Politècnica de Valencia-Consejo Superior de Investigaciones Científicas (UPV-CSIC)
- Spain
| | - Patricia Concepcion
- Instituto de Tecnología Química
- Universitat Politècnica de Valencia-Consejo Superior de Investigaciones Científicas (UPV-CSIC)
- Spain
| | - Sara Iborra
- Instituto de Tecnología Química
- Universitat Politècnica de Valencia-Consejo Superior de Investigaciones Científicas (UPV-CSIC)
- Spain
| | - Avelino Corma
- Instituto de Tecnología Química
- Universitat Politècnica de Valencia-Consejo Superior de Investigaciones Científicas (UPV-CSIC)
- Spain
| |
Collapse
|
14
|
Faraj SS, Alkizwini RS, Al Juboury MF. Simulate permeable reactive barrier by using a COMSOL model and comparison with the Thomas, Yoon-Nelson and Clark models for CR dye remediation by composite adsorbent (sewage and waterworks sludge). WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:2902-2919. [PMID: 33341780 DOI: 10.2166/wst.2020.500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The remediation of Congo Red (CR) dye by the synthetic sorbent composited from sewage and waterworks sludge was studied in batch and continuous experiments. The continuous experiments studied the composite synthetic after mixing with composite synthetic sorbent filter (CSF) glass waste to increase the hydraulic conductivity of the permeable reactive barrier (PRB). The synthetic composite sorbent was characterised by the nitrogen adsorption-desorption tests, field emission-scanning electron microscopy and X-ray diffraction. For evaluating the batch tests, the variable conditions of initial concentration, solution pH, agitation time and agitation speed were studied. The synthetic sorbent showed a high ability to remove the CR from a contaminated water, with maximum sorbent uptake equal to 9,469.211 mg/g and composite adsorbent-filter CSF equal to 4,415.946 mg/g. Pseudo-second-order kinetic model and Langmuir isotherm model governed the adsorption process. The column tests showed the highest reactivity, with 50:50 weight ratios of the adsorbent to filter glass waste. The experiments were done with different concentrations of CR and different bed heights of CSF as the PRB for 90 days. There was a delay in the breakthrough time when decreasing the contaminant concentrations and when increasing the composite adsorbent-filter CSF bed height. The breakthrough curves were well represented by the COMSOL model.
Collapse
Affiliation(s)
- Samara Saad Faraj
- Environmental Science Department, Faculty of Science, University of Zakho, Zakho International Road, Zakho-Duhok, Kurdistan Region, Iraq
| | - Rasha Salah Alkizwini
- Environmental Engineering department, Faculty of Engineering, University of Babylon, Babel, Iraq
| | - Maad F Al Juboury
- Civil Engineering Department, Faculty of Engineering, University of Kerbala, Kerbala, Iraq E-mail:
| |
Collapse
|
15
|
Paul R, Shit SC, Fovanna T, Ferri D, Srinivasa Rao B, Gunasooriya GTKK, Dao DQ, Le QV, Shown I, Sherburne MP, Trinh QT, Mondal J. Realizing Catalytic Acetophenone Hydrodeoxygenation with Palladium-Equipped Porous Organic Polymers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50550-50565. [PMID: 33111522 DOI: 10.1021/acsami.0c16680] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Porous organic polymers (POPs) constructed through covalent bonds have raised tremendous research interest because of their suitability to develop robust catalysts and their successful production with improved efficiency. In this work, we have designed and explored the properties and catalytic activity of a template-free-constructed, hydroxy (-OH) group-enriched porous organic polymer (Ph-POP) bearing functional Pd nanoparticles (Pd-NPs) by one-pot condensation of phloroglucinol (1,3,5-trihydroxybenzene) and terephthalaldehyde followed by solid-phase reduction with H2. The encapsulated Pd-NPs rested within well-defined POP nanocages and remained undisturbed from aggregation and leaching. This polymer hybrid nanocage Pd@Ph-POP is found to enable efficient liquid-phase hydrodeoxygenation (HDO) of acetophenone (AP) with high selectivity (99%) of ethylbenzene (EB) and better activity than its Pd@Al2O3 counterpart. Our investigation demonstrates a facile, scalable, catalyst-template-free methodology for developing novel porous organic polymer catalysts and next-generation efficient greener chemical processes from platform molecules to produce value-added chemicals. With the aid of comprehensive in situ ATR-IR spectroscopy experiments, it is suggested that EB can be more easily desorbed in a solution, reflecting from the much weaker but better-resolved signal at 1494 cm-1 in Pd@Ph-POP compared to that in Pd@Al2O3, which is the key determining factor in favoring an efficient catalytic mechanism. Density functional theory (DFT) calculations were performed to illustrate the detailed reaction network and explain the high catalytic activity observed for the fabricated Pd@Ph-POP catalyst in the HDO conversion of AP to EB. All of the hydrogenation routes, including direct hydrogenation by surface hydrogen, hydrogen transfer, and the keto-enol pathway, are evaluated, providing insights into the experimental observations. The presence of phenolic hydroxyl groups in the Ph-POP frame structure facilitates the hydrogen-shuttling mechanism for dehydration from the intermediate phenylethanol, which was identified as a crucial step for the formation of the final product ethylbenzene. Besides, weaker binding of the desired product ethylbenzene and lower coverage of surface hydrogen atoms on Pd@Ph-POP both contributed to inhibiting the overhydrogenation reaction and explained well the high yield of EB produced during the HDO conversion of AP on Pd@Ph-POP in this study.
Collapse
Affiliation(s)
- Ratul Paul
- Catalysis & Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Subhash Chandra Shit
- Catalysis & Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | - Davide Ferri
- Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - Bolla Srinivasa Rao
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | - Duy Quang Dao
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Danang 550000, Viet Nam
| | - Quyet Van Le
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Indrajit Shown
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi 682041, Kerala, India
| | - Matthew P Sherburne
- Materials Science and Engineering Department, University of California Berkeley, Berkeley, California 94720, United States
- A Singapore Berkeley Research Initiative for Sustainable Energy, Berkeley Educational Alliance for Research in Singapore, 1 Create Way, 138602, Singapore
| | - Quang Thang Trinh
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Danang 550000, Viet Nam
- Cambridge Centre for Advanced Research and Education in Singapore (CARES), Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, 138602, Singapore
| | - John Mondal
- Catalysis & Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
16
|
Rahimi L, Mansoori Y, Nuri A, Koohi‐Zargar B, Esquivel D. A new Pd(II)‐supported catalyst on magnetic SBA‐15 for CC bond formation via the Heck and Hiyama cross‐coupling reactions. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Leila Rahimi
- Department of Applied Chemistry, Faculty of Science University of Mohaghegh Ardabili Ardabil Iran
| | - Yagoub Mansoori
- Department of Applied Chemistry, Faculty of Science University of Mohaghegh Ardabili Ardabil Iran
- Nanoscience and Nanotechnology Research Group, Faculty of Science University of Mohaghegh Ardabili Ardabil Iran
| | - Ayat Nuri
- Department of Applied Chemistry, Faculty of Science University of Mohaghegh Ardabili Ardabil Iran
| | | | - Dolores Esquivel
- Departamento de Química Orgánica, Instituto Universitario de, Nanoquímica IUNAN, Facultad de Ciencias Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie Córdoba Spain
| |
Collapse
|
17
|
Hartl T, Will M, Čapeta D, Singh R, Scheinecker D, Boix de la Cruz V, Dellmann S, Lacovig P, Lizzit S, Senkovskiy BV, Grüneis A, Kralj M, Knudsen J, Kotakoski J, Michely T, Bampoulis P. Cluster Superlattice Membranes. ACS NANO 2020; 14:13629-13637. [PMID: 32910634 DOI: 10.1021/acsnano.0c05740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cluster superlattice membranes consist of a two-dimensional hexagonal lattice of similar-sized nanoclusters sandwiched between single-crystal graphene and an amorphous carbon matrix. The fabrication process involves three main steps, the templated self-organization of a metal cluster superlattice on epitaxial graphene on Ir(111), conformal embedding in an amorphous carbon matrix, and subsequent lift-off from the Ir(111) substrate. The mechanical stability provided by the carbon-graphene matrix makes the membrane stable as a free-standing material and enables transfer to other substrates. The fabrication procedure can be applied to a wide variety of cluster materials and cluster sizes from the single-atom limit to clusters of a few hundred atoms, as well as other two-dimensional layer/host matrix combinations. The versatility of the membrane composition, its mechanical stability, and the simplicity of the transfer procedure make cluster superlattice membranes a promising material in catalysis, magnetism, energy conversion, and optoelectronics.
Collapse
Affiliation(s)
- Tobias Hartl
- II. Physikalisches Institut, Universität zu Köln, Cologne, D-50937, Germany
| | - Moritz Will
- II. Physikalisches Institut, Universität zu Köln, Cologne, D-50937, Germany
| | - Davor Čapeta
- Institute of Physics, Bijenička cesta 46, 10000, Zagreb, Croatia
| | - Rajendra Singh
- Faculty of Physics, Vienna University, Boltzmanngasse 5, 1090, Vienna, Austria
| | - Daniel Scheinecker
- Faculty of Physics, Vienna University, Boltzmanngasse 5, 1090, Vienna, Austria
| | - Virginia Boix de la Cruz
- MAX IV Laboratory and Division of Synchrotron Radiation Research, Lund University, Box 118, 22100 Lund, Sweden
| | - Sophia Dellmann
- II. Physikalisches Institut, Universität zu Köln, Cologne, D-50937, Germany
| | - Paolo Lacovig
- Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale 14 Km 163.5, I-34149 Trieste, Italy
| | - Silvano Lizzit
- Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale 14 Km 163.5, I-34149 Trieste, Italy
| | - Boris V Senkovskiy
- II. Physikalisches Institut, Universität zu Köln, Cologne, D-50937, Germany
| | - Alexander Grüneis
- II. Physikalisches Institut, Universität zu Köln, Cologne, D-50937, Germany
| | - Marko Kralj
- Institute of Physics, Bijenička cesta 46, 10000, Zagreb, Croatia
| | - Jan Knudsen
- MAX IV Laboratory and Division of Synchrotron Radiation Research, Lund University, Box 118, 22100 Lund, Sweden
| | - Jani Kotakoski
- Faculty of Physics, Vienna University, Boltzmanngasse 5, 1090, Vienna, Austria
| | - Thomas Michely
- II. Physikalisches Institut, Universität zu Köln, Cologne, D-50937, Germany
| | - Pantelis Bampoulis
- II. Physikalisches Institut, Universität zu Köln, Cologne, D-50937, Germany
| |
Collapse
|
18
|
Rahimi L, Mansoori Y, Nuri A, Esquivel D. A New Magnetically Retrievable Porous Supported Catalyst for The Suzuki‐Miyaura Cross‐Coupling Reaction. ChemistrySelect 2020. [DOI: 10.1002/slct.202003198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Leila Rahimi
- Department of Applied Chemistry, Faculty of Science University of Mohaghegh Ardabili Daneshgah St. Ardabil Iran 56199-11367
| | - Yagoub Mansoori
- Department of Applied Chemistry, Faculty of Science University of Mohaghegh Ardabili Daneshgah St. Ardabil Iran 56199-11367
| | - Ayat Nuri
- Department of Applied Chemistry, Faculty of Science University of Mohaghegh Ardabili Daneshgah St. Ardabil Iran 56199-11367
| | - Dolores Esquivel
- Departamento de Química Orgánica Instituto Universitario de, Nanoquímica IUNAN, Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Edificio Marie Curie Córdoba E-14071 España
| |
Collapse
|
19
|
Thanh LT, Vu NSH, Binh PMQ, Dao VA, Thu VTH, Van Hien P, Panaitescu C, Nam ND. Combined experimental and computational studies on corrosion inhibition of Houttuynia cordata leaf extract for steel in HCl medium. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113787] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Das T, Singha D, Nandi M. The big effect of a small change: formation of CuO nanoparticles instead of covalently bound Cu(ii) over functionalized mesoporous silica and its impact on catalytic efficiency. Dalton Trans 2020; 49:10138-10155. [PMID: 32662469 DOI: 10.1039/d0dt01922d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Two different heterogeneous catalysts, one with Cu(ii) covalently bonded to functionalized mesoporous silica (FMS-Cu(II)) and another with CuO nanoparticles immobilized over the same silica (FMS-CuO-np), have been synthesized by a common route but with a minor alteration in the sequence of addition of reagents. It is interesting to find that by merely changing the order of the addition of reagents Cu(ii) can be incorporated into the framework in two different forms. In one case Cu(ii) binds to the N and O donor centers present in the functionalized material whereas in the other case CuO nanoparticles are generated in situ. The materials have been thoroughly characterized by powder X-ray diffraction, nitrogen adsorption/desorption, transmission electron microscopy, thermal analysis, FT-IR spectroscopy, solid state MAS-NMR spectroscopy and atomic absorption spectrophotometric studies. The synthesized products have been examined for their catalytic efficiencies in the oxidation of olefins, as a model case. Styrene, α-methyl styrene, cyclohexene, trans-stilbene and cyclooctene have been used as substrates in the presence of tert-butyl hydroperoxide as the oxidant in acetonitrile medium under mild conditions. The products of the catalytic reactions have been identified and estimated by gas chromatography and gas chromatography-mass spectrometry. The rate of conversion of the substrates for both the catalysts is high and the selectivity is also good. But from comparative studies, it is found that FMS-CuO-np which contains CuO nanoparticles shows better efficiency than FMS-Cu(II). The catalysts have been recycled for five catalytic cycles without showing much decrease in their catalytic activity.
Collapse
Affiliation(s)
- Trisha Das
- Integrated Science Education and Research Centre, Siksha Bhavana, Visva-Bharati University, Santiniketan 731 235, India.
| | | | | |
Collapse
|
21
|
Zheng J, Fang H, Duan X, Lin H, Yang Y, Yuan Y. Spatial Ensembles of Copper-Silica with Carbon Nanotubes as Ultrastable Nanostructured Catalysts for Selective Hydrogenation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:27268-27276. [PMID: 32441505 DOI: 10.1021/acsami.0c06763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Catalyst deactivation is one of the most important issues in heterogeneous catalysis. Constructing a stable nanoscale structure that maintains efficient activity and prolonged stability under redox conditions for catalysis, particularly hydrogenation reactions, remains attractive albeit the flourishing nanoscience. This work presents a facile route to synthesize a semi-encapsulated transition metal by assembling three-dimensional transition metal silicate nanotubes onto carbon nanotubes (CNTs) as precursors. The obtained materials expose an active surface of the transition metal for efficient catalysis and form a specific structure to inhibit the migration of metal nanoparticles (NPs) by establishing strong metal-support interactions. Cu@SiO2 prepared by common precipitation shows an inferior activity, and its performance is easily attenuated because of the aggregation of Cu NPs. The addition of CNTs as a carrier doubles the intrinsic activity of Cu catalysts. This hybrid catalyst, which consists of Cu species, SiO2, and CNTs, is among the best catalysts for dimethyl oxalate hydrogenation with boosting activity of 25 h-1 and enhanced stability of more than 200 h.
Collapse
Affiliation(s)
- Jianwei Zheng
- Department of Chemistry, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry for Solid Surfaces, iChEM, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, Xiamen University, Xiamen 361005, China
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Huihuang Fang
- Department of Chemistry, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry for Solid Surfaces, iChEM, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, Xiamen University, Xiamen 361005, China
| | - Xinping Duan
- Department of Chemistry, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry for Solid Surfaces, iChEM, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, Xiamen University, Xiamen 361005, China
| | - Haiqiang Lin
- Department of Chemistry, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry for Solid Surfaces, iChEM, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, Xiamen University, Xiamen 361005, China
| | - Yanhui Yang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Youzhu Yuan
- Department of Chemistry, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry for Solid Surfaces, iChEM, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, Xiamen University, Xiamen 361005, China
| |
Collapse
|
22
|
Li L, Yang W, Yang Q, Guan Q, Lu J, Yu SH, Jiang HL. Accelerating Chemo- and Regioselective Hydrogenation of Alkynes over Bimetallic Nanoparticles in a Metal–Organic Framework. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00177] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Luyan Li
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Suzhou Nano Science and Technology, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Weijie Yang
- School of Energy and Power Engineering, North China Electric Power University, Baoding, Hebei 071003, P. R. China
| | - Qihao Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Suzhou Nano Science and Technology, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Qiaoqiao Guan
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Suzhou Nano Science and Technology, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Junling Lu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Suzhou Nano Science and Technology, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Shu-Hong Yu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Suzhou Nano Science and Technology, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hai-Long Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Suzhou Nano Science and Technology, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
23
|
Paul R, Sarkar C, Yan Y, Trinh QT, Rao BS, Pao C, Lee J, Liu W, Mondal J. Porous‐Organic‐Polymer‐Triggered Advancement of Sustainable Magnetic Efficient Catalyst for Chemoselective Hydrogenation of Cinnamaldehyde. ChemCatChem 2020. [DOI: 10.1002/cctc.202000072] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ratul Paul
- Catalysis & Fine Chemicals DivisionCSIR-Indian Institute of Chemical Technology Uppal Road Hyderabad 500007 India
| | - Chitra Sarkar
- Catalysis & Fine Chemicals DivisionCSIR-Indian Institute of Chemical Technology Uppal Road Hyderabad 500007 India
| | - Yong Yan
- School of Chemical and Biomedical EngineeringNanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
- Cambridge Centre for Advanced Research and Education in Singapore (CARES)Campus for Research Excellence and Technological Enterprise (CREATE) 1 Create Way 138602 Singapore Singapore
| | - Quang Thang Trinh
- Cambridge Centre for Advanced Research and Education in Singapore (CARES)Campus for Research Excellence and Technological Enterprise (CREATE) 1 Create Way 138602 Singapore Singapore
| | - Bolla Srinivasa Rao
- Catalysis & Fine Chemicals DivisionCSIR-Indian Institute of Chemical Technology Uppal Road Hyderabad 500007 India
| | - Chih‐Wen Pao
- National Synchrotron Radiation Research Center 101 Hsin-Ann Road Hsinchu 30076 Taiwan
| | - Jyh‐Fu Lee
- National Synchrotron Radiation Research Center 101 Hsin-Ann Road Hsinchu 30076 Taiwan
| | - Wen Liu
- School of Chemical and Biomedical EngineeringNanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
- Cambridge Centre for Advanced Research and Education in Singapore (CARES)Campus for Research Excellence and Technological Enterprise (CREATE) 1 Create Way 138602 Singapore Singapore
| | - John Mondal
- Catalysis & Fine Chemicals DivisionCSIR-Indian Institute of Chemical Technology Uppal Road Hyderabad 500007 India
| |
Collapse
|
24
|
Chutimasakul T, Na Nakhonpanom P, Tirdtrakool W, Intanin A, Bunchuay T, Chantiwas R, Tantirungrotechai J. Uniform Cu/chitosan beads as a green and reusable catalyst for facile synthesis of imines via oxidative coupling reaction. RSC Adv 2020; 10:21009-21018. [PMID: 35517779 PMCID: PMC9054277 DOI: 10.1039/d0ra03884a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/25/2020] [Indexed: 01/09/2023] Open
Abstract
A nonprecious metal and biopolymer-based catalyst, Cu/chitosan beads, has been successfully prepared by using a software-controlled flow system. Uniform, spherical Cu/chitosan beads can be obtained with diameters in millimeter-scale and narrow size distribution (0.78 ± 0.04 mm). The size and morphology of the Cu/chitosan beads are reproducible due to high precision of the flow rate. In addition, the application of the Cu/chitosan beads as a green and reusable catalyst has been demonstrated using a convenient and efficient protocol for the direct synthesis of imines via the oxidative self- and cross-coupling of amines (24 examples) with moderate to excellent yields. Importantly, the beads are stable and could be reused more than ten times without loss of the catalytic performance. Furthermore, because of the bead morphology, the Cu/chitosan catalyst has greatly simplified recycling and workup procedures. Uniform, spherical Cu/chitosan beads prepared using a software-controlled flow system as a green and conveniently recyclable catalyst for the efficient synthesis of various imines in short reaction time.![]()
Collapse
Affiliation(s)
- Threeraphat Chutimasakul
- Department of Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University Bangkok 10400 Thailand
| | - Pakamon Na Nakhonpanom
- Department of Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University Bangkok 10400 Thailand
| | - Warinda Tirdtrakool
- Department of Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University Bangkok 10400 Thailand
| | - Apichai Intanin
- Department of Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University Bangkok 10400 Thailand
| | - Thanthapatra Bunchuay
- Department of Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University Bangkok 10400 Thailand
| | - Rattikan Chantiwas
- Department of Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University Bangkok 10400 Thailand
| | - Jonggol Tantirungrotechai
- Department of Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University Bangkok 10400 Thailand
| |
Collapse
|
25
|
Ultrafine copper nanoparticles anchored on reduced graphene oxide present excellent catalytic performance toward 4-nitrophenol reduction. J Colloid Interface Sci 2020; 566:265-270. [DOI: 10.1016/j.jcis.2020.01.097] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/19/2020] [Accepted: 01/24/2020] [Indexed: 11/22/2022]
|
26
|
Shi C, Du G, Wang J, Sun P, Chen T. Polyelectrolyte-Surfactant Mesomorphous Complex Templating: A Versatile Approach for Hierarchically Porous Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1851-1863. [PMID: 32036669 DOI: 10.1021/acs.langmuir.9b03513] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hierarchically porous materials have attracted great attention because of their potential applications in the fields of adsorption, catalysis, and biomedical systems. The art of manipulating different templates that are used for pore construction is the key to fabricating desired hierarchically porous structures. In this feature article, the polyelectrolyte-surfactant mesomorphous complex templating (PSMCT) approach, which was first developed by our group, is elaborated on. During the organic-inorganic self-assembly, the mesomorphous complex of the polyelectrolyte and oppositely charged surfactants would undergo in situ phase separation, which is the key to fabricating hierarchically porous materials. The recent progress in the utilization of the PSMCT method for the synthesis of hierarchically porous materials with tunable morphologies, mesophases, pore structures, and compositions is reviewed. Meanwhile, the functions of the hierarchically porous materials synthesized by the PSMCT method and their applications in adsorption, catalysis, drug delivery, and nanocasting are also briefly summarized.
Collapse
Affiliation(s)
- Chengxiang Shi
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Nankai University, Tianjin 300350, P. R. China
| | - Guo Du
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Nankai University, Tianjin 300350, P. R. China
| | - Jingui Wang
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Nankai University, Tianjin 300350, P. R. China
| | - Pingchuan Sun
- Key Laboratory of Functional Polymer Materials (MOE), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, P. R. China
| | - Tiehong Chen
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Nankai University, Tianjin 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, P. R. China
| |
Collapse
|
27
|
Kaimeng H, Siyuan C, Changjiu X, Chenhao L, Bin Z, Hongyi G, Xinxin P, Min L, Yibin L, Ge W, Xingtian S. HKUST-1 derived Cu@CuO x/carbon catalyst for base-free aerobic oxidative coupling of benzophenone imine: high catalytic efficiency and excellent regeneration performance. RSC Adv 2020; 10:36111-36118. [PMID: 35517087 PMCID: PMC9056984 DOI: 10.1039/d0ra06367c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/11/2020] [Indexed: 12/16/2022] Open
Abstract
The oxidative coupling of imines to ketazine with molecular oxygen is a green process towards the synthesis of hydrazine or hydrazine hydrate, which could efficiently address the economic and environmental issues of the traditional Raschig or peroxide-ketazine process. Herein, we developed an efficient heterogeneous base-free benzophenone imine oxidative coupling route with O2 catalyzed by Cu/CuOx/carbon materials derived from MOFs under mild conditions. Under optimized conditions, the conversion of BI is up to 98.2% and the selectivity of ketamine is 94.9%. This catalyst has excellent structure stability, recycling, and regeneration performance, owing to the carbonization of organic ligands of MOF at high temperature. More importantly, it is confirmed that the metallic Cu core is essential to improve the catalytic performance of the CuO shell in the BI oxidative coupling reaction, due to the promotion of electron transfer in the CuO surface, making dissolved O2 molecules more easily insert oxygen vacancies. This strategy might open an avenue to the sustainable catalytic synthesis of hydrazine or hydrazine hydrate. The oxidative coupling of imines to ketazine with molecular oxygen is a green process towards hydrazine hydrate synthesis, which could efficiently address the environmental and economic issues of the traditional Raschig or peroxide-ketazine process.![]()
Collapse
|
28
|
Qin J, Long Y, Gou G, Wu W, Luo Y, Cao X, Luo S, Wang K, Ma J. Tuning effect of amorphous Fe 2O 3 on Mn 3O 4 for efficient atom-economic synthesis of imines at low temperature: improving [O] transfer cycle of Mn 3+/Mn 2+ in Mn 3O 4. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01021a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel Fe2O3 modified Mn3O4 catalyst (Fe5Mn5-100) has been prepared by adopting a simple co-precipitation method following low temperature baking. Fe5Mn5-100 showed exceptionally high catalytic activity for the production of imine.
Collapse
Affiliation(s)
- Jiaheng Qin
- State Key Laboratory of Applied Organic Chemistry (SKLAOC)
- Gansu Provincial Engineering Laboratory for Chemical Catalysis
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Yu Long
- State Key Laboratory of Applied Organic Chemistry (SKLAOC)
- Gansu Provincial Engineering Laboratory for Chemical Catalysis
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Galian Gou
- State Key Laboratory of Applied Organic Chemistry (SKLAOC)
- Gansu Provincial Engineering Laboratory for Chemical Catalysis
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Wei Wu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC)
- Gansu Provincial Engineering Laboratory for Chemical Catalysis
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Yutong Luo
- State Key Laboratory of Applied Organic Chemistry (SKLAOC)
- Gansu Provincial Engineering Laboratory for Chemical Catalysis
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Xiao Cao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC)
- Gansu Provincial Engineering Laboratory for Chemical Catalysis
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Shicheng Luo
- State Key Laboratory of Applied Organic Chemistry (SKLAOC)
- Gansu Provincial Engineering Laboratory for Chemical Catalysis
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Kaizhi Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC)
- Gansu Provincial Engineering Laboratory for Chemical Catalysis
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Jiantai Ma
- State Key Laboratory of Applied Organic Chemistry (SKLAOC)
- Gansu Provincial Engineering Laboratory for Chemical Catalysis
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| |
Collapse
|
29
|
Li J, Fu W, Wang Z, Dai Z. Substrate specificity-enabled terminal protection for direct quantification of circulating MicroRNA in patient serums. Chem Sci 2019; 10:5616-5623. [PMID: 31293746 PMCID: PMC6552989 DOI: 10.1039/c8sc05240a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 04/28/2019] [Indexed: 12/12/2022] Open
Abstract
Currently, reported affinity pairings still lack in diversity, and thus terminal protection relying on steric hindrance is restricted in designing nucleic acid-based analytical systems. In this work, resistance to exonuclease is testified by group modification or backbone replacement, and the 3'-phosphate group (P) reveals the strongest exonuclease I-resistant capability. Due to the substrate specificity of enzymatic catalysis, this 3'-P protection works in a "direct mode". By introducing DNA templated copper nanoparticles, an alkaline phosphatase assay is performed to confirm the 3'-P protection. To display the application of this novel terminal protection, a multifunctional DNA is designed to quantify the model circulating microRNA (hsa-miR-21-5p) in serums from different cancer patients. According to our data, hsa-miR-21-5p-correlated cancers can be evidently distinguished from non-correlated cancers. Meanwhile, the effect of chemotherapy and radiotherapy on breast cancer is evaluated from the perspective of hsa-miR-21-5p residue in serums. Since greatly reducing the limitations of DNA design, this P-induced terminal protection can be facilely integrated with other DNA manipulations, thereby constructing more advanced biosensors with improved analytical performances for clinical applications.
Collapse
Affiliation(s)
- Junyao Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials , Jiangsu Key Laboratory of Biofunctional Materials , School of Chemistry and Materials Science , Nanjing Normal University , Nanjing , 210023 , P. R. China . ; ; Tel: +86-25-85891051
| | - Wenxin Fu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials , Jiangsu Key Laboratory of Biofunctional Materials , School of Chemistry and Materials Science , Nanjing Normal University , Nanjing , 210023 , P. R. China . ; ; Tel: +86-25-85891051
| | - Zhaoyin Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials , Jiangsu Key Laboratory of Biofunctional Materials , School of Chemistry and Materials Science , Nanjing Normal University , Nanjing , 210023 , P. R. China . ; ; Tel: +86-25-85891051
| | - Zhihui Dai
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials , Jiangsu Key Laboratory of Biofunctional Materials , School of Chemistry and Materials Science , Nanjing Normal University , Nanjing , 210023 , P. R. China . ; ; Tel: +86-25-85891051
- Nanjing Normal University Center for Analysis and Testing , Nanjing , 210023 , P. R. China
| |
Collapse
|
30
|
Das T, Chatterjee R, Majee A, Uyama H, Morgan D, Nandi M. In situ synthesis of CuO nanoparticles over functionalized mesoporous silica and their application in catalytic syntheses of symmetrical diselenides. Dalton Trans 2019; 48:17874-17886. [DOI: 10.1039/c9dt03418h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A versatile and novel mesoporous silica supported CuO nanoparticle catalyst (nCuO-FMS) and its application in the syntheses of symmetrical diselenides.
Collapse
Affiliation(s)
- Trisha Das
- Integrated Science Education and Research Centre
- Siksha Bhavana
- Visva-Bharati University
- Santiniketan 731 235
- India
| | - Rana Chatterjee
- Department of Chemistry
- Siksha Bhavana
- Visva-Bharati University
- Santiniketan 731235
- India
| | - Adinath Majee
- Department of Chemistry
- Siksha Bhavana
- Visva-Bharati University
- Santiniketan 731235
- India
| | - Hiroshi Uyama
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- Osaka
- Japan
| | - David Morgan
- Cardiff Catalysis Institute
- School of Chemistry
- Cardiff University
- Cardiff CF10 3AT
- UK
| | - Mahasweta Nandi
- Integrated Science Education and Research Centre
- Siksha Bhavana
- Visva-Bharati University
- Santiniketan 731 235
- India
| |
Collapse
|