1
|
Das S, Rout Y, Poddar M, Alsaleh AZ, Misra R, D'Souza F. Novel Benzothiadiazole-based Donor-Acceptor Systems: Synthesis, Ultrafast Charge Transfer and Separation Dynamics. Chemistry 2024; 30:e202401959. [PMID: 38975973 DOI: 10.1002/chem.202401959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/09/2024]
Abstract
Near-infrared (NIR) absorbing electron donor-acceptor (D-A) chromophores have been at the forefront of current energy research owing to their facile charge transfer (CT) characteristics, which are primitive for photovoltaic applications. Herein, we have designed and developed a new set of benzothiadiazole (BTD)-based tetracyanobutadiene (TCBD)/dicyanoquinodimethane (DCNQ)-embedded multimodular D-A systems (BTD1-BTD6) and investigated their inherent photo-electro-chemical responses for the first time having identical and mixed terminal donors of variable donicity. Apart from poor luminescence, the appearance of broad low-lying optical transitions extendable even in the NIR region (>1000 nm), particularly in the presence of the auxiliary acceptors, are indicative of underlying nonradiative excited state processes leading to robust intramolecular CT and subsequent charge separation (CS) processes in these D-A constructs. While electrochemical studies identify the moieties involved in these photo-events, orbital delocalization and consequent evidence for the low-energy CT transitions have been achieved from theoretical calculations. Finally, the spectral and temporal responses of different photoproducts are obtained from femtosecond transient absorption studies, which, coupled with spectroelectrochemical data, identify broad NIR signals as CS states of the compounds. All the systems are found to be susceptible to ultrafast (~ps) CT and CS before carrier recombination to the ground state, which is, however, significantly facilitated after incorporation of the secondary TCBD/DCNQ acceptors, leading to faster and thus efficient CT processes, particularly in polar solvents. These findings, including facile CT/CS and broad and intense panchromatic absorption over a wide window of the electromagnetic spectrum, are likely to expand the horizons of BTD-based multimodular CT systems to revolutionize the realm of solar energy conversion and associated photonic applications.
Collapse
Affiliation(s)
- Somnath Das
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX, 76203-5017, USA
| | - Yogajivan Rout
- Department of Chemistry, Indian Institute of Technology-Indore, Indore, 453552, India
| | - Madhurima Poddar
- Department of Chemistry, Indian Institute of Technology-Indore, Indore, 453552, India
| | - Ajyal Z Alsaleh
- Chemistry Department, Science College, Imam Abdulrahman bin Faisal University, Dammam, 34212, Saudi Arabia
| | - Rajneesh Misra
- Department of Chemistry, Indian Institute of Technology-Indore, Indore, 453552, India
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX, 76203-5017, USA
| |
Collapse
|
2
|
Zhang X, Zhang J, Liu Z, Bi W, Shen J, Li G. Efficient Solvent-Free Synthesis of Indolizines Using CuBr Catalyst from Pyridine, Acetophenone, and Electron-Deficient Alkenes. Molecules 2024; 29:2061. [PMID: 38731552 PMCID: PMC11085153 DOI: 10.3390/molecules29092061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/20/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Herein, we have developed a new approach for the synthesis of indolizine via Cu-catalyzed reaction of pyridine, acetophenone, and nitroolefin under mild conditions in high yields. This reaction involved the formation of C-N and C-C bonds and new indolizine compounds with high stereoselectivity and excellent functional group tolerance.
Collapse
Affiliation(s)
- Xueguo Zhang
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China
| | | | | | | | | | - Guang Li
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
3
|
Bruggeman DF, Detz RJ, Mathew S, Reek JNH. Increased solar-driven chemical transformations through surface-induced benzoperylene aggregation in dye-sensitized photoanodes. Photochem Photobiol Sci 2024; 23:503-516. [PMID: 38363531 DOI: 10.1007/s43630-024-00534-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/04/2024] [Indexed: 02/17/2024]
Abstract
The impact of benzo[ghi]perylenetriimide (BPTI) dye aggregation on the performance of photoelectrochemical devices was explored, through imide-substitution with either alkyl (BPTI-A, 2-ethylpropyl) or bulky aryl (BPTI-B, 2,6-diisopropylphenyl) moieties, to, respectively, enable or suppress aggregation. While both dyes demonstrated similar monomeric optoelectronic properties in solution, adsorption onto mesoporous SnO2 revealed different behavior, with BPTI-A forming aggregates via π-stacking and BPTI-B demonstrating reduced aggregation in the solid state. BPTI photoanodes were tested in dye-sensitized solar cells (DSSCs) before application to dye-sensitized photoelectrochemical cells (DSPECs) for Br2 production (a strong oxidant) coupled to H2 generation (a solar fuel). BPTI-A demonstrated a twofold higher dye loading of the SnO2 surface than BPTI-B, resulting in a fivefold enhancement to both photocurrent and Br2 production. The enhanced output of the photoelectrochemical systems (with respect to dye loading) was attributed to both J- and H- aggregation phenomena in BPTI-A photoanodes that lead to improved light harvesting. Our investigation provides a strategy to exploit self-assembly via aggregation to improve molecular light-harvesting and charge separation properties that can be directly applied to dye-sensitized photoelectrochemical devices.
Collapse
Affiliation(s)
- Didjay F Bruggeman
- Homogeneous, Supramolecular and Bioinspired Catalysis, van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Remko J Detz
- Energy Transition Studies, Netherlands Organization for Applied Scientific Research (TNO), Radarweg 60, Amsterdam, The Netherlands
| | - Simon Mathew
- Homogeneous, Supramolecular and Bioinspired Catalysis, van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Joost N H Reek
- Homogeneous, Supramolecular and Bioinspired Catalysis, van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Wang J, Gadenne V, Patrone L, Raimundo JM. Self-Assembled Monolayers of Push-Pull Chromophores as Active Layers and Their Applications. Molecules 2024; 29:559. [PMID: 38338304 PMCID: PMC10856137 DOI: 10.3390/molecules29030559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
In recent decades, considerable attention has been focused on the design and development of surfaces with defined or tunable properties for a wide range of applications and fields. To this end, self-assembled monolayers (SAMs) of organic compounds offer a unique and straightforward route of modifying and engineering the surface properties of any substrate. Thus, alkane-based self-assembled monolayers constitute one of the most extensively studied organic thin-film nanomaterials, which have found wide applications in antifouling surfaces, the control of wettability or cell adhesion, sensors, optical devices, corrosion protection, and organic electronics, among many other applications, some of which have led to their technological transfer to industry. Nevertheless, recently, aromatic-based SAMs have gained importance as functional components, particularly in molecular electronics, bioelectronics, sensors, etc., due to their intrinsic electrical conductivity and optical properties, opening up new perspectives in these fields. However, some key issues affecting device performance still need to be resolved to ensure their full use and access to novel functionalities such as memory, sensors, or active layers in optoelectronic devices. In this context, we will present herein recent advances in π-conjugated systems-based self-assembled monolayers (e.g., push-pull chromophores) as active layers and their applications.
Collapse
Affiliation(s)
- Junlong Wang
- Aix Marseille Univ, CNRS, CINaM, AMUTech, 13288 Marseille, France;
- ISEN, Université de Toulon, Aix Marseille Univ, CNRS, IM2NP, AMUtech, 83041 Toulon ou Marseille, France;
| | - Virginie Gadenne
- ISEN, Université de Toulon, Aix Marseille Univ, CNRS, IM2NP, AMUtech, 83041 Toulon ou Marseille, France;
| | - Lionel Patrone
- ISEN, Université de Toulon, Aix Marseille Univ, CNRS, IM2NP, AMUtech, 83041 Toulon ou Marseille, France;
| | | |
Collapse
|
5
|
Fan X, Ouyang X, Zhou Z, Zhang Z, Zhu X, Liao Y, Wei Z, Xi B, Tang L. A highly selective self-powered sensor based on the upconversion nanoparticles/CdS nanospheres for chlorpyrifos detection. Biosens Bioelectron 2023; 237:115475. [PMID: 37390639 DOI: 10.1016/j.bios.2023.115475] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 07/02/2023]
Abstract
Light sources are crucial for photoelectrochemical (PEC) self-powered sensing, where visible light is widely used. However, due to its high energy, it has some downsides as an irradiation source for overall system, so it is urgent to achieve effective near-infrared (NIR) light absorption because it makes up a significant portion of the solar spectrum. Herein, up-conversion nanoparticles (UCNPs) that could increase the energy of low-energy radiation were combined with semiconductor CdS as the photoactive material (UCNPs/CdS), which broadens the response range of solar spectrum. The NIR light-excited self-powered sensor could be produced via oxidizing H2O at photoanode and lowering dissolved oxygen at cathode under the NIR light without external voltage. Meanwhile, molecularly imprinted polymer (MIP) was added to photoanode as a recognition element to increase the sensor's selectivity. The open-circuit voltage of the self-powered sensor grew linearly as chlorpyrifos concentration climbed from 0.01 to 100 ng mL-1, showing good selectivity as well as reproducibility. This work provides valuable basis for the preparation of efficient and practical PEC sensor with NIR light response.
Collapse
Affiliation(s)
- Xinya Fan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Xilian Ouyang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Zheping Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Ziling Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Xu Zhu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Yibo Liao
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Zimin Wei
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Beidou Xi
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China.
| |
Collapse
|
6
|
Sun L, Chen Y, Sun M, Zheng Y. Organic Solar Cells: Physical Principle and Recent Advances. Chem Asian J 2023; 18:e202300006. [PMID: 36594570 DOI: 10.1002/asia.202300006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/04/2023]
Abstract
Organic solar cells (OSC) based on organic semiconductor materials that convert solar energy into electric energy have been constantly developing at present, and also an effective way to solve the energy crisis and reduce carbon emissions. In the past several decades, efforts have been made to improve the power conversion efficiency (PCE) of OSCs. During this period, a variety of structural and material forms of OSCs have evolved. Commercializing OSCs, extending their service life and exploring their future development are promising but challenging. In this review, we first briefly introduce the development of OSCs and then summarize and analyze the working principle, performance parameters, and structural features of OSCs. Finally, we highlight some breakthrough related to OSCs in detail.
Collapse
Affiliation(s)
- Lichun Sun
- School of Physics and Electronic Engineering, Mudanjiang Normal University, Mudanjiang, 157011, P. R. China
| | - Yichuan Chen
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R China
| | - Mengtao Sun
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R China
| | - Youjin Zheng
- School of Physics and Electronic Engineering, Mudanjiang Normal University, Mudanjiang, 157011, P. R. China
| |
Collapse
|
7
|
Unexpected Decarbonylation of Acylethynylpyrroles under the Action of Cyanomethyl Carbanion: A Robust Access to Ethynylpyrroles. Molecules 2023; 28:molecules28031389. [PMID: 36771055 PMCID: PMC9919934 DOI: 10.3390/molecules28031389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
It has been found that the addition of CH2CN- anion to the carbonyl group of acylethynylpyrroles, generated from acetonitrile and t-BuOK, results in the formation of acetylenic alcohols, which undergo unexpectedly easy (room temperature) decomposition to ethynylpyrroles and cyanomethylphenylketones (retro-Favorsky reaction). This finding allows a robust synthesis of ethynylpyrroles in up to 95% yields to be developed. Since acylethynylpyrroles became available, the strategy thus found makes ethynylpyrroles more accessible than earlier. The quantum-chemical calculations (B2PLYP/6-311G**//B3LYP/6-311G**+C-PCM/acetonitrile) confirm the thermodynamic preference of the decomposition of the intermediate acetylenic alcohols to free ethynylpyrroles rather than their potassium derivatives.
Collapse
|
8
|
Jadhav AP, Singh AK, Maibam A, Krishnamurty S, Krishnamoorthy K, Nithyanandhan J. D-A-D-based Unsymmetrical Thiosquaraine Dye for the Dye-Sensitized Solar Cells †. Photochem Photobiol 2022; 99:529-537. [PMID: 36582053 DOI: 10.1111/php.13769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022]
Abstract
In dye-sensitized solar cell, modulating the electronic properties of the sensitizer by varying the donor, π-spacer, acceptor and anchoring groups help optimizing the structure of the dye for better device performance. Here, a donor-acceptor-donor-based unsymmetrical thiosquaraine sensitizer (SQ5S) has been designed and synthesized. Photophysical, electrochemical, theoretical and photovoltaic characterizations of SQ5S dye have been compared with its oxygen analog, SQ5. The incorporation of the sulfur atom in the acceptor unit of SQ5S dye showed an intense peak at 688 nm, which was 38 nm of red-shifted and showed the panchromatic light harvesting response with the onset of 850 nm compared with SQ5 dye. The LUMO and HOMO energy levels are well aligned with the conduction band of TiO2 and the redox potential of electrolyte for the charge injection and the dye-regeneration processes, respectively. Photovoltaic efficiency of 1.51% (VOC 610 mV, JSC 3.07 mA cm-2 , ff 81%) has been achieved for SQ5S dye, whereas SQ5 showed the device performance of 5.43% (VOC 723 mV, JSC 9.3 mA cm-2 , ff 80%). The decreased device performance for the dye SQ5S has been attributed to the favorable intersystem crossing process associated with the photoexcited SQ5S that reduces the driving force for the charge injection process.
Collapse
Affiliation(s)
- Avinash P Jadhav
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory and CSIR-Network of Institutes for Solar Energy, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ambarish Kumar Singh
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory and CSIR-Network of Institutes for Solar Energy, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ashakiran Maibam
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory and CSIR-Network of Institutes for Solar Energy, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sailaja Krishnamurty
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory and CSIR-Network of Institutes for Solar Energy, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kothandam Krishnamoorthy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.,Polymer Science and Engineering Division, CSIR-National Chemical Laboratory and CSIR-Network of Institutes for Solar Energy, Pune, India
| | - Jayaraj Nithyanandhan
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory and CSIR-Network of Institutes for Solar Energy, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
9
|
Molecular design of benzo[c][1,2,5]thiadiazole or thieno[3,4-d]pyridazine-based auxiliary acceptors through different anchoring groups in D-π-A-A framework: A DFT/TD-DFT study. J Mol Graph Model 2022; 113:108148. [DOI: 10.1016/j.jmgm.2022.108148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/17/2022] [Accepted: 02/02/2022] [Indexed: 11/24/2022]
|
10
|
Kim T, Kim J. Color-Tunable Indolizine-Based Fluorophores and Fluorescent pH Sensor. Molecules 2021; 27:12. [PMID: 35011241 PMCID: PMC8746752 DOI: 10.3390/molecules27010012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/03/2022] Open
Abstract
A new fluorescent indolizine-based scaffold was developed using a straightforward synthetic scheme starting from a pyrrole ring. In this fluorescent system, an N,N-dimethylamino group in the aryl ring at the C-3 position of indolizine acted as an electron donor and played a crucial role in inducing a red shift in the emission wavelength based on the ICT process. Moreover, various electron-withdrawing groups, such as acetyl and aldehyde, were introduced at the C-7 position of indolizine, to tune and promote the red shift of the emission wavelength, resulting in a color range from blue to orange (462-580 nm). Furthermore, the ICT effect in indolizine fluorophores allowed the design and development of new fluorescent pH sensors of great potential in the field of fluorescence bioimaging and sensors.
Collapse
Affiliation(s)
- Taegwan Kim
- Department of Chemistry, Soongsil University, Seoul 06978, Korea;
| | - Jonghoon Kim
- Department of Chemistry, Soongsil University, Seoul 06978, Korea;
- Integrative Institute of Basic Science, Soongsil University, Seoul 06978, Korea
| |
Collapse
|
11
|
Jalihal A, Le T, Macchi S, Krehbiel H, Bashiru M, Forson M, Siraj N. Understanding of Förster Resonance Energy Transfer (FRET) in Ionic Materials. SUSTAINABLE CHEMISTRY 2021; 2:564-575. [PMID: 35350442 PMCID: PMC8958797 DOI: 10.3390/suschem2040031] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Herein, an ionic material (IM) with Förster Resonance Energy Transfer (FRET) characteristics is reported for the first time. The IM is designed by pairing a Nile Blue A cation (NBA+) with an anionic near-infrared (NIR) dye, IR820-, using a facile ion exchange reaction. These two dyes absorb at different wavelength regions. In addition, NBA+ fluorescence emission spectrum overlaps with IR820- absorption spectrum, which is one requirement for the occurrence of the FRET phenomenon. Therefore, the photophysical properties of the IM were studied in detail to investigate the FRET mechanism in IM for potential dye sensitized solar cell (DSSCs) application. Detailed examination of photophysical properties of parent compounds, a mixture of the parent compounds, and the IM revealed that the IM exhibits FRET characteristics, but not the mixture of two dyes. The presence of spectator counterion in the mixture hindered the FRET mechanism while in the IM, both dyes are in close proximity as an ion pair, thus exhibiting FRET. All FRET parameters such as spectral overlap integral, Förster distance, and FRET energy confirm the FRET characteristics of the IM. This article presents a simple synthesis of a compound with FRET properties which can be further used for a variety of applications.
Collapse
|
12
|
Muñoz-García AB, Benesperi I, Boschloo G, Concepcion JJ, Delcamp JH, Gibson EA, Meyer GJ, Pavone M, Pettersson H, Hagfeldt A, Freitag M. Dye-sensitized solar cells strike back. Chem Soc Rev 2021; 50:12450-12550. [PMID: 34590638 PMCID: PMC8591630 DOI: 10.1039/d0cs01336f] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Indexed: 12/28/2022]
Abstract
Dye-sensitized solar cells (DSCs) are celebrating their 30th birthday and they are attracting a wealth of research efforts aimed at unleashing their full potential. In recent years, DSCs and dye-sensitized photoelectrochemical cells (DSPECs) have experienced a renaissance as the best technology for several niche applications that take advantage of DSCs' unique combination of properties: at low cost, they are composed of non-toxic materials, are colorful, transparent, and very efficient in low light conditions. This review summarizes the advancements in the field over the last decade, encompassing all aspects of the DSC technology: theoretical studies, characterization techniques, materials, applications as solar cells and as drivers for the synthesis of solar fuels, and commercialization efforts from various companies.
Collapse
Affiliation(s)
- Ana Belén Muñoz-García
- Department of Physics "Ettore Pancini", University of Naples Federico II, 80126 Naples, Italy
| | - Iacopo Benesperi
- School of Natural and Environmental Science, Newcastle University, Bedson Building, NE1 7RU Newcastle upon Tyne, UK.
| | - Gerrit Boschloo
- Department of Chemistry, Ångström Laboratory, Uppsala University, P.O. Box 523, 751 20 Uppsala, Sweden.
| | - Javier J Concepcion
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Jared H Delcamp
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA
| | - Elizabeth A Gibson
- School of Natural and Environmental Science, Newcastle University, Bedson Building, NE1 7RU Newcastle upon Tyne, UK.
| | - Gerald J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Michele Pavone
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | | | - Anders Hagfeldt
- Department of Chemistry, Ångström Laboratory, Uppsala University, P.O. Box 523, 751 20 Uppsala, Sweden.
- University Management and Management Council, Vice Chancellor, Uppsala University, Segerstedthuset, 752 37 Uppsala, Sweden
| | - Marina Freitag
- School of Natural and Environmental Science, Newcastle University, Bedson Building, NE1 7RU Newcastle upon Tyne, UK.
| |
Collapse
|
13
|
Sun K, Xiao P, Dumur F, Lalevée J. Organic dye‐based photoinitiating systems for visible‐light‐induced photopolymerization. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210225] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ke Sun
- Université de Haute‐Alsace, CNRS IS2M UMR 7361 Mulhouse France
- Université de Strasbourg Strasbourg France
| | - Pu Xiao
- Research School of Chemistry Australian National University Canberra Australian Capital Territory Australia
| | - Frédéric Dumur
- Aix Marseille University, CNRS ICR UMR 7273 Marseille France
| | - Jacques Lalevée
- Université de Haute‐Alsace, CNRS IS2M UMR 7361 Mulhouse France
- Université de Strasbourg Strasbourg France
| |
Collapse
|
14
|
Liang Z, Choi HH, Luo X, Liu T, Abtahi A, Ramasamy US, Hitron JA, Baustert KN, Hempel JL, Boehm AM, Ansary A, Strachan DR, Mei J, Risko C, Podzorov V, Graham KR. n-type charge transport in heavily p-doped polymers. NATURE MATERIALS 2021; 20:518-524. [PMID: 33398117 DOI: 10.1038/s41563-020-00859-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 10/20/2020] [Indexed: 06/12/2023]
Abstract
It is commonly assumed that charge-carrier transport in doped π-conjugated polymers is dominated by one type of charge carrier, either holes or electrons, as determined by the chemistry of the dopant. Here, through Seebeck coefficient and Hall effect measurements, we show that mobile electrons contribute substantially to charge-carrier transport in π-conjugated polymers that are heavily p-doped with strong electron acceptors. Specifically, the Seebeck coefficient of several p-doped polymers changes sign from positive to negative as the concentration of the oxidizing agents FeCl3 or NOBF4 increase, and Hall effect measurements for the same p-doped polymers reveal that electrons become the dominant delocalized charge carriers. Ultraviolet and inverse photoelectron spectroscopy measurements show that doping with oxidizing agents results in elimination of the transport gap at high doping concentrations. This approach of heavy p-type doping is demonstrated to provide a promising route to high-performance n-type organic thermoelectric materials.
Collapse
Affiliation(s)
- Zhiming Liang
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Hyun Ho Choi
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey, USA
| | - Xuyi Luo
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Tuo Liu
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Ashkan Abtahi
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA
- Department of Physics & Astronomy, University of Kentucky, Lexington, Kentucky, USA
| | - Uma Shantini Ramasamy
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA
- Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky, USA
| | | | - Kyle N Baustert
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Jacob L Hempel
- Department of Physics & Astronomy, University of Kentucky, Lexington, Kentucky, USA
| | - Alex M Boehm
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Armin Ansary
- Department of Physics & Astronomy, University of Kentucky, Lexington, Kentucky, USA
| | - Douglas R Strachan
- Department of Physics & Astronomy, University of Kentucky, Lexington, Kentucky, USA
| | - Jianguo Mei
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | - Chad Risko
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA
- Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky, USA
| | - Vitaly Podzorov
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey, USA
| | - Kenneth R Graham
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA.
| |
Collapse
|
15
|
Sun K, Liu S, Chen H, Morlet-Savary F, Graff B, Pigot C, Nechab M, Xiao P, Dumur F, Lalevée J. N-ethyl carbazole-1-allylidene-based push-pull dyes as efficient light harvesting photoinitiators for sunlight induced polymerization. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110331] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Chahal MK, Liyanage A, Alsaleh AZ, Karr PA, Hill JP, D'Souza F. Anion-enhanced excited state charge separation in a spiro-locked N-heterocycle-fused push-pull zinc porphyrin. Chem Sci 2021; 12:4925-4930. [PMID: 34168764 PMCID: PMC8179616 DOI: 10.1039/d1sc00038a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A new type of push–pull charge transfer complex, viz., a spiro-locked N-heterocycle-fused zinc porphyrin, ZnP-SQ, is shown to undergo excited state charge separation, which is enhanced by axial F− binding to the Zn center. In this push–pull design, the spiro-quinone group acts as a ‘lock’ promoting charge transfer interactions by constraining mutual coplanarity of the meso-phenol-substituted electron-rich Zn(ii) porphyrin and an electron deficient N-heterocycle, as revealed by electrochemical and computational studies. Spectroelectrochemical studies have been used to identify the spectra of charge separated states, and charge separation upon photoexcitation of ZnP has been unequivocally established by using transient absorption spectroscopic techniques covering wide spatial and temporal regions. Further, global target analysis of the transient data using GloTarAn software is used to obtain the lifetimes of different photochemical events and reveal that fluoride anion complexation stabilizes the charge separated state to an appreciable extent. A new type of push–pull charge transfer complex, viz., a spiro-locked N-heterocycle-fused zinc porphyrin, ZnP-SQ, is shown to undergo excited state charge separation, which is enhanced by axial F− binding to the Zn center.![]()
Collapse
Affiliation(s)
- Mandeep K Chahal
- International Centre for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) Namiki 1-1, Tsukuba Ibaraki 305-0044 Japan
| | - Anuradha Liyanage
- Department of Chemistry, University of North Texas 1155 Union Circle, #305070 Denton TX 76203-5017 USA
| | - Ajyal Z Alsaleh
- Department of Chemistry, University of North Texas 1155 Union Circle, #305070 Denton TX 76203-5017 USA
| | - Paul A Karr
- Department of Physical Sciences and Mathematics, Wayne State College 111 Main Street Wayne Nebraska 68787 USA
| | - Jonathan P Hill
- International Centre for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) Namiki 1-1, Tsukuba Ibaraki 305-0044 Japan
| | - Francis D'Souza
- Department of Chemistry, University of North Texas 1155 Union Circle, #305070 Denton TX 76203-5017 USA
| |
Collapse
|
17
|
Liu C, Yang W, Zhang Y, Jiang J. Quintuple-Decker Heteroleptic Phthalocyanine Heterometallic Samarium-Cadmium Complexes. Synthesis, Crystal Structure, Electrochemical Behavior, and Spectroscopic Investigation. Inorg Chem 2020; 59:17591-17599. [PMID: 33186030 DOI: 10.1021/acs.inorgchem.0c02816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A one-pot synthesis methodology was employed for obtaining diverse quintuple-decker phthalocyanine heterometallic lanthanide-cadmium complexes. By using the reaction of a double-decker homoleptic/heteroleptic phthalocyanine samarium compound with metal-free phthalocyanine and cadmium acetate in 1,2,4-trichlorobenzene at 200 °C, two novel quintuple-decker heteroleptic phthalocyanine heterometallic samarium-cadmium compounds, {(Pc)Sm(Pc)Cd(Pc*)Cd(Pc)Sm(Pc)} (1) and {(Pc)Sm(Pc*)Cd(Pc*)Cd(Pc*)Sm(Pc)} (2), together with one homoleptic phthalocyanine species, {(Pc*)Sm(Pc*)Cd(Pc*)Cd(Pc*)Sm(Pc*)} (3), were successfully fabricated, where H2Pc and H2Pc* represent unsubstituted phthalocyanine and 2,3,9,10,16,17,23,24-octakis(n-pentyloxy)phthalocyanine, respectively. Their quintuple-decker structures have been disclosed by various spectroscopic techniques and single-crystal X-ray diffraction. In addition, valence tautomerization of these three quintuple-decker complexes has been achieved by the addition of phenoxathiin hexachloroantimonate, giving three oxidized forms including one-, two-, and three-electron oxidation products. From 1 to 3 with the same oxidation state, the increased number of n-pentyloxy substituents of phthalocyanine ligands induces the blue shift of electronic absorption in the IR region due to the increased gap associated with the introduction of electron-donating substituents. In particular, the electronic absorption spectra of one- and two-electron oxidation products for 1 exhibit a rare band in the middle-IR region around 3000 nm, being one of the farthest electronic transitions captured by UV-vis spectroscopy. The three-electron oxidation product of 1 displays two bands at 2231 and 2740 nm, respectively. These data are well confirmed by IR spectroscopic data and theoretical calculation results.
Collapse
Affiliation(s)
- Chao Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wei Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuexing Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
18
|
Sokolova EA, Festa AA, Subramani K, Rybakov VB, Varlamov AV, Voskressensky LG, Van der Eycken EV. Microwave-Assisted Synthesis of Fluorescent Pyrido[2,3- b]indolizines from Alkylpyridinium Salts and Enaminones. Molecules 2020; 25:E4059. [PMID: 32899473 PMCID: PMC7570714 DOI: 10.3390/molecules25184059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/24/2020] [Accepted: 09/03/2020] [Indexed: 11/17/2022] Open
Abstract
Pyridinium ylides are well recognized as dipoles for cycloaddition reactions. In its turn, the microwave-assisted interaction of N-(cyanomethyl)-2-alkylpyridinium salts with enaminones unexpectedly proceeds as a domino sequence of cycloisomerization and cyclocondensation reactions, instead of a 1,3-dipolar cycloaddition. The reaction takes place in the presence of sodium acetate as base and employs benign solvents. The optical properties of the resulting pyrido[2,3-b]indolizines were studied, showing green light emission with high fluorescence quantum yields.
Collapse
Affiliation(s)
- Ekaterina A. Sokolova
- Organic Chemistry Department, Science Faculty, RUDN University, Miklukho-Maklaya st., 6, 117198 Moscow, Russia; (E.A.S.); (A.A.F.); (K.S.); (A.V.V.); (L.G.V.)
| | - Alexey A. Festa
- Organic Chemistry Department, Science Faculty, RUDN University, Miklukho-Maklaya st., 6, 117198 Moscow, Russia; (E.A.S.); (A.A.F.); (K.S.); (A.V.V.); (L.G.V.)
| | - Karthikeyan Subramani
- Organic Chemistry Department, Science Faculty, RUDN University, Miklukho-Maklaya st., 6, 117198 Moscow, Russia; (E.A.S.); (A.A.F.); (K.S.); (A.V.V.); (L.G.V.)
| | - Victor B. Rybakov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1–3, 119991 Moscow, Russia;
| | - Alexey V. Varlamov
- Organic Chemistry Department, Science Faculty, RUDN University, Miklukho-Maklaya st., 6, 117198 Moscow, Russia; (E.A.S.); (A.A.F.); (K.S.); (A.V.V.); (L.G.V.)
| | - Leonid G. Voskressensky
- Organic Chemistry Department, Science Faculty, RUDN University, Miklukho-Maklaya st., 6, 117198 Moscow, Russia; (E.A.S.); (A.A.F.); (K.S.); (A.V.V.); (L.G.V.)
| | - Erik V. Van der Eycken
- Organic Chemistry Department, Science Faculty, RUDN University, Miklukho-Maklaya st., 6, 117198 Moscow, Russia; (E.A.S.); (A.A.F.); (K.S.); (A.V.V.); (L.G.V.)
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001 Leuven, Belgium
| |
Collapse
|
19
|
Dong S, Fu X, Xu X. [3+2]‐Cycloaddition of Catalytically Generated Pyridinium Ylide: A General Access to Indolizine Derivatives. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000276] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Shanliang Dong
- College of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
| | - Xiang Fu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 China
| | - Xinfang Xu
- College of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 China
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug DiscoverySchool of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 China
| |
Collapse
|
20
|
Synthesis of novel viscosity sensitive pyrrolo-quinaldine based styryl dyes: Photophysical properties, electrochemical and DFT study. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112557] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Fan MF, Wang HM, Nan LJ, Wang AJ, Luo X, Yuan PX, Feng JJ. The mimetic assembly of cobalt prot-porphyrin with cyclodextrin dimer and its application for H2O2 detection. Anal Chim Acta 2020; 1097:78-84. [DOI: 10.1016/j.aca.2019.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/28/2019] [Accepted: 11/03/2019] [Indexed: 01/19/2023]
|
22
|
Dong S, Huang J, Sha H, Qiu L, Hu W, Xu X. Copper-catalyzed formal [1 + 2 + 2]-annulation of alkyne-tethered diazoacetates and pyridines: access to polycyclic indolizines. Org Biomol Chem 2020; 18:1926-1932. [DOI: 10.1039/d0ob00222d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A copper-catalyzed formal [1 + 2 + 2]-annulation of alkyne-tethered diazo compounds with pyridines, which affords polycyclic fused indolizine derivatives with broad substrate generality, has been reported.
Collapse
Affiliation(s)
- Shanliang Dong
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Jingjing Huang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Hongkai Sha
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Lihua Qiu
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Xinfang Xu
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- China
| |
Collapse
|
23
|
Venkatesan S, Lin WH, Teng H, Lee YL. High-Efficiency Bifacial Dye-Sensitized Solar Cells for Application under Indoor Light Conditions. ACS APPLIED MATERIALS & INTERFACES 2019; 11:42780-42789. [PMID: 31618583 DOI: 10.1021/acsami.9b14876] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
High-efficiency, stable bifacial dye-sensitized solar cells (DSSCs) are prepared for application under indoor light conditions. A 3-methoxypropionitrile solvent and cobalt redox couples are utilized to prepare the electrolytes. To obtain the best cell performance, the components of the DSSCs, including electrolytes, photoanodes, and counter electrodes (CEs), are regulated. The experimental results indicate that an electrolyte comprising a Co (II/III) ratio of 0.11/0.025 M, 1.2 M 4-tert-butylpyridine, Y123 dye, a CE with the platinum (Pt) layer thickness of 0.16 nm, and a photoanode with titanium dioxide (TiO2) layer thickness of 10 μm (6 μm main layer and 4 μm scattering layer) are the best conditions under which to achieve a high power conversion efficiency. It is also found that the best cells have high recombination resistance at the photoelectrode/electrolyte interface and low charge transfer resistance at the counter electrode/electrolyte interface, which contributes to, respectively, the high current density and open-circuit voltage of the corresponding cells. This DSSC can achieve efficiencies of 22.66%, 23.48%, and 24.52%, respectively, under T5 light illumination of 201.8, 607.8, and 999.6 lx. For fabrication of bifacial DSSCs with a semitransparent property, photoanodes without the TiO2 scattering layer, as well as an ultrathin Pt film, are utilized. The thicknesses of the TiO2 main layer and Pt film are reregulated. This shows that a Pt film with 0.55 nm thickness has both high transmittance (76.01%) and catalytic activity. By using an 8 μm TiO2 main layer, optimal cell efficiencies of 20.65% and 17.31% can be achieved, respectively, for the front-side and back-side illuminations of 200 lx T5 light. The cells are highly stable during a long-term performance test at both 35 and 50 °C.
Collapse
Affiliation(s)
| | - Wei-Hsun Lin
- Department of Chemical Engineering , National Cheng Kung University , Tainan 70101 , Taiwan, R.O.C
| | - Hsisheng Teng
- Department of Chemical Engineering , National Cheng Kung University , Tainan 70101 , Taiwan, R.O.C
- Hierarchical Green-Energy Materials (Hi-GEM) Research Center , National Cheng Kung University , Tainan 70101 , Taiwan, R.O.C
| | - Yuh-Lang Lee
- Department of Chemical Engineering , National Cheng Kung University , Tainan 70101 , Taiwan, R.O.C
- Hierarchical Green-Energy Materials (Hi-GEM) Research Center , National Cheng Kung University , Tainan 70101 , Taiwan, R.O.C
| |
Collapse
|
24
|
Rathnamalala CSL, Gayton JN, Dorris AL, Autry SA, Meador W, Hammer NI, Delcamp JH, Scott CN. Donor-Acceptor-Donor NIR II Emissive Rhodindolizine Dye Synthesized by C-H Bond Functionalization. J Org Chem 2019; 84:13186-13193. [PMID: 31479270 DOI: 10.1021/acs.joc.9b01860] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A NIR II emissive dye was synthesized by the C-H bond functionalization of 1-methyl-2-phenylindolizine with 3,6-dibromoxanthene. The rhodindolizine (RhIndz) spirolactone product was nonfluorescent; however, upon opening of the lactone ring by the formation of the ethyl ester derivative, the fluorophore absorbs at 920 nm and emits at 1092 nm, which are both in the NIR II region. In addition, 4-cyanophenyl- (CNRhIndz) and 4-methoxyphenyl-substituted rhodindolizine (MeORhIndz) could also be prepared by the C-H activation reaction.
Collapse
Affiliation(s)
- Chathuranga S L Rathnamalala
- Department of Chemistry, Hand Lab 1115 , Mississippi State University , Mississippi State , Mississippi 39762 , United States
| | - Jacqueline N Gayton
- Department of Chemistry and Biochemistry, Coulter Hall , University of Mississippi , University , Mississippi 38677 , United States
| | - Austin L Dorris
- Department of Chemistry and Biochemistry, Coulter Hall , University of Mississippi , University , Mississippi 38677 , United States
| | - Shane A Autry
- Department of Chemistry and Biochemistry, Coulter Hall , University of Mississippi , University , Mississippi 38677 , United States
| | - William Meador
- Department of Chemistry and Biochemistry, Coulter Hall , University of Mississippi , University , Mississippi 38677 , United States
| | - Nathan I Hammer
- Department of Chemistry and Biochemistry, Coulter Hall , University of Mississippi , University , Mississippi 38677 , United States
| | - Jared H Delcamp
- Department of Chemistry and Biochemistry, Coulter Hall , University of Mississippi , University , Mississippi 38677 , United States
| | - Colleen N Scott
- Department of Chemistry, Hand Lab 1115 , Mississippi State University , Mississippi State , Mississippi 39762 , United States
| |
Collapse
|
25
|
Sokolova EA, Festa AA, Golantsov NE, Lukonina NS, Ioffe IN, Varlamov AV, Voskressensky LG. Highly Fluorescent Pyrido[2,3-b
]indolizine-10-Carbonitriles through Pseudo Three-Component Reactions of N
-(Cyanomethyl)pyridinium Salts. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Ekaterina A. Sokolova
- Organic Chemistry Department; Science Faculty; Peoples' Friendship University of Russia (RUDN University); Miklukho-Maklaya st., 6 Moscow Russia
| | - Alexey A. Festa
- Organic Chemistry Department; Science Faculty; Peoples' Friendship University of Russia (RUDN University); Miklukho-Maklaya st., 6 Moscow Russia
| | - Nikita E. Golantsov
- Organic Chemistry Department; Science Faculty; Peoples' Friendship University of Russia (RUDN University); Miklukho-Maklaya st., 6 Moscow Russia
| | - Natalia S. Lukonina
- Department of Chemistry; Lomonosov Moscow State University; Leninskie Gory, 1-3 119991 Moscow Russia
| | - Ilya N. Ioffe
- Department of Chemistry; Lomonosov Moscow State University; Leninskie Gory, 1-3 119991 Moscow Russia
| | - Alexey V. Varlamov
- Organic Chemistry Department; Science Faculty; Peoples' Friendship University of Russia (RUDN University); Miklukho-Maklaya st., 6 Moscow Russia
| | - Leonid G. Voskressensky
- Organic Chemistry Department; Science Faculty; Peoples' Friendship University of Russia (RUDN University); Miklukho-Maklaya st., 6 Moscow Russia
| |
Collapse
|
26
|
Prakash K, Alsaleh AZ, Neeraj, Rathi P, Sharma A, Sankar M, D'Souza F. Synthesis, Spectral, Electrochemical and Photovoltaic Studies of A 3 B Porphyrinic Dyes having Peripheral Donors. Chemphyschem 2019; 20:2627-2634. [PMID: 31283866 DOI: 10.1002/cphc.201900604] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Indexed: 12/21/2022]
Abstract
Three new 'push-pull' A3 B Zn(II)porphyrin dyes having meso-pyrenyl, carbazolyl and phenothiazine as electron donors (A) and phenylcarboxylic acid as acceptor/anchor (B) were synthesized and utilized for DSSC application. The spectral and electrochemical redox properties of these new dyes were studied and compared with trans-A2 BC Zn(II) porphyrin dyes under similar experimental conditions. Red-shifted, broadened absorption peaks, lower fluorescence quantum yields, and shortened lifetimes were observed for the A3 B dyes as compared to zinc tetraphenylporphyrin control, ZnTPP. DFT optimized structures suggested effective charge separation related to enhanced charge injection efficiency. Driving force for electron injection (ΔGinj ) and dye regeneration (ΔGreg ) calculated from the spectral and electrochemical studies predicted facile electron injection from excited dye into semiconductor TiO2 in the constructed solar cells. Phenothiazine appended dye (KP-TriPTZ-Zn) showed the highest η value of 7.3 % for PCE with greater Jsc and Voc values due to its better light harvesting ability and reduced dye aggregation as compared to other dyes. Our studies demonstrate that the dyes having multiple electron-donating groups exhibit higher photon-to-current conversion efficiency.
Collapse
Affiliation(s)
- Kamal Prakash
- Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee -, 247667, India
| | - Ajyal Z Alsaleh
- Department of Chemistry, University of North Texas, Denton, TX, 76203-5017, USA
| | - Neeraj
- Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee -, 247667, India
| | - Pinki Rathi
- Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee -, 247667, India
| | - Ankit Sharma
- Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee -, 247667, India
| | - Muniappan Sankar
- Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee -, 247667, India
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, Denton, TX, 76203-5017, USA
| |
Collapse
|