1
|
Wu LF, Zhou ZJ, Zeng YH, Yang SL, Zhang QY. Circular RNA RRM2 alleviates metabolic dysfunction-associated steatotic liver disease by targeting miR-142-5p to increase NRG1 expression. Am J Physiol Gastrointest Liver Physiol 2024; 327:G485-G498. [PMID: 39259911 DOI: 10.1152/ajpgi.00255.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 09/13/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent chronic liver condition worldwide, demanding further investigation into its pathogenesis. Circular RNAs (circRNAs) are emerging as pivotal regulators in MASLD processes, yet their pathological implications in MASLD remain poorly understood. This study focused on elucidating the role of circular RNA ribonucleotide reductase subunit M2 (circRRM2) in MASLD progression. In this study, we used both in vitro and in vivo MASLD models using long-chain-free fatty acid (FFA)-treated hepatocytes and high-fat diet (HFD)-induced MASLD in mice, respectively. We determined the expression patterns of circRRM2, microRNA-142-5p (miR-142-5p), and neuregulin 1 (NRG1) in livers of MASLD-afflicted mice and MASLD hepatocytes by RT-qPCR. Dual-luciferase reporter assays verified the binding relationships among circRRM2, miR-142-5p, and NRG1. We conducted further analyses of their roles in MASLD hepatocytes and modulated circRRM2, miR-142-5p, and NRG1 expression in vitro by transfection. Our findings were validated in vivo. The results demonstrated reduced levels of circRRM2 and NRG1, along with elevated miR-142-5p expression in MASLD livers and hepatocytes. Overexpression of circRRM2 downregulated lipogenesis-related genes and decreased triglycerides accumulation in livers of MASLD mice. MiR-142-5p, which interacts with circRRM2, effectively counteracted the effects of circRRM2 in MASLD hepatocytes. Furthermore, NRG1 was identified as a miR-142-5p target, and its overexpression mitigated the regulatory impact of miR-142-5p on MASLD hepatocytes. In conclusion, circRRM2, via its role as a miR-142-5p sponge, upregulating NRG1, possibly influenced triglycerides accumulation in both in vitro and in vivo MASLD models.NEW & NOTEWORTHY CircRRM2 expression was downregulated in free fatty acid (FFA)-challenged hepatocytes and high-fat diet (HFD) fed mice. Overexpressed circular RNA ribonucleotide reductase subunit M2 (circRRM2) attenuated metabolic dysfunction-associated steatotic liver disease (MASLD) development by suppressing FFA-induced triglycerides accumulation. CircRRM2 targeted microRNA-142-5p (miR-142-5p), which served as an upstream inhibitor of neuregulin 1 (NRG1) and collaboratively regulated MASLD progression.
Collapse
Affiliation(s)
- Long-Fei Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, People's Republic of China
- Department of Cardiology, People's Hospital of Xinjin District, Chengdu, People's Republic of China
- First Affiliated Hospital of Shantou University Medical College, Shantou, People's Republic of China
| | - Zhi-Jiang Zhou
- Department of Preventive Medicine, Shantou University Medical College, Shantou, People's Republic of China
| | - Yu-Heng Zeng
- Department of Preventive Medicine, Shantou University Medical College, Shantou, People's Republic of China
| | - Sheng-Li Yang
- First Affiliated Hospital of Shantou University Medical College, Shantou, People's Republic of China
| | - Qing-Ying Zhang
- Department of Preventive Medicine, Shantou University Medical College, Shantou, People's Republic of China
| |
Collapse
|
2
|
Yang Y, Wang X. Nano-drug delivery systems (NDDS) in metabolic dysfunction-associated steatotic liver disease (MASLD): current status, prospects and challenges. Front Pharmacol 2024; 15:1419384. [PMID: 39166109 PMCID: PMC11333238 DOI: 10.3389/fphar.2024.1419384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024] Open
Abstract
About one-third of the global population suffers from metabolic dysfunction-associated steatotic liver disease (MASLD), but specific treatments for MASLD have long been lacking, primarily due to the unclear etiology of the disease. In addition to lifestyle modifications and weight loss surgery, pharmacotherapy is the most common treatment among MASLD patients, and these drugs typically target the pathogenic factors of MASLD. However, bioavailability, efficacy, and side effects all limit the maximum therapeutic potential of the drugs. With the development of nanomedicine, recent years have seen attempts to combine MASLD pharmacotherapy with nanomaterials, such as liposomes, polymer nanoparticles, micelles, and cocrystals, which effectively improves the water solubility and targeting of the drugs, thereby enhancing therapeutic efficacy and reducing toxic side effects, offering new perspectives and futures for the treatment of MASLD.
Collapse
Affiliation(s)
| | - Xiaojing Wang
- Department of Gastroenterology, The Fifth Affiliated Hospital of Wenzhou Medical University and Lishui Municipal Central Hospital, Lishui, China
| |
Collapse
|
3
|
Abdelnabi MN, Hassan GS, Shoukry NH. Role of the type 3 cytokines IL-17 and IL-22 in modulating metabolic dysfunction-associated steatotic liver disease. Front Immunol 2024; 15:1437046. [PMID: 39156888 PMCID: PMC11327067 DOI: 10.3389/fimmu.2024.1437046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/12/2024] [Indexed: 08/20/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) comprises a spectrum of liver diseases that span simple steatosis, metabolic dysfunction-associated steatohepatitis (MASH) and fibrosis and may progress to cirrhosis and cancer. The pathogenesis of MASLD is multifactorial and is driven by environmental, genetic, metabolic and immune factors. This review will focus on the role of the type 3 cytokines IL-17 and IL-22 in MASLD pathogenesis and progression. IL-17 and IL-22 are produced by similar adaptive and innate immune cells such as Th17 and innate lymphoid cells, respectively. IL-17-related signaling is upregulated during MASLD resulting in increased chemokines and proinflammatory cytokines in the liver microenvironment, enhanced recruitment of myeloid cells and T cells leading to exacerbation of inflammation and liver disease progression. IL-17 may also act directly by activating hepatic stellate cells resulting in increased fibrosis. In contrast, IL-22 is a pleiotropic cytokine with a dominantly protective signature in MASLD and is currently being tested as a therapeutic strategy. IL-22 also exhibits beneficial metabolic effects and abrogates MASH-related inflammation and fibrosis development via inducing the production of anti-oxidants and anti-apoptotic factors. A sex-dependent effect has been attributed to both cytokines, most importantly to IL-22 in MASLD or related conditions. Altogether, IL-17 and IL-22 are key effectors in MASLD pathogenesis and progression. We will review the role of these two cytokines and cells that produce them in the development of MASLD, their interaction with host factors driving MASLD including sexual dimorphism, and their potential therapeutic benefits.
Collapse
Affiliation(s)
- Mohamed N. Abdelnabi
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Ghada S. Hassan
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Naglaa H. Shoukry
- Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Département de médecine, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
4
|
Mahmoudi A, Hajihasani MM, Majeed M, Jamialahmadi T, Sahebkar A. Effect of Calebin-A on Critical Genes Related to NAFLD: A Protein-Protein Interaction Network and Molecular Docking Study. Curr Genomics 2024; 25:120-139. [PMID: 38751599 PMCID: PMC11092913 DOI: 10.2174/0113892029280454240214072212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 05/18/2024] Open
Abstract
Background Calebin-A is a minor phytoconstituent of turmeric known for its activity against inflammation, oxidative stress, cancerous, and metabolic disorders like Non-alcoholic fatty liver disease(NAFLD). Based on bioinformatic tools. Subsequently, the details of the interaction of critical proteins with Calebin-A were investigated using the molecular docking technique. Methods We first probed the intersection of genes/ proteins between NAFLD and Calebin-A through online databases. Besides, we performed an enrichment analysis using the ClueGO plugin to investigate signaling pathways and gene ontology. Next, we evaluate the possible interaction of Calebin-A with significant hub proteins involved in NAFLD through a molecular docking study. Results We identified 87 intersection genes Calebin-A targets associated with NAFLD. PPI network analysis introduced 10 hub genes (TP53, TNF, STAT3, HSP90AA1, PTGS2, HDAC6, ABCB1, CCT2, NR1I2, and GUSB). In KEGG enrichment, most were associated with Sphingolipid, vascular endothelial growth factor A (VEGFA), C-type lectin receptor, and mitogen-activated protein kinase (MAPK) signaling pathways. The biological processes described in 87 intersection genes are mostly concerned with regulating the apoptotic process, cytokine production, and intracellular signal transduction. Molecular docking results also directed that Calebin-A had a high affinity to bind hub proteins linked to NAFLD. Conclusion Here, we showed that Calebin-A, through its effect on several critical genes/ proteins and pathways, might repress the progression of NAFLD.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Mahdi Hajihasani
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Muhammed Majeed
- Department of Chemistry, Sabinsa Corporation, 20 Lake Drive, East Windsor, NJ, 08520, USA
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran;
| | - Amirhossein Sahebkar
- Department of Medical Biotechnology, Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Mahmoud MH, El-Gogary RI, Soliman ME, Kamel AO. Novel green-based polyglycerol polymeric nanoparticles loaded with ferulic acid: A promising approach for hepatoprotection. Int J Biol Macromol 2024; 264:130698. [PMID: 38458296 DOI: 10.1016/j.ijbiomac.2024.130698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
In the pursuit of eco-friendly and sustainable materials, polyglycerol diacid polymers hold immense promise for drug delivery compared to those derived from fossil fuels. Harnessing this potential, we aimed to prepare nanoparticles (NPs) derived from sustainable polymers, loaded with ferulic acid (FA), a natural polyphenolic compound known for its shielding effect against liver-damaging agents, including carbon tetrachloride (CCl4). Glycerol was esterified with renewable monomers, such as succinic acid, adipic acid, and/or FA, resulting in the creation of a novel class of polyglycerol diacid polymers. Characterization via Fourier-transform infrared spectroscopy and nuclear magnetic resonance confirmed the successful synthesis of these polymers with <7 % residual monomers. FA-loaded NPs were fabricated using the newly synthesized polymers. To further augment their potential, the NPs were coated with chitosan. The chitosan-coated NPs boasted an optimal PS of 290 ± 5.03 nm, showing superior physical stability, and a commendable EE% of 58.79 ± 0.43%w/v. The cytotoxicity was examined on fibroblast cells using the SRB assay. In-vivo experiments employing a CCl4-induced liver injury model yielded compelling evidence of the heightened hepatoprotective effects conferred by chitosan-coated particles. This demonstrates the benefits of incorporating sustainable polymers into innovative composites for efficient drug delivery, indicating their potential for creating versatile platforms for various therapeutic applications.
Collapse
Affiliation(s)
- Mariam H Mahmoud
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Riham I El-Gogary
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Mahmoud E Soliman
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt; Egypt Japan University of Science and Technology, Egypt
| | - Amany O Kamel
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
6
|
Chen HJ, Huang TX, Jiang YX, Chen X, Wang AF. Multifunctional roles of inflammation and its causative factors in primary liver cancer: A literature review. World J Hepatol 2023; 15:1258-1271. [PMID: 38223416 PMCID: PMC10784815 DOI: 10.4254/wjh.v15.i12.1258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/06/2023] [Accepted: 11/24/2023] [Indexed: 12/25/2023] Open
Abstract
Primary liver cancer is a severe and complex disease, leading to 800000 global deaths annually. Emerging evidence suggests that inflammation is one of the critical factors in the development of hepatocellular carcinoma (HCC). Patients with viral hepatitis, alcoholic hepatitis, and steatohepatitis symptoms are at higher risk of developing HCC. However, not all inflammatory factors have a pathogenic function in HCC development. The current study describes the process and mechanism of hepatitis development and its progression to HCC, particularly focusing on viral hepatitis, alcoholic hepatitis, and steatohepatitis. Furthermore, the roles of some essential inflammatory cytokines in HCC progression are described in addition to a summary of future research directions.
Collapse
Affiliation(s)
- Hong-Jin Chen
- Department of Pharmacology, School of Basic Medical Sciences, Translational Medicine Research Center, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| | - Ting-Xiong Huang
- School of Clinical Medical, Translational Medicine Research Center, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| | - Yu-Xi Jiang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou 325035, Zhejiang Province, China
| | - Xiong Chen
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
- Department of Endocrinology, The People's Hospital of Yuhuan, The Yuhuan Branch of The First Affiliated Hospital of Wenzhou Medical University, Yuhuan 317600, Zhejiang Province, China
| | - Ai-Fang Wang
- Department of Endocrinology, The People's Hospital of Yuhuan, The Yuhuan Branch of The First Affiliated Hospital of Wenzhou Medical University, Yuhuan 317600, Zhejiang Province, China.
| |
Collapse
|
7
|
Dai Z, Zhang Y, Meng Y, Li S, Suonan Z, Sun Y, Ji J, Shen Q, Zheng H, Xue Y. Targeted delivery of nutraceuticals derived from food for the treatment of obesity and its related complications. Food Chem 2023; 418:135980. [PMID: 36989644 DOI: 10.1016/j.foodchem.2023.135980] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023]
Abstract
Nutraceuticals which are abundant in foods have attracted much attention due to their bioactive activities of anti-obesity, anti-hyperlipidemia and anti-atherosclerosis. Unfortunately, the poor bioavailability severely undermines their envisioned benefits. Therefore, there is an urgent need to develop suitable delivery systems to promote the benefits of their biological activity. Targeted drug delivery system (TDDS) is a novel drug delivery system that can selectively concentrate drugs on targets in the body, improve the bioavailability of agents and reduce side effects. This emerging drug delivery system provides a new strategy for the treatment of obesity with nutraceuticals and would be a promising alternative to be widely used in the food field. This review summarizes the recent studies on the application in the targeted delivery of nutraceuticals for treating obesity and its related complications, especially the available receptors and their corresponding ligands for TDDS and the evaluation methods of the targeting ability.
Collapse
|
8
|
Torosian K, Lal E, Kavanaugh A, Loomba R, Ajmera V, Guma M. Psoriatic disease and non-alcoholic fatty liver disease shared pathogenesis review. Semin Arthritis Rheum 2023; 59:152165. [PMID: 36716599 PMCID: PMC9992353 DOI: 10.1016/j.semarthrit.2023.152165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/03/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023]
Abstract
Psoriatic disease (PD) and non-alcoholic fatty liver disease (NAFLD) potentially share disease pathways given the numerous inflammatory pathways involved in both diseases and a higher prevalence of NAFLD in PD patients. Metabolic syndrome and obesity are a key link between the two diseases, but even when controlling for this, associations between both diseases are still seen. Therapeutics that impact metabolic or inflammatory pathways may be impactful in both PD and NAFLD. In this review, we describe common inflammatory pathways contributing to both PD and NAFLD and critically review the potential impact of treatments for and on both diseases.
Collapse
Affiliation(s)
- Kelly Torosian
- Department of Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA
| | - Esha Lal
- Department of Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA
| | - Arthur Kavanaugh
- Department of Rheumatology, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA
| | - Rohit Loomba
- Division of Gastroenterology and Hepatology, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA; NAFLD Research Center, Department of Medicine, University of California at San Diego, La Jolla, USA; Division of Epidemiology, Department of Family and Preventative Medicine, University of California at San Diego, La Jolla, USA
| | - Veeral Ajmera
- Division of Gastroenterology and Hepatology, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA; NAFLD Research Center, Department of Medicine, University of California at San Diego, La Jolla, USA.
| | - Monica Guma
- Department of Rheumatology, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA; Department of Medicine, Autonomous University of Barcelona, Plaça Cívica, 08193 Bellaterra, Barcelona, Spain; San Diego VA Healthcare Service, San Diego, CA, 92161, USA.
| |
Collapse
|
9
|
Ding J, Wu L, Zhu G, Zhu J, Luo P, Li Y. HADHA alleviates hepatic steatosis and oxidative stress in NAFLD via inactivation of the MKK3/MAPK pathway. Mol Biol Rep 2023; 50:961-970. [PMID: 36376538 PMCID: PMC9889437 DOI: 10.1007/s11033-022-07965-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a liver metabolic syndrome and still lacks effective treatments because the molecular mechanism underlying the development of NAFLD is not completely understood. We investigated the role of Hydroxyl CoA dehydrogenase alpha subunit (HADHA) in the pathogenesis of NAFLD. METHODS HADHA expression was detected both in NAFLD cell and mice, and knockdown of HADHA in free fatty acids (FFA)-treated L02 or overexpression of HADHA in high fat diet (HFD)-fed mice was used to detected the influence of HADHA on hepatic steatosis, mitochondrial dysfunction, and oxidative stress by regulating of MKK3/MAPK signaling. RESULTS Our data revealed that HADHA expression was decreased in FFA-treated L02 cells and in HFD-fed mice. Knockdown of HADHA markedly aggravated hepatic steatosis, inflammation and oxidative stress in FFA-treated L02 cells, which was associated with the activation of MKK3/MAPK signalling pathways. Moreover, oxidative stress and liver lesions were improved in NAFLD mice by upregulation of HADHA. Importantly, we demonstrated that overexpression of HADHA inhibited the expression of p-MAPK in NAFLD mice, reducing lipid accumulation and steatosis. CONCLUSION HADHA may function as a protective factor in the progression of NAFLD by alleviating abnormal metabolism and oxidative stress by suppressing MKK3/MAPK signalling pathway activation, providing a new target for the treatment of NAFLD.
Collapse
Affiliation(s)
- Jiexia Ding
- Department of Infectious Diseases, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, 310003, Hangzhou, Zhejiang Province, China.
| | - Lili Wu
- Department of Oncology, Ruian City People's Hospital, 325200, Rui'an, China
| | - Guoxian Zhu
- Department of Infectious Diseases, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, 310003, Hangzhou, Zhejiang Province, China
| | - Jing Zhu
- Department of Infectious Diseases, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, 310003, Hangzhou, Zhejiang Province, China
| | - Pingping Luo
- Department of Infectious Diseases, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261 Huansha Road, 310003, Hangzhou, Zhejiang Province, China
| | - Youming Li
- Department of Gastroenterology, Zhejiang University School of Medicine First Affiliated Hospital, 310003, Hangzhou, China
| |
Collapse
|
10
|
Ma Q, Hu X, Liu F, Cao Z, Han L, Zhou K, Bai Y, Zhang Y, Nan Y, Lv Q, Rao J, Wu T, Yang X, He H, Ju D, Xu H. A novel fusion protein consisting of anti-ANGPTL3 antibody and interleukin-22 ameliorates diabetic nephropathy in mice. Front Immunol 2022; 13:1011442. [PMID: 36544775 PMCID: PMC9760875 DOI: 10.3389/fimmu.2022.1011442] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/01/2022] [Indexed: 12/11/2022] Open
Abstract
Introduction The pathogenic mechanisms of diabetic nephropathy (DN) include podocyte injury, inflammatory responses and metabolic disorders. Although the antagonism of Angiopoietin-like protein 3 (ANGPTL3) can alleviate proteinuria symptoms by inhibiting the activation of integrin αvβ3 on the surface of podocytes, it can not impede other pathological processes, such as inflammatory responses and metabolic dysfunction of glucolipid. Interleukin-22 (IL-22) is considered to be a pivotal molecule involved in suppressing inflammatory responses, initiating regenerative repair, and regulating glucolipid metabolism. Methods Genes encoding the mIL22IgG2aFc and two chains of anti-ANGPTL3 antibody and bifunctional protein were synthesized. Then, the DN mice were treated with intraperitoneal injection of normal saline, anti-ANGPTL3 (20 mg/kg), mIL22Fc (12 mg/kg) or anti-ANGPTL3 /IL22 (25.3 mg/kg) and irrigation of positive drug losartan (20mg/kg/d) twice a week for 8 weeks. Results In this research, a novel bifunctional fusion protein (anti-ANGPTL3/IL22) formed by the fusion of IL-22 with the C-terminus of anti-ANGPTL3 antibody exhibited favorable stability and maintained the biological activity of anti-ANGPTL3 and IL-22, respectively. The fusion protein showed a more pronounced attenuation of proteinuria and improved dysfunction of glucolipid metabolism compared with mIL22Fc or anti-ANGPTL3. Our results also indicated that anti-ANGPTL3/IL22 intervention significantly alleviated renal fibrosis via inhibiting the expression of the inflammatory response-related protein nuclear factor kappa light-chain enhancer of activated B cells (NF-κB) p65 and NOD-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome. Moreover, transcriptome analysis revealed the downregulation of signaling pathways associated with injury and dysfunction of the renal parenchymal cell indicating the possible protective mechanisms of anti-ANGPTL3/IL22 in DN. Conclusion Collectively, anti-ANGPTL3/IL22 bifunctional fusion protein can be a promising novel therapeutic strategy for DN by reducing podocyte injury, ameliorating inflammatory response, and enhancing renal tissue recovery.
Collapse
Affiliation(s)
- Qianqian Ma
- Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Xiaozhi Hu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Fangyu Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhonglian Cao
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Lei Han
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Kaicheng Zhou
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Yu Bai
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Yuting Zhang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Yanyang Nan
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Qianying Lv
- Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Jia Rao
- Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Tao Wu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Xue Yang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Haidong He
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Dianwen Ju
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
- Department of Nephrology, Minhang Hospital, Fudan University, Shanghai, China
| | - Hong Xu
- Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| |
Collapse
|
11
|
Luo F, Yu Y, Li M, Chen Y, Zhang P, Xiao C, Lv G. Polymeric nanomedicines for the treatment of hepatic diseases. J Nanobiotechnology 2022; 20:488. [PMCID: PMC9675156 DOI: 10.1186/s12951-022-01708-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022] Open
Abstract
The liver is an important organ in the human body and performs many functions, such as digestion, detoxification, metabolism, immune responses, and vitamin and mineral storage. Therefore, disorders of liver functions triggered by various hepatic diseases, including hepatitis B virus infection, nonalcoholic steatohepatitis, hepatic fibrosis, hepatocellular carcinoma, and transplant rejection, significantly threaten human health worldwide. Polymer-based nanomedicines, which can be easily engineered with ideal physicochemical characteristics and functions, have considerable merits, including contributions to improved therapeutic outcomes and reduced adverse effects of drugs, in the treatment of hepatic diseases compared to traditional therapeutic agents. This review describes liver anatomy and function, and liver targeting strategies, hepatic disease treatment applications and intrahepatic fates of polymeric nanomedicines. The challenges and outlooks of hepatic disease treatment with polymeric nanomedicines are also discussed.
Collapse
Affiliation(s)
- Feixiang Luo
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| | - Ying Yu
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| | - Mingqian Li
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| | - Yuguo Chen
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| | - Peng Zhang
- grid.9227.e0000000119573309Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 People’s Republic of China
| | - Chunsheng Xiao
- grid.9227.e0000000119573309Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 People’s Republic of China
| | - Guoyue Lv
- grid.430605.40000 0004 1758 4110Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, 130021 People’s Republic of China
| |
Collapse
|
12
|
Zhou X, Li X, Yi K, Liang C, Geng S, Zhu J, Xie C, Zhong C. Magnesium isoglycyrrhizinate ameliorates lipopolysaccharide-induced liver injury by upregulating autophagy and inhibiting inflammation via IL-22 expression. Bioorg Chem 2022; 128:106034. [DOI: 10.1016/j.bioorg.2022.106034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/01/2022] [Accepted: 07/14/2022] [Indexed: 12/15/2022]
|
13
|
Chitosan biguanide induced mitochondrial inhibition to amplify the efficacy of oxygen-sensitive tumor therapies. Carbohydr Polym 2022; 295:119878. [DOI: 10.1016/j.carbpol.2022.119878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/22/2022] [Accepted: 07/13/2022] [Indexed: 12/13/2022]
|
14
|
Zhou Z, Liu Y, Jiang X, Zheng C, Luo W, Xiang X, Qi X, Shen J. Metformin modified chitosan as a multi-functional adjuvant to enhance cisplatin-based tumor chemotherapy efficacy. Int J Biol Macromol 2022; 224:797-809. [DOI: 10.1016/j.ijbiomac.2022.10.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/08/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
|
15
|
Abdelnabi MN, Flores Molina M, Soucy G, Quoc-Huy Trinh V, Bédard N, Mazouz S, Jouvet N, Dion J, Tran S, Bilodeau M, Estall JL, Shoukry NH. Sex-Dependent Hepatoprotective Role of IL-22 Receptor Signaling in Non-Alcoholic Fatty Liver Disease-Related Fibrosis. Cell Mol Gastroenterol Hepatol 2022; 14:1269-1294. [PMID: 35970323 PMCID: PMC9596743 DOI: 10.1016/j.jcmgh.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND & AIMS Nonalcoholic fatty liver disease (NAFLD) is a major health problem with complex pathogenesis. Although sex differences in NAFLD pathogenesis have been reported, the mechanisms underlying such differences remain understudied. Interleukin (IL)22 is a pleiotropic cytokine with both protective and/or pathogenic effects during liver injury. IL22 was shown to be hepatoprotective in NAFLD-related liver injury. However, these studies relied primarily on exogenous administration of IL22 and did not examine the sex-dependent effect of IL22. Here, we sought to characterize the role of endogenous IL22-receptor signaling during NAFLD-induced liver injury in males and females. METHODS We used immunofluorescence, flow cytometry, histopathologic assessment, and gene expression analysis to examine IL22 production and characterize the intrahepatic immune landscape in human subjects with NAFLD (n = 20; 11 men and 9 women) and in an in vivo Western high-fat diet-induced NAFLD model in IL22RA knock out mice and their wild-type littermates. RESULTS Examination of publicly available data sets from 2 cohorts with NAFLD showed increased hepatic IL22 gene expression in females compared with males. Furthermore, our immunofluorescence analysis of liver sections from NAFLD subjects (n = 20) showed increased infiltration of IL22-producing cells in females. Similarly, IL22-producing cells were increased in wild-type female mice with NAFLD and the hepatic IL22/IL22 binding protein messenger RNA ratio correlated with expression of anti-apoptosis genes. The lack of endogenous IL22-receptor signaling (IL22RA knockout) led to exacerbated liver damage, inflammation, apoptosis, and liver fibrosis in female, but not male, mice with NAFLD. CONCLUSIONS Our data suggest a sex-dependent hepatoprotective antiapoptotic effect of IL22-receptor signaling during NAFLD-related liver injury in females.
Collapse
Affiliation(s)
- Mohamed N Abdelnabi
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Manuel Flores Molina
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Geneviève Soucy
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada; Département de Département de Pathologie et Biologie Cellulaire, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Vincent Quoc-Huy Trinh
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada; Département de Département de Pathologie et Biologie Cellulaire, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Nathalie Bédard
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Sabrina Mazouz
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Nathalie Jouvet
- Institut de Recherches, Cliniques de Montreal, Montréal, Québec, Canada
| | - Jessica Dion
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Sarah Tran
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Marc Bilodeau
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada; Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Jennifer L Estall
- Institut de Recherches, Cliniques de Montreal, Montréal, Québec, Canada; Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Naglaa H Shoukry
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada; Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
16
|
Salehi D, Mozaffari S, Zoghebi K, Lohan S, Mandal D, Tiwari RK, Parang K. Amphiphilic Cell-Penetrating Peptides Containing Natural and Unnatural Amino Acids as Drug Delivery Agents. Cells 2022; 11:cells11071156. [PMID: 35406720 PMCID: PMC8997995 DOI: 10.3390/cells11071156] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
A series of cyclic peptides, [(DipR)(WR)4], [(DipR)2(WR)3], [(DipR)3(WR)2], [(DipR)4(WR)], and [DipR]5, and their linear counterparts containing arginine (R) as positively charged residues and tryptophan (W) or diphenylalanine (Dip) as hydrophobic residues, were synthesized and evaluated for their molecular transporter efficiency. The in vitro cytotoxicity of the synthesized peptides was determined in human epithelial ovary adenocarcinoma cells (SK-OV-3), human lymphoblast peripheral blood cells (CCRF-CEM), human embryonic epithelial kidney healthy cells (HEK-293), human epithelial mammary gland adenocarcinoma cells (MDA-MB-468), pig epithelial kidney normal cells (LLC-PK1), and human epithelial fibroblast uterine sarcoma cells (MES-SA). A concentration of 5–10 µM and 3 h incubation were selected in uptake studies. The cellular uptake of a fluorescent-labeled phosphopeptide, stavudine, lamivudine, emtricitabine, and siRNA was determined in the presence of peptides via flow cytometry. Among the peptides, [DipR]5 (10 µM) was found to be the most efficient transporter and significantly improved the uptake of F’-GpYEEI, i.e., by approximately 130-fold after 3 h incubation in CCRF-CEM cells. Confocal microscopy further confirmed the improved delivery of fluorescent-labeled [DipR]5 (F’-[K(DipR)5]) alone and F’-GpYEEI in the presence of [DipR]5 in MDA-MB-231 cells. The uptake of fluorescent-labeled siRNA (F’-siRNA) in the presence of [DipR]5 with N/P ratios of 10 and 20 was found to be 30- and 50-fold higher, respectively, compared with the cells exposed to F’-siRNA alone. The presence of endocytosis inhibitors, i.e., nystatin, chlorpromazine, chloroquine, and methyl β-cyclodextrin, did not completely inhibit the cellular uptake of F’-[K(DipR)5] alone or F’-GpYEEI in the presence of [DipR]5, suggesting that a combination of mechanisms contributes to uptake. Circular dichroism was utilized to determine the secondary structure, while transmission electron microscopy was used to evaluate the particle sizes and morphology of the peptides. The data suggest the remarkable membrane transporter property of [DipR]5 for improving the delivery of various small molecules and cell-impermeable negatively charged molecules (e.g., siRNA and phosphopeptide).
Collapse
Affiliation(s)
- David Salehi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA; (D.S.); (S.M.); (K.Z.); (S.L.); (D.M.)
| | - Saghar Mozaffari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA; (D.S.); (S.M.); (K.Z.); (S.L.); (D.M.)
| | - Khalid Zoghebi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA; (D.S.); (S.M.); (K.Z.); (S.L.); (D.M.)
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 82826, Saudi Arabia
| | - Sandeep Lohan
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA; (D.S.); (S.M.); (K.Z.); (S.L.); (D.M.)
| | - Dindyal Mandal
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA; (D.S.); (S.M.); (K.Z.); (S.L.); (D.M.)
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India
| | - Rakesh K. Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA; (D.S.); (S.M.); (K.Z.); (S.L.); (D.M.)
- Correspondence: (R.K.T.); (K.P.); Tel.: +1-714-516-5483 (R.K.T.); +1-714-516-5489 (K.P.)
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University School of Pharmacy, Irvine, CA 92618, USA; (D.S.); (S.M.); (K.Z.); (S.L.); (D.M.)
- Correspondence: (R.K.T.); (K.P.); Tel.: +1-714-516-5483 (R.K.T.); +1-714-516-5489 (K.P.)
| |
Collapse
|
17
|
Th17 cells in the liver: balancing autoimmunity and pathogen defense. Semin Immunopathol 2022; 44:509-526. [PMID: 35211777 DOI: 10.1007/s00281-022-00917-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/24/2022] [Indexed: 12/13/2022]
Abstract
In addition to carcinogenesis, T helper 17 (Th17) cells (a subtype of CD4 + T lymphocytes) are involved in the acute, chronic, and cirrhotic phases of liver diseases; however, their role in the development and progression of liver diseases remains unclear. It is difficult to elucidate the role of Th17 cells in liver diseases due to their dichotomous nature, i.e., plasticity in terms of pathogenic or host protective function depending on environmental and time phase factors. Moreover, insufficient depletion of Th17 cells by inhibiting the cytokines and transcription factors involved in their production causes difficulties in analyzing their specific role in vitro and in vivo murine models, partially due to complex interaction. This review summarizes the recent progress in understanding the plasticity and function of hepatic Th17 cells and type 3 cytokines.
Collapse
|
18
|
Liu M, Huang Q, Zhu Y, Chen L, Li Y, Gong Z, Ai K. Harnessing reactive oxygen/nitrogen species and inflammation: Nanodrugs for liver injury. Mater Today Bio 2022; 13:100215. [PMID: 35198963 PMCID: PMC8850330 DOI: 10.1016/j.mtbio.2022.100215] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 12/11/2022] Open
Abstract
Overall, 12% of the global population (800 million) suffers from liver disease, which causes 2 million deaths every year. Liver injury involving characteristic reactive oxygen/nitrogen species (RONS) and inflammation plays a key role in progression of liver disease. As a key metabolic organ of the human body, the liver is susceptible to injury from various sources, including COVID-19 infection. Owing to unique structural features and functions of the liver, most current antioxidants and anti-inflammatory drugs are limited against liver injury. However, the characteristics of the liver could be utilized in the development of nanodrugs to achieve specific enrichment in the liver and consequently targeted treatment. Nanodrugs have shown significant potential in eliminating RONS and regulating inflammation, presenting an attractive therapeutic tool for liver disease through controlling liver injury. Therefore, the main aim of the current review is to provide a comprehensive summary of the latest developments contributing to our understanding of the mechanisms underlying nanodrugs in the treatment of liver injury via harnessing RONS and inflammation. Meanwhile, the prospects of nanodrugs for liver injury therapy are systematically discussed, which provides a sound platform for novel therapeutic insights and inspiration for design of nanodrugs to treat liver disease.
Collapse
Affiliation(s)
- Min Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yan Zhu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Li Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Yumei Li
- Department of Assisted Reproduction, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| |
Collapse
|
19
|
Xue C, Zhang L, Zhang Y, Yu Y, Xu C, Li Z. H 2O 2-responsive lovastatin nanohybrids based on auto-fluorescent perylene diimide reverse nonalcoholic fatty liver disease. NEW J CHEM 2022. [DOI: 10.1039/d2nj01518h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The application of a liver targeting nanometer prodrug system based on an oxalate ester bond for treating NAFLD.
Collapse
Affiliation(s)
- Changning Xue
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Lifen Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuman Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yao Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chenlu Xu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhi Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, 450001, China
| |
Collapse
|
20
|
Therapeutic Opportunities of IL-22 in Non-Alcoholic Fatty Liver Disease: From Molecular Mechanisms to Clinical Applications. Biomedicines 2021; 9:biomedicines9121912. [PMID: 34944732 PMCID: PMC8698419 DOI: 10.3390/biomedicines9121912] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/11/2021] [Accepted: 12/11/2021] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) represents one of the most common liver disorders and can progress into a series of liver diseases, including nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and even liver cancer. Interleukin-22 (IL-22), a member of the IL-10 family of cytokines, is predominantly produced by lymphocytes but acts exclusively on epithelial cells. IL-22 was proven to favor tissue protection and regeneration in multiple diseases. Emerging evidence suggests that IL-22 plays important protective functions against NAFLD by improving insulin sensitivity, modulating lipid metabolism, relieving oxidative and endoplasmic reticulum (ER) stress, and inhibiting apoptosis. By directly interacting with the heterodimeric IL-10R2 and IL-22R1 receptor complex on hepatocytes, IL-22 activates the Janus kinase 1 (JAK1)/ signal transducer and activator of transcription 3 (STAT3), c-Jun N-terminal kinase (JNK) and extracellular-signal regulated kinase (ERK) pathways to regulate the subsequent expression of genes involved in inflammation, metabolism, tissue repair, and regeneration, thus alleviating hepatitis and steatosis. However, due to the wide biodistribution of the IL-22 receptor and its proinflammatory effects, modifications such as targeted delivery of IL-22 expression and recombinant IL-22 fusion proteins to improve its efficacy while reducing systemic side effects should be taken for further clinical application. In this review, we summarized recent progress in understanding the physiological and pathological importance of the IL-22-IL-22R axis in NAFLD and the mechanisms of IL-22 in the protection of NAFLD and discussed the potential strategies to maneuver this specific cytokine for therapeutic applications for NAFLD.
Collapse
|
21
|
The Emerging Role of Nanomedicine in the Management of Nonalcoholic Fatty Liver Disease: A State-of-the-Art Review. Bioinorg Chem Appl 2021; 2021:4041415. [PMID: 34659388 PMCID: PMC8519727 DOI: 10.1155/2021/4041415] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/27/2021] [Indexed: 02/08/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease that can lead to end-stage liver disease needing a liver transplant. Many pharmacological approaches are used to reduce the disease progression in NAFLD. However, current strategies remain ineffective to reverse the progression of NAFLD completely. Employing nanoparticles as a drug delivery system has demonstrated significant potential for improving the bioavailability of drugs in the treatment of NAFLD. Various types of nanoparticles are exploited in this regard for the management of NAFLD. In this review, we cover the current therapeutic approaches to manage NAFLD and provide a review of recent up-to-date advances in the uses of nanoparticles for the treatment of NAFLD.
Collapse
|
22
|
Lücke J, Sabihi M, Zhang T, Bauditz LF, Shiri AM, Giannou AD, Huber S. The good and the bad about separation anxiety: roles of IL-22 and IL-22BP in liver pathologies. Semin Immunopathol 2021; 43:591-607. [PMID: 33851257 PMCID: PMC8443499 DOI: 10.1007/s00281-021-00854-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022]
Abstract
The human liver fulfills several vital tasks daily and possesses an impressive ability to self-regenerate. However, the capacity of this self-healing process can be exhausted by a variety of different liver diseases, such as alcoholic liver damage, viral hepatitis, or hepatocellular carcinoma. Over time, all these diseases generally lead to progressive liver failure that can become fatal if left untreated. Thus, a great effort has been directed towards the development of innovative therapies. The most recently discovered therapies often involve modifying the patient's immune system to enhance a beneficial immune response. Current data suggest that, among others, the cytokine IL-22 might be a promising therapeutical candidate. IL-22 and its endogenous antagonist, IL-22BP, have been under thorough scientific investigation for nearly 20 years. While IL-22 is mainly produced by TH22 cells, ILC3s, NKT cells, or γδ T cells, sources of IL-22BP include dendritic cells, eosinophils, and CD4+ cells. In many settings, IL-22 was shown to promote regenerative potential and, thus, could protect tissues from pathogens and damage. However, the effects of IL-22 during carcinogenesis are more ambiguous and depend on the tumor entity and microenvironment. In line with its capabilities of neutralizing IL-22 in vivo, IL-22BP possesses often, but not always, an inverse expression pattern compared to its ligand. In this comprehensive review, we will summarize past and current findings regarding the roles of IL-22 and IL-22BP in liver diseases with a particular focus on the leading causes of advanced liver failure, namely, liver infections, liver damage, and liver malignancies.
Collapse
Affiliation(s)
- Jöran Lücke
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Morsal Sabihi
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Tao Zhang
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Lennart Fynn Bauditz
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Ahmad Mustafa Shiri
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Anastasios D Giannou
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| | - Samuel Huber
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| |
Collapse
|
23
|
Ahamad N, Kar A, Mehta S, Dewani M, Ravichandran V, Bhardwaj P, Sharma S, Banerjee R. Immunomodulatory nanosystems for treating inflammatory diseases. Biomaterials 2021; 274:120875. [PMID: 34010755 DOI: 10.1016/j.biomaterials.2021.120875] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/26/2021] [Accepted: 05/02/2021] [Indexed: 02/07/2023]
Abstract
Inflammatory disease (ID) is an umbrella term encompassing all illnesses involving chronic inflammation as the central manifestation of pathogenesis. These include, inflammatory bowel diseases, hepatitis, pulmonary disorders, atherosclerosis, myocardial infarction, pancreatitis, arthritis, periodontitis, psoriasis. The IDs create a severe burden on healthcare and significantly impact the global socio-economic balance. Unfortunately, the standard therapies that rely on a combination of anti-inflammatory and immunosuppressive agents are palliative and provide only short-term relief. In contrast, the emerging concept of immunomodulatory nanosystems (IMNs) has the potential to address the underlying causes and prevent reoccurrence, thereby, creating new opportunities for treating IDs. The IMNs offer exquisite ability to precisely modulate the immune system for a therapeutic advantage. The nano-sized dimension of IMNs allows them to efficiently infiltrate lymphatic drainage, interact with immune cells, and subsequently to undergo rapid endocytosis by hyperactive immune cells (HICs) at inflamed sites. Thus, IMNs serve to restore dysfunctional or HICs and alleviate the inflammation. We identified that different IMNs exert their immunomodulatory action via either of the seven mechanisms to modulate; cytokine production, cytokine neutralization, cellular infiltration, macrophage polarization, HICs growth inhibition, stimulating T-reg mediated tolerance and modulating oxidative-stress. In this article, we discussed representative examples of IMNs by highlighting their rationalization, design principle, and mechanism of action in context of treating various IDs. Lastly, we highlighted technical challenges in the application of IMNs and explored the future direction of research, which could potentially help to overcome those challenges.
Collapse
Affiliation(s)
- Nadim Ahamad
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Abhinanda Kar
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Sourabh Mehta
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India; IITB-Monash Research Academy IIT Bombay, Powai, Mumbai, 400076, India
| | - Mahima Dewani
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Vasanthan Ravichandran
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Prateek Bhardwaj
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Shivam Sharma
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Rinti Banerjee
- Nanomedicine Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
24
|
Liu T, Feng X, Liao Y. miR-617 Promotes the Growth of IL-22-Stimulated Keratinocytes Through Regulating FOXO4 Expression. Biochem Genet 2021; 59:547-559. [PMID: 33211221 DOI: 10.1007/s10528-020-09997-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 09/18/2020] [Indexed: 01/08/2023]
Abstract
Psoriasis is considered as a common chronic and relapsing inflammatory skin disease. MicroRNAs (miRNAs) were found to be related with psoriasis pathogenesis. Nevertheless, the function of miR-617 in psoriasis is still unclear. The miR-617 RNA level was detected using quantitative reverse transcription-PCR (qRT-PCR). Western blot analysis examined the protein level. Cell proliferation was analyzed via cell counting kit-8 (CCK-8) assay. Flow cytometry analysis detected cell cycle and apoptosis. The relationship between miR-617 and forkhead box protein O4 (FOXO4) was confirmed through dual luciferase assay. The miR-617 was up-regulated in psoriatic skin tissues and interleukin-22 (IL-22)-stimulated immortalized human keratinocyte HaCaT cells. Moreover, miR-617 mimics promoted proliferation, cell cycle, and suppressed apoptosis in IL-22-stimulated HaCaT cells. However, miR-617 inhibitor showed opposite effects. Additionally, FOXO4 was a target of miR-617. FOXO4 was down-regulated in psoriatic skin tissues and IL-22-stimulated HaCaT cells. Negative correlation between miR-617 and FOXO4 was identified. FOXO4 overexpression alleviated the effects of miR-617 proliferation, cell cycle and apoptosis in the IL-22-stimulated HaCaT cells. These results demonstrate that miR-617 increases the growth of IL-22-stimulated keratinocytes through targeting FOXO4, which provides a new therapeutic target for psoriasis.
Collapse
Affiliation(s)
- Tao Liu
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, No. 25 of Taiping Road, Luzhou, 646000, Sichuan, China.
| | - Xiaomei Feng
- Department of Ophthalmology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yongmei Liao
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, No. 25 of Taiping Road, Luzhou, 646000, Sichuan, China
| |
Collapse
|
25
|
Mauri E, Gori M, Giannitelli SM, Zancla A, Mozetic P, Abbruzzese F, Merendino N, Gigli G, Rossi F, Trombetta M, Rainer A. Nano-encapsulation of hydroxytyrosol into formulated nanogels improves therapeutic effects against hepatic steatosis: An in vitro study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112080. [PMID: 33947572 DOI: 10.1016/j.msec.2021.112080] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/12/2021] [Accepted: 03/24/2021] [Indexed: 12/17/2022]
Abstract
Nanomaterials hold promise as a straightforward approach for enhancing the performance of bioactive compounds in several healthcare scenarios. Indeed, nanoencapsulation represents a valuable strategy to preserve the bioactives, maximizing their bioavailability. Here, a nanoencapsulation strategy for the treatment of nonalcoholic fatty liver disease (NAFLD) is presented. NAFLD represents the most common chronic liver disease in Western societies, and still lacks an effective therapy. Hydroxytyrosol (HT), a naturally occurring polyphenol, has been shown to protect against hepatic steatosis through its lipid-lowering, antioxidant and anti-inflammatory activities. However, the efficient delivery of HT to hepatocytes remains a crucial aspect: the design of smart nanogels appears as a promising tool to promote its intracellular uptake. In this paper, we disclose the synthesis of nanogel systems based on polyethylene glycol and polyethyleneimine which have been tested in an in vitro model of hepatic steatosis at two different concentrations (0.1 mg/mL and 0.5 mg/mL), taking advantage of high-content analysis tools. The proposed HT-loaded nanoscaffolds are non-toxic to cells, and their administration showed a significant decrease in the intracellular triglyceride levels, restoring cell viability and outperforming the results achievable with HT in its non-encapsulated form. Moreover, nanogels do not induce oxidative stress, thus demonstrating their biosafety. Overall, the formulated nanogel system achieves superior performance compared to conventional drug administration routes and hence represents a promising strategy for the management of NAFLD.
Collapse
Affiliation(s)
- Emanuele Mauri
- Department of Engineering, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Manuele Gori
- Department of Engineering, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy; Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), via E. Ramarini 32, 00015 Monterotondo Scalo (Rome), Italy
| | - Sara Maria Giannitelli
- Department of Engineering, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Andrea Zancla
- Department of Engineering, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy; Department of Engineering, Università degli Studi di Roma Tre, via Vito Volterra 62, 00146 Rome, Italy
| | - Pamela Mozetic
- Institute of Nanotechnology (NANOTEC), National Research Council (CNR), via Monteroni, 73100 Lecce, Italy
| | - Franca Abbruzzese
- Department of Engineering, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Nicolò Merendino
- Department of Ecology and Biology, Università degli Studi della Tuscia, Largo dell'Università, 01100 Viterbo, Italy
| | - Giuseppe Gigli
- Institute of Nanotechnology (NANOTEC), National Research Council (CNR), via Monteroni, 73100 Lecce, Italy; Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, via Arnesano, 73100 Lecce, Italy
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, via L. Mancinelli 7, 20131 Milan, Italy
| | - Marcella Trombetta
- Department of Engineering, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Alberto Rainer
- Department of Engineering, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy; Institute of Nanotechnology (NANOTEC), National Research Council (CNR), via Monteroni, 73100 Lecce, Italy.
| |
Collapse
|
26
|
An SY, Petrescu AD, DeMorrow S. Targeting Certain Interleukins as Novel Treatment Options for Liver Fibrosis. Front Pharmacol 2021; 12:645703. [PMID: 33841164 PMCID: PMC8024568 DOI: 10.3389/fphar.2021.645703] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/16/2021] [Indexed: 12/14/2022] Open
Abstract
The liver is a major metabolic organ and an immunologically complex organ. It produces and uses many substances such as acute phase proteins, cytokines, chemokines, and complementary components to maintain the balance between immunity and tolerance. Interleukins are important immune control cytokines, that are produced by many body cells. In liver injury, interleukins are produced in large amount by various cell types, and act as pro-inflammatory (e.g. interleukin (IL)-6, IL-13, IL-17, and IL-33) as well as anti-inflammatory (e.g. IL-10) functions in hepatic cells. Recently, interleukins are regarded as interesting therapeutic targets for the treatment of liver fibrosis patients. Hepatic cells such as hepatocytes, hepatic stellate cells, and hepatic macrophages are involved to the initiation, perpetuation, and resolution of fibrosis. The understanding of the role of interleukins in such cells provides opportunity for the development of therapeutic target drugs. This paper aims to understand the functional roles of interleukins in hepatic and immune cells when the liver is damaged, and suggests the possibility of interleukins as a new treatment target in liver fibrosis.
Collapse
Affiliation(s)
- Su Yeon An
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States
| | - Anca D Petrescu
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States
| | - Sharon DeMorrow
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States.,Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX, United States.,Research Division, Central Texas Veterans Healthcare System, Temple, TX, United States
| |
Collapse
|
27
|
Meng D, Pan H, Chen Y, Ding J, Dai Y. Roles and mechanisms of NRG1 in modulating the pathogenesis of NAFLD through ErbB3 signaling in hepatocytes (NRG1 modulates NAFLD through ErbB3 signaling). Obes Res Clin Pract 2021; 15:145-151. [PMID: 33541789 DOI: 10.1016/j.orcp.2021.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 12/08/2020] [Accepted: 01/04/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is an emerging chronic liver disease. However, the underlying mechanisms remained poorly understood. Neuregulin (NRG) family participate in energy metabolism, and might be related to NAFLD. METHODS L02 cells were exposed to oleic acid to establish a cellular model of NAFLD. We analyzed the NAFLD cells with NRG1 and subsequent ErbB3 siRNA treatment. Cellular total lipid was stained by Oil Red O, while triglyceride content and inflammation markers were measured by enzymatic kits. The expressions of down-stream molecules were evaluated by western blot. RESULTS In vitro, NRG1 could alleviate the steatosis of NAFLD, and inhibit the expression of IL-6 and TNF-α. The downregulation of ErbB3 aggravated steatosis, improved the levels of triglyceride, IL-6 and TNF-α in NRG1-treated NAFLD. Moreover, NRG1 treatment up-regulated ErbB3 phosphorylation, and increased the expression of PI3K and phosphorylation-AKT. When NRG1-treated NAFLD cells were transfected with ErbB3 siRNA, the expressions of ErbB3, p-ErbB3, p-AKT and PI3K were all reduced. CONCLUSION NRG1 might play a protective role in the pathogenesis of NAFLD through ErbB3 phosphorylation to modulate the activation of PI3K-AKT pathway. The findings will expand the understanding of the mechanisms of NAFLD, and provide potential therapeutic targets.
Collapse
Affiliation(s)
- Di Meng
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China
| | - Hongying Pan
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| | - Youwei Chen
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China
| | - Jiexia Ding
- Department of Infectious Diseases, Affiliated Hangzhou First People's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yining Dai
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang Province, China.
| |
Collapse
|
28
|
Chen W, Shen Y, Fan J, Zeng X, Zhang X, Luan J, Wang Y, Zhang J, Fang S, Mei X, Zhao Z, Ju D. IL-22-mediated renal metabolic reprogramming via PFKFB3 to treat kidney injury. Clin Transl Med 2021; 11:e324. [PMID: 33634980 PMCID: PMC7901723 DOI: 10.1002/ctm2.324] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/24/2021] [Accepted: 01/27/2021] [Indexed: 12/25/2022] Open
Abstract
Kidney damage initiates the deteriorating metabolic states in tubule cells that lead to the development of end-stage renal disease (ESTD). Interleukin-22 (IL-22) is an effective therapeutic antidote for kidney injury via promoting kidney recovery, but little is known about the underlying molecular mechanisms. Here, we first provide evidence that IL-22 attenuates kidney injury via metabolic reprogramming of renal tubular epithelial cells (TECs). Specifically, our data suggest that IL-22 regulates mitochondrial function and glycolysis in damaged TECs. Further observations indicate that IL-22 alleviates the accumulation of mitochondrial reactive oxygen species (ROS) and dysfunctional mitochondria via the induction of AMPK/AKT signaling and PFBFK3 activities. In mice, amelioration of kidney injury and necrosis and improvement of kidney functions via regulation of these metabolism relevant signaling and mitochondrial fitness of recombinant IL-22 are certificated in cisplatin-induced kidney damage and diabetic nephropathy (DN) animal models. Taken together, our findings unravel new mechanistic insights into protective effects of IL-22 on kidneys and highlight the therapeutic opportunities of IL-22 and the involved metabolic regulators in various kidney diseases.
Collapse
Affiliation(s)
- Wei Chen
- School of Pharmacy and Minhang HospitalShanghai Engineering Research Center of ImmunotherapeuticsFudan UniversityShanghaiP. R. China
- Department of OphthalmologyStanford University School of MedicinePalo AltoCaliforniaUSA
| | - Yilan Shen
- School of Pharmacy and Minhang HospitalShanghai Engineering Research Center of ImmunotherapeuticsFudan UniversityShanghaiP. R. China
- Changhai HospitalSecond Military Medical UniversityShanghaiP. R. China
- Department of NephrologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiP. R. China
| | - Jiajun Fan
- School of Pharmacy and Minhang HospitalShanghai Engineering Research Center of ImmunotherapeuticsFudan UniversityShanghaiP. R. China
| | - Xian Zeng
- School of Pharmacy and Minhang HospitalShanghai Engineering Research Center of ImmunotherapeuticsFudan UniversityShanghaiP. R. China
| | - Xuyao Zhang
- School of Pharmacy and Minhang HospitalShanghai Engineering Research Center of ImmunotherapeuticsFudan UniversityShanghaiP. R. China
| | - Jingyun Luan
- School of Pharmacy and Minhang HospitalShanghai Engineering Research Center of ImmunotherapeuticsFudan UniversityShanghaiP. R. China
| | - Yichen Wang
- School of Pharmacy and Minhang HospitalShanghai Engineering Research Center of ImmunotherapeuticsFudan UniversityShanghaiP. R. China
| | - Jinghui Zhang
- School of Pharmacy and Minhang HospitalShanghai Engineering Research Center of ImmunotherapeuticsFudan UniversityShanghaiP. R. China
- Changhai HospitalSecond Military Medical UniversityShanghaiP. R. China
| | - Si Fang
- Tongcheng Hospital of Traditional Chinese MedicineAnhuiP. R. China
| | - Xiaobin Mei
- Changhai HospitalSecond Military Medical UniversityShanghaiP. R. China
| | - Zhen Zhao
- School of Pharmacy and Minhang HospitalShanghai Engineering Research Center of ImmunotherapeuticsFudan UniversityShanghaiP. R. China
| | - Dianwen Ju
- School of Pharmacy and Minhang HospitalShanghai Engineering Research Center of ImmunotherapeuticsFudan UniversityShanghaiP. R. China
| |
Collapse
|
29
|
Shen Y, Chen W, Han L, Bian Q, Fan J, Cao Z, Jin X, Ding T, Xian Z, Guo Z, Zhang W, Ju D, Mei X. VEGF-B antibody and interleukin-22 fusion protein ameliorates diabetic nephropathy through inhibiting lipid accumulation and inflammatory responses. Acta Pharm Sin B 2021; 11:127-142. [PMID: 33532185 PMCID: PMC7838033 DOI: 10.1016/j.apsb.2020.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/13/2020] [Accepted: 07/02/2020] [Indexed: 01/17/2023] Open
Abstract
Diabetic nephropathy (DN) is considered the primary causes of end-stage renal disease (ESRD) and is related to abnormal glycolipid metabolism, hemodynamic abnormalities, oxidative stress and chronic inflammation. Antagonism of vascular endothelial growth factor B (VEGF-B) could efficiently ameliorate DN by reducing renal lipotoxicity. However, this pharmacological strategy is far from satisfactory, as it ignores numerous pathogenic factors, including anomalous reactive oxygen species (ROS) generation and inflammatory responses. We found that the upregulation of VEGF-B and downregulation of interleukin-22 (IL-22) among DN patients were significantly associated with the progression of DN. Thus, we hypothesized that a combination of a VEGF-B antibody and IL-22 could protect against DN not only by regulating glycolipid metabolism but also by reducing the accumulation of inflammation and ROS. To meet these challenges, a novel anti-VEGFB/IL22 fusion protein was developed, and its therapeutic effects on DN were further studied. We found that the anti-VEGFB/IL22 fusion protein reduced renal lipid accumulation by inhibiting the expression of fatty acid transport proteins and ameliorated inflammatory responses via the inhibition of renal oxidative stress and mitochondrial dysfunction. Moreover, the fusion protein could also improve diabetic kidney disease by increasing insulin sensitivity. Collectively, our findings indicate that the bifunctional VEGF-B antibody and IL-22 fusion protein could improve the progression of DN, which highlighted a novel therapeutic approach to DN.
Collapse
Key Words
- ACR, urine albumin-to-creatinine ratio
- ADFP, adipocyte differentiation-related protein
- AGEs, advanced glycation end products
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- BUN, blood urea nitrogen
- Ccr, creatinine clearance rate
- DN, diabetic nephropathy
- Diabetic nephropathy
- ECM, extracellular matrix
- ESRD, end-stage renal disease
- FA, fatty acid
- FATPs, fatty acid transport proteins
- Fusion protein
- GBM, glomerular basement membrane
- GSEA, gene set enrichment analysis
- H&E, hematoxylin & eosin
- HbA1c%, glycosylated hemoglobin
- IL-22, interleukin-22
- Interleukin-22
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- NAC, N-acetyl-l-cysteine
- NLRP3, NOD-like receptor family pyrin domain-containing protein 3
- NRP-1, neuropilin-1
- PAS, periodic acid-Schiff
- ROS, reactive oxygen species
- SDS-PAGE, SDS-polyacrylamide gel electrophoresis
- TEM, transmission electron microscopy
- VEGF-B, vascular endothelial growth factor B
- VEGFR, vascular endothelial growth factor receptor
- Vascular endothelial growth factor B
- eGFR, estimated glomerular filtration rate
- β2-MG, β2 microglobulin
Collapse
Affiliation(s)
- Yilan Shen
- Department of Nephrology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Wei Chen
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai 201203, China
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Lei Han
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai 201203, China
| | - Qi Bian
- Department of Nephrology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Jiajun Fan
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai 201203, China
| | - Zhonglian Cao
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai 201203, China
| | - Xin Jin
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai 201203, China
| | - Tao Ding
- Department of Nephrology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Zongshu Xian
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai 201203, China
| | - Zhiyong Guo
- Department of Nephrology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Wei Zhang
- Department of Nephrology, Shanghai Yangpu Hospital of TCM, Shanghai 200090, China
| | - Dianwen Ju
- Department of Biological Medicines, Fudan University School of Pharmacy, Shanghai 201203, China
- Corresponding authors. Tel.: +86 21 31161407 (Xiaobin Mei), +86 21 51980037 (Dianwen Ju).
| | - Xiaobin Mei
- Department of Nephrology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
- Corresponding authors. Tel.: +86 21 31161407 (Xiaobin Mei), +86 21 51980037 (Dianwen Ju).
| |
Collapse
|
30
|
Leonardi BF, Gosmann G, Zimmer AR. Modeling Diet-Induced Metabolic Syndrome in Rodents. Mol Nutr Food Res 2020; 64:e2000249. [PMID: 32978870 DOI: 10.1002/mnfr.202000249] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 08/24/2020] [Indexed: 12/17/2022]
Abstract
Standardized animal models represent one of the most valuable tools available to understand the mechanism underlying the metabolic syndrome (MetS) and to seek for new therapeutic strategies. However, there is considerable variability in the studies conducted with this essential purpose. This review presents an updated discussion of the most recent studies using diverse experimental conditions to induce MetS in rodents with unbalanced diets, discusses the key findings in metabolic outcomes, and critically evaluates what we have been learned from them and how to advance in the field. The study includes scientific reports sourced from the Web of Science and PubMed databases, published between January 2013 and June 2020, which used hypercaloric diets to induce metabolic disorders, and address the impact of the diet on metabolic parameters. The collected data are used as support to discuss variables such as sex, species, and age of the animals, the most favorable type of diet, and the ideal diet length to generate metabolic changes. The experimental characteristics propose herein improve the performance of a preclinical model that resembles the human MetS and will guide researchers to investigate new therapeutic alternatives with confidence and higher translational validity.
Collapse
Affiliation(s)
- Bianca F Leonardi
- Phytochemistry and Organic Synthesis Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), 2752 Ipiranga avenue, Porto Alegre, RS, 90610-000, Brazil
| | - Grace Gosmann
- Phytochemistry and Organic Synthesis Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), 2752 Ipiranga avenue, Porto Alegre, RS, 90610-000, Brazil
| | - Aline R Zimmer
- Phytochemistry and Organic Synthesis Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), 2752 Ipiranga avenue, Porto Alegre, RS, 90610-000, Brazil
| |
Collapse
|
31
|
Tao Y, Xu S, Wang J, Xu L, Zhang C, Chen K, Lian Z, Zhou J, Xie H, Zheng S, Xu X. Delivery of microRNA-33 Antagomirs by Mesoporous Silica Nanoparticles to Ameliorate Lipid Metabolic Disorders. Front Pharmacol 2020; 11:921. [PMID: 32848718 PMCID: PMC7419650 DOI: 10.3389/fphar.2020.00921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/05/2020] [Indexed: 12/17/2022] Open
Abstract
Lipid metabolic disorders have become a major global public health concern. Fatty liver and dyslipidemia are major manifestations of these disorders. Recently, MicroRNA-33 (miR-33), a post-transcriptional regulator of genes involved in cholesterol efflux and fatty acid oxidation, has been considered as a good therapeutic target for these disorders. However, the traditional methods of gene therapy impede their further clinical transformation into a mature treatment system. To counter this problem, in this study we used mesoporous silica nanoparticles (MSNs) as nanocarriers to deliver miR-33 antagomirs developing nanocomposites miR-MSNs. We observed that the hepatocellular uptake of miR-33 antagomirs increased by ∼5 times when they were delivered using miR-MSNs. The regulation effects of miR-MSNs on miR-33 and several genes involved in lipid metabolism were confirmed in L02 cells. In a high-fat diet fed mice, miR-33 intervention via miR-MSNs lowered the serum triglyceride levels remarkably by 18.9% and reduced hepatic steatosis. Thus, our results provide a proof-of-concept for a potential strategy to ameliorate lipid metabolic disorders.
Collapse
Affiliation(s)
- Yaoye Tao
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Lab of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Shengjun Xu
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Lab of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Jianguo Wang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Lab of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Li Xu
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Lab of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Chenzhi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Lab of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Kangchen Chen
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Lab of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Zhengxing Lian
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Lab of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Junbin Zhou
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Lab of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Haiyang Xie
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Lab of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Shusen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Lab of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Lab of Combined Multi-Organ Transplantation, Hangzhou, China
| |
Collapse
|
32
|
Wu Y, Min J, Ge C, Shu J, Tian D, Yuan Y, Zhou D. Interleukin 22 in Liver Injury, Inflammation and Cancer. Int J Biol Sci 2020; 16:2405-2413. [PMID: 32760208 PMCID: PMC7378634 DOI: 10.7150/ijbs.38925] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
Interleukin 22(IL-22), a member of the IL-10 cytokine family and is an emerging CD4+Th cytokine that plays an important role in anti-microbial defense, homeostasis and tissue repair. We are interested in IL-22 as it has the double function of suppressing or encouraging inflammation in various disease models including hepatic inflammation. As a survival factor for hepatocytes, IL-22 plays a protective role in many kinds of liver diseases, such as hepatitis, liver fibrosis, or hepatocellular carcinoma (HCC) by binding to the receptors IL-22R1 and IL-10R2. Overexpression of IL-22 reduces liver fibrosis by attenuating the activation of hepatic stellate cell (the main cell types involved in hepatic fibrosis), and down-regulating the levels of inflammatory cytokines. Administration of exogenous IL-22 increases the replication of hepatocytes by inhibiting cell apoptosis and promoting mitosis, ultimately plays a contributing role in liver regeneration. Furthermore, treatment with IL-22 activates hepatic signal transducer and activator of transcription 3 (STAT3), ameliorates hepatic oxidative stress and alcoholic fatty liver, effectively alleviate the liver damage caused by alcohol and toxicant. In conclusion, the hepatoprotective functions and liver regeneration promoting effect of IL-22 suggests the therapeutic potential of IL-22 in the treatment of human hepatic diseases.
Collapse
Affiliation(s)
- Ye Wu
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Jie Min
- The Second Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Chang Ge
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, 230022, China
| | - Jinping Shu
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Di Tian
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Yuan Yuan
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Dian Zhou
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| |
Collapse
|
33
|
Chen W, Zai W, Fan J, Zhang X, Zeng X, Luan J, Wang Y, Shen Y, Wang Z, Dai S, Fang S, Zhao Z, Ju D. Interleukin-22 drives a metabolic adaptive reprogramming to maintain mitochondrial fitness and treat liver injury. Theranostics 2020; 10:5879-5894. [PMID: 32483425 PMCID: PMC7254999 DOI: 10.7150/thno.43894] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/15/2020] [Indexed: 12/13/2022] Open
Abstract
Rationale: Interleukin 22 (IL-22) is an epithelial survival cytokine that is at present being explored as therapeutic agents for acute and chronic liver injury. However, its molecular basis of protective activities remains poorly understood. Methods: Here we demonstrate that IL-22 inhibits the deteriorating metabolic states induced by stimuli in hepatocytes. Utilizing cell biological, molecular, and biochemical approaches, we provide evidence that IL-22 promotes oxidative phosphorylation (OXPHOS) and glycolysis and regulates the metabolic reprogramming related transcriptional responses. Results: IL-22 controls metabolic regulators and enzymes activity through the induction of AMP-activated protein kinase (AMPK), AKT and mammalian target of rapamycin (mTOR), thereby ameliorating mitochondrial dysfunction. The upstream effector lncRNA H19 also participates in the controlling of these metabolic processes in hepatocytes. Importantly, amelioration of liver injury by IL-22 through activation of metabolism relevant signaling and regulation of mitochondrial function are further demonstrated in cisplatin-induced liver injury and steatohepatitis. Conclusions: Collectively, our results reveal a novel mechanism underscoring the regulation of metabolic profiles of hepatocytes by IL-22 during liver injury, which might provide useful insights from the bench to the clinic in treating and preventing liver diseases.
Collapse
Affiliation(s)
- Wei Chen
- Minhang Hospital & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto CA 94304, USA
| | - Wenjing Zai
- Minhang Hospital & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University
| | - Jiajun Fan
- Minhang Hospital & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Xuyao Zhang
- Minhang Hospital & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Xian Zeng
- Minhang Hospital & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Jingyun Luan
- Minhang Hospital & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Yichen Wang
- Minhang Hospital & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Yilan Shen
- Department of Nephrology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Ziyu Wang
- Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai, China
| | - Shixuan Dai
- Minhang Hospital & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Si Fang
- Minhang Hospital & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
- Tongcheng Hospital of Traditional Chinese Medicine, Anhui 231400, P. R. China
| | - Zhen Zhao
- Minhang Hospital & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Dianwen Ju
- Minhang Hospital & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
34
|
Chen Y, Shan X, Luo C, He Z. Emerging nanoparticulate drug delivery systems
of metformin. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2020. [DOI: 10.1007/s40005-020-00480-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
35
|
Sabourian P, Ji J, Lotocki V, Moquin A, Hanna R, Frounchi M, Maysinger D, Kakkar A. Facile design of autogenous stimuli-responsive chitosan/hyaluronic acid nanoparticles for efficient small molecules to protein delivery. J Mater Chem B 2020; 8:7275-7287. [DOI: 10.1039/d0tb00772b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chitosan is functionalized with oxidative stress-sensitive thioketal entities in a one-pot methodology, and self-assembled into drugs or protein loaded dual stimuli responsive nanoparticles, which kill glioblastoma cells and increase nerve outgrowth.
Collapse
Affiliation(s)
- Parinaz Sabourian
- Department of Chemistry
- McGill University
- Montréal
- Canada
- Department of Chemical and Petroleum Engineering
| | - Jeff Ji
- Department of Pharmacology and Therapeutics
- McGill University
- Montréal
- Canada
| | | | - Alexandre Moquin
- Department of Chemistry
- McGill University
- Montréal
- Canada
- Department of Pharmacology and Therapeutics
| | - Ramez Hanna
- Department of Chemistry
- McGill University
- Montréal
- Canada
| | - Masoud Frounchi
- Department of Chemical and Petroleum Engineering
- Sharif University of Technology
- Tehran
- Iran
| | - Dusica Maysinger
- Department of Pharmacology and Therapeutics
- McGill University
- Montréal
- Canada
| | - Ashok Kakkar
- Department of Chemistry
- McGill University
- Montréal
- Canada
| |
Collapse
|