1
|
Chao Y, Deng N, Zhou Z. A review of recent advances in metal-organic frameworks materials for zero-energy passive adsorption of chemical pollutants in indoor environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175926. [PMID: 39218109 DOI: 10.1016/j.scitotenv.2024.175926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 07/26/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Approximately 75-90 % of a person's lifetime is spent inside increasingly airtight buildings, where indoor pollutant levels typically exceed those outdoors. Poor indoor air quality can lead to allergies, respiratory diseases, and even cancer, and can also reduce the longevity of buildings. Passive adsorption materials play a crucial role in reducing indoor pollutants. This review highlights the latest advances in using Metal-organic Frameworks (MOFs) as passive adsorption materials for indoor pollutant capture and outlines the principles for developing high-performance adsorbents. It provides a comparative analysis of the development and performance of MOFs and composite adsorbent materials, highlighting their respective advantages and limitations in indoor pollutant adsorption technology. The article proposes strategies to address these challenges and offers a comprehensive review of current practical adsorption devices. Finally, aiming to advance commercialization of MOFs, the anticipated development of indoor pollutant adsorption technology is discussed in this paper.
Collapse
Affiliation(s)
- Yuechao Chao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Na Deng
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Zhihua Zhou
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
2
|
Zhu G, Wang C, Yang T, Gao N, Zhang Y, Zhu J, He X, Shao J, Li S, Zhang M, Zhang S, Gao J, Xu H. Bio-inspired gradient poly(lactic acid) nanofibers for active capturing of PM 0.3 and real-time respiratory monitoring. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134781. [PMID: 38824775 DOI: 10.1016/j.jhazmat.2024.134781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
The concept of bio-inspired gradient hierarchies, in which the well-defined MOF nanocrystals serve as active nanodielectrics to create electroactive shell at poly(lactic acid) (PLA) nanofibers, is introduced to promote the surface activity and electroactivity of PLA nanofibrous membranes (NFMs). The strategy enabled significant refinement of PLA nanofibers during coaxial electrospinning (∼40 % decline of fiber diameter), accompanied by remarkable increase of specific surface area (nearly 1.5 m2/g), porosity (approximately 85 %) and dielectric constants for the bio-inspired gradient PLA (BG-PLA) NFMs. It largely boosted initial electret properties and electrostatic adsorption capability of BG-PLA NFMs, as well as charge regeneration by TENG mechanisms even under high-humidity environment. The BG-PLA NFMs thus featured exceptionally high PM0.3 filtration efficiencies with well-controlled air resistance (94.3 %, 163.4 Pa, 85 L/min), in contrast to the relatively low efficiency of only 80.0 % for normal PLA. During the application evaluation of outdoor air purification, excellent long-term filtering performance was demonstrated for the BG-PLA for up to 4 h (nearly 98.0 %, 53 Pa), whereas normal PLA exhibited a gradually declined filtration efficiency and an increased pressure drop. Moreover, the BG-PLA NFMs of increased electroactivity were ready to generate tribo-output currents as driven by respiratory vibrations, which enabled real-time monitoring of electrophysiological signals. This bio-inspired gradient strategy opens up promising pathways to engender biodegradable nanofibers of high surface activity and electroactivity, which has significant implications for intelligent protective membranes.
Collapse
Affiliation(s)
- Guiying Zhu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Cunmin Wang
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Ting Yang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Na Gao
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Yifan Zhang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Jintuo Zhu
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China; Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| | - Xinjian He
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China; Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| | - Jiang Shao
- School of Architecture & Design, China University of Mining and Technology, Xuzhou 221116, China; Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| | - Shihang Li
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou 221008, China; Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| | - Mingming Zhang
- China Academy of Safety Science & Technology, 100012 Beijing, China
| | - Shenghui Zhang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Jiefeng Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 272100, China
| | - Huan Xu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China; College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, China; Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China.
| |
Collapse
|
3
|
Gong M, Li X, Hu L, Xu H, Yang C, Luo Y, Li S, Yin C, Gan M, Zhou L. Preparation and characterization of palladium nanoparticle-embedded carbon nanofiber membranes via electrospinning and carbonization strategy. RSC Adv 2024; 14:21623-21634. [PMID: 38979472 PMCID: PMC11228938 DOI: 10.1039/d4ra02023e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024] Open
Abstract
Carbon nanofiber membranes (CNMs) are expected to be used in many energy devices to improve the reaction rate. In this paper, CNMs embedded with palladium nanoparticles (Pd-CNMs) were prepared by electrospinning and carbonization using polyimide as the raw material. The effects of carbonization temperature, carbonization atmosphere, and heating rate on the physicochemical properties of the as-obtained Pd-CNMs were studied in detail. On this basis, the electrocatalytic performance of Pd-CNMs prepared under optimal conditions was characterized. The results showed that highly active zero-valent palladium nanoparticles with uniform particle size could be distributed on the surface of carbon nanofibers. Under vacuum conditions, at a carbonization temperature of 800 °C and a heating rate of 2 °C min-1, Pd-CNMs have lower H2O2 yield, lower Tafel slope (73.3 mV dec-1), higher electron transfer number (∼4), and superior durability, suggesting that Pd-CNMs exhibit excellent electrocatalytic activity for ORR in alkaline electrolyte. Therefore, polyimide-derived CNMs embedded with Pd nanoparticles are expected to become an excellent cathode catalyst layer for fuel cells.
Collapse
Affiliation(s)
- Man Gong
- Institute of Photovoltaics, Nanchang University Nanchang 330031 PR China
| | - Xiaomin Li
- Institute of Photovoltaics, Nanchang University Nanchang 330031 PR China
- Institute of New Materials Technology, NCU-GQC Institute of PV-HE-ES Technology Jiujiang 332020 PR China
| | - Lei Hu
- Institute of Photovoltaics, Nanchang University Nanchang 330031 PR China
| | - Hang Xu
- Institute of Photovoltaics, Nanchang University Nanchang 330031 PR China
| | - Changshu Yang
- Institute of Photovoltaics, Nanchang University Nanchang 330031 PR China
| | - Yuhan Luo
- Institute of Photovoltaics, Nanchang University Nanchang 330031 PR China
| | - Shu Li
- Institute of Photovoltaics, Nanchang University Nanchang 330031 PR China
| | - Chuanqiang Yin
- Institute of Photovoltaics, Nanchang University Nanchang 330031 PR China
- Institute of New Materials Technology, NCU-GQC Institute of PV-HE-ES Technology Jiujiang 332020 PR China
| | - Min Gan
- School of Physics and Materials Science, Nanchang University Nanchang 330031 PR China
| | - Lang Zhou
- Institute of Photovoltaics, Nanchang University Nanchang 330031 PR China
- Institute of New Materials Technology, NCU-GQC Institute of PV-HE-ES Technology Jiujiang 332020 PR China
| |
Collapse
|
4
|
Ranathunga K, Yapa P, Munaweera I, Weerasekera MM, Sandaruwan C. Preparation and characterization of Fe-ZnO cellulose-based nanofiber mats with self-sterilizing photocatalytic activity to enhance antibacterial applications under visible light. RSC Adv 2024; 14:18536-18552. [PMID: 38860242 PMCID: PMC11163953 DOI: 10.1039/d4ra03136a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024] Open
Abstract
Bacterial infections and antibiotic resistance have posed a severe threat to public health in recent years. One emerging and promising approach to this issue is the photocatalytic sterilization of nanohybrids. By utilizing ZnO photocatalytic sterilization, the drawbacks of conventional antibacterial treatments can be efficiently addressed. This study examines the enhanced photocatalytic sterilizing effectiveness of Fe-doped ZnO nanoparticles (Fe-ZnO nanohybrids) incorporated into polymer membranes that are active in visible light. Using the co-precipitation procedure, Fe-ZnO nanohybrids (Fe x Zn100-x O) have been generated using a range of dopant ratios (x = 0, 3, 5, 7, and 10) and characterized. The ability to scavenge free radicals was assessed and the IC50 value was calculated using the DPPH test at different catalytic concentrations. PXRD patterns showed a hexagonal wurtzite structure, which indicated that the particle size of the nanohybrid decreased as the dopant concentration rose. It was demonstrated by UV-vis diffuse reflectance experiments that the band gap of the nanohybrid decreased (redshifted) with Fe doping. The photocatalytic activity under sunlight increased steadily to 87% after Fe was added as a dopant. The Fe 5%-ZnO nanohybrid exhibited the lowest IC50 value of 81.44 μg mL-1 compared to ZnO, indicating the highest radical scavenging activity and the best antimicrobial activity. The Fe 5%-ZnO nanohybrid, which is proven to have the best photocatalytic sterilization activity, was then incorporated into a cellulose acetate polymer membrane by electrospinning. Disc diffusion assay confirmed the highest antimicrobial activity of the Fe 5%-ZnO nanohybrid incorporated electrospun membrane against Staphylococcus aureus (ATCC 25923), Streptococcus pneumoniae (ATCC 49619), Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27853), and Candida albicans (ATCC 10231) under visible light. As a result, Fe 5%-ZnO nanofiber membranes have the potential to be employed as self-sterilizing materials in healthcare settings.
Collapse
Affiliation(s)
- Kithmini Ranathunga
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura Nugegoda Sri Lanka
| | - Piumika Yapa
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura Nugegoda Sri Lanka
| | - Imalka Munaweera
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura Nugegoda Sri Lanka
| | - M M Weerasekera
- Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura Nugegoda Sri Lanka
| | - Chanaka Sandaruwan
- Sri Lanka Institute of Nanotechnology (SLINTEC) Homagama Sri Lanka
- Department of Aerospace Engineering, Khalifa University of Science and Technology 127788 Abu Dhabi United Arab Emirates
| |
Collapse
|
5
|
Zhu G, Li X, Li XP, Wang A, Li T, Zhu X, Tang D, Zhu J, He X, Li H, Li S, Zhang Y, Wang B, Zhang S, Xu H. Nanopatterned Electroactive Polylactic Acid Nanofibrous MOFilters for Efficient PM 0.3 Filtration and Bacterial Inhibition. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47145-47157. [PMID: 37783451 DOI: 10.1021/acsami.3c11941] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Biodegradable polylactic acid (PLA) nanofibrous membranes (NFMs) hold great potential to address the increasing airborne particulate matter (PM) and dramatic accumulation of plastic/microplastic pollution. However, the field of PLA NFM-based filters is still in its infancy, frequently dwarfed by the bottlenecks regarding relatively low surface activity, poor electroactivity, and insufficient PM capturing mechanisms. This effort discloses a microwave-assisted approach to minute-level synthesis of dielectric ZIF-8 nanocrystals with high specific surface area (over 1012 m2/g) and ultrasmall size (∼240 nm), which were intimately anchored onto PLA nanofibers (PLA@ZIF-8) by a combined "electrospinning-electrospray" strategy. This endowed the PLA@ZIF-8 NFMs with largely increased electroactivity in terms of elevated dielectric coefficient (an increase of 202%), surface potential (up to 5.8 kV), and triboelectric properties (output voltage of 30.8 V at 10 N, 0.5 Hz). Given the profound control over morphology and electroactivity, the PLA@ZIF-8 NFMs exhibited efficient filtration of PM0.3 (97.1%, 85 L/min) with a decreased air resistance (592.5 Pa), surpassing that of the pure PLA counterpart (88.4%, 650.9 Pa). This was essentially ascribed to realization of multiple filtration mechanisms for PLA@ZIF-8 NFMs, including enhanced physical interception, polar interactions, and electrostatic adsorption, and the unique self-charging function triggered by airflow vibrations. Moreover, perfect antibacterial performance was achieved for PLA@ZIF-8, showing ultrahigh inhibition rates of 99.9 and 100% against E. coli and S. aureus, respectively. The proposed hierarchical structuring strategy, offering the multifunction integration unattainable with conventional methods, may facilitate the development of biodegradable long-term air filters.
Collapse
Affiliation(s)
- Guiying Zhu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Xinyu Li
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Xiao-Peng Li
- State Key Laboratory of NBC Protection for Civilian, Institute of Chemical Defense, Beijing 100191, China
| | - An Wang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Tian Li
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Xuanjin Zhu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Daoyuan Tang
- Anhui Sentai WPC Group Share Co., Ltd., Guangde 242299, China
| | - Jintuo Zhu
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
- Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| | - Xinjian He
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
- Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| | - Heguo Li
- State Key Laboratory of NBC Protection for Civilian, Institute of Chemical Defense, Beijing 100191, China
| | - Shihang Li
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou 221008, China
- Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| | - Yong Zhang
- Anhui Sentai WPC Group Share Co., Ltd., Guangde 242299, China
| | - Bin Wang
- Anhui Sentai WPC Group Share Co., Ltd., Guangde 242299, China
| | - Shenghui Zhang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Huan Xu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
- Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| |
Collapse
|
6
|
Zhang J, Lu Q, Ni R, Shi Y, Duan S, Ma J, Hu Y, Hu W, Ke Q, Zhao Y. Spiral grass inspired eco-friendly zein fibrous membrane for multi-efficient air purification. Int J Biol Macromol 2023; 245:125512. [PMID: 37353121 DOI: 10.1016/j.ijbiomac.2023.125512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Air pollution, one of the severest threats to public health, may lead to cardiovascular and respiratory illnesses. In order to cope with the deteriorating air pollutant, there is an increasing demand for filters with high purification efficiency, but it's tough to strike a balance between efficiency and resistance. Fabricating an eco-friendly fibrous filter which can capture both PM2.5 and gaseous chemical hazards with high efficiency but under ultra-low resistance is a long-term challenge. Herein, inspired by the interesting ribbon shape of spiral grass, a green and robust 3D nonwoven membrane with controllable hierarchical structure made of self-curved zein nanofibers modified by zeolitic imidazolate framework-8 (ZIF-8) via bi-solvent electrospinning and fumigation welding method was fabricated. The obtained ZIF-8 modified zein membranes showed extraordinary overall performance with high PM2.5 removal efficiency (99.04 %) at a low stress drop (54.87 Pa), first-rate formaldehyde removal efficiency (98.8 %) and excellent photocatalytic antibacterial. In addition, the relatively weak mechanical properties of zein fibrous membranes have been improved via solvent fumigation welding of the joint zein fibers. This study provides a green and convenient insight to the manufacturing of environmentally-friendly zein fibrous membranes with high filtration efficiency, low air resistance and high formaldehyde removal for sustainable air remediation.
Collapse
Affiliation(s)
- Jiawen Zhang
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China; Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Qianzhi Lu
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China; Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Ruiyan Ni
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China; Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Yihan Shi
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China; Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Shuxia Duan
- Henan Key Laboratory of Medical and Protective Products, China
| | - Jiajia Ma
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China; Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Yong Hu
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China; Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Wenfeng Hu
- Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China; School of Fashion Engineering Central Laboratory, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Qinfei Ke
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yi Zhao
- Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China; Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University, Shanghai 201620, China.
| |
Collapse
|
7
|
Li N, Wu D, Xue Z, Shi D, Duan X, Zhang L, He J. Temperature-Dependent Mechanical Properties of a Metal-Organic Framework: Creep Behavior of a Zeolitic Imidazolate Framework-8 Single Crystal. J Phys Chem Lett 2023; 14:4342-4348. [PMID: 37134271 DOI: 10.1021/acs.jpclett.3c00544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Zeolite Imidazole Framework-8 (ZIF-8) with a robust structure and high thermal stability is a strong candidate to act as the catalyst matrix for various chemical applications, especially for those at higher temperatures, like hydrogenation. In this study, the time-dependent plasticity of a ZIF-8 single crystal was explored by a dynamic indentation technique to explore its mechanical stability at higher temperatures. The thermal dynamic parameters for the creep behaviors, like activation volume and activation energy, were determined, and possible mechanisms for the creep of ZIF-8 were then discussed. A small activation volume implies the localization of the thermo-activated events, while high activation energy, high stress exponent n, and weak dependence of the creep rate on temperature all favor pore collapse over volumetric diffusion as the creep mechanism.
Collapse
Affiliation(s)
- Na Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, Hubei 430070, People's Republic of China
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, People's Republic of China
| | - Dong Wu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, People's Republic of China
| | - Zixiao Xue
- Key Laboratory of Materials for High Power Lasers, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, People's Republic of China
| | - Da Shi
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Xing Duan
- Key Laboratory of Materials for High Power Lasers, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, People's Republic of China
- Center of Advanced Optoelectronic Materials and Devices, Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Long Zhang
- Key Laboratory of Materials for High Power Lasers, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, People's Republic of China
- Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, People's Republic of China
| | - Jin He
- Key Laboratory of Materials for High Power Lasers, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, People's Republic of China
- Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, People's Republic of China
| |
Collapse
|
8
|
Espinoza-Montero PJ, Montero-Jiménez M, Rojas-Quishpe S, Alcívar León CD, Heredia-Moya J, Rosero-Chanalata A, Orbea-Hinojosa C, Piñeiros JL. Nude and Modified Electrospun Nanofibers, Application to Air Purification. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13030593. [PMID: 36770554 PMCID: PMC9919942 DOI: 10.3390/nano13030593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 05/17/2023]
Abstract
Air transports several pollutants, including particulate matter (PM), which can produce cardiovascular and respiratory diseases. Thus, it is a challenge to control pollutant emissions before releasing them to the environment. Until now, filtration has been the most efficient processes for removing PM. Therefore, the electrospinning procedure has been applied to obtain membranes with a high filtration efficiency and low pressure drop. This review addressed the synthesis of polymers that are used for fabricating high-performance membranes by electrospinning to remove air pollutants. Then, the most influential parameters to produce electrospun membranes are indicated. The main results show that electrospun membranes are an excellent alternative to having air filters due to the versatility of the process, the capacity for controlling the fiber diameter, porosity, high filtration efficiency and low-pressure drop.
Collapse
Affiliation(s)
- Patricio J. Espinoza-Montero
- Escuela de Ciencia Químicas, Pontificia Universidad Católica del Ecuador, Quito 17012184, Ecuador
- Correspondence: ; Tel.: +593-2299-1700 (ext. 1929)
| | - Marjorie Montero-Jiménez
- Escuela de Ciencia Químicas, Pontificia Universidad Católica del Ecuador, Quito 17012184, Ecuador
| | - Stalin Rojas-Quishpe
- Facultad de Ciencias Químicas, Universidad Central del Ecuador, Quito 170521, Ecuador
| | | | - Jorge Heredia-Moya
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Alfredo Rosero-Chanalata
- Escuela de Ciencia Químicas, Pontificia Universidad Católica del Ecuador, Quito 17012184, Ecuador
- Facultad de Ciencias Químicas, Universidad Central del Ecuador, Quito 170521, Ecuador
| | - Carlos Orbea-Hinojosa
- Departamento de Ciencias Exactas, Universidad de Las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui S/N, Sangolquí P.O. Box 171-5-231B, Ecuador
| | - José Luis Piñeiros
- Escuela de Ciencia Químicas, Pontificia Universidad Católica del Ecuador, Quito 17012184, Ecuador
| |
Collapse
|
9
|
Fu W, Xu W, Yin K, Meng X, Wen Y, Peng L, Tang M, Sun L, Sun Y, Dai Y. Flexible-in-rigid polycrystalline titanium nanofibers: a toughening strategy from a macro-scale to a molecular-scale. MATERIALS HORIZONS 2023; 10:65-74. [PMID: 36477767 DOI: 10.1039/d2mh01255c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
TiO2 nanomaterials, especially one-dimensional TiO2 nanofibers fabricated by electrospinning, have received considerable attention in the past two decades, for a variety of basic applications. However, their safe use and easy recycling are still hampered by the inherently subpar mechanical performance. Here, we toughened polycrystalline TiO2 nanofibers by introducing Al3+-species at the very beginning of electrospinning. The resultant long-and-continuous TiO2 nanofibers achieved a Young's modulus of 653.8 MPa, which is ca. 25-fold higher than that of conventional TiO2 nanofibers. Within each nanofiber, amorphous Al2O3-based oxide effectively hindered the coalescence of TiO2 nanocrystals and potentially repaired the surface groves. The solid-state 17O-NMR spectra further revealed the toughening strategy on a molecular scale, where relatively flexible Ti-O-Al bonds replaced rigid O-Ti-O bonds at the interfaces of TiO2 and Al2O3. Moreover, the modified TiO2 nanofibers exhibited superb sinter-resistance, without cracking over 900 °C, which was dynamically monitored by TEM. Therefore, flexible-in-rigid TiO2 fibrous mats can be facilely folded into 3D sponges through origami art. As a potential showcase, the TiO2 sponges were demonstrated as a duarable and renewable filtrator with a high filtration efficiency of 99.97% toward PM2.5 and 99.99% toward PM10 after working for 300 min. This work provides a rational strategy to produce flexible oxide nanofibers and gives an in-depth understanding of the toughening mechanism from the macro-scale to the molecular-scale.
Collapse
Affiliation(s)
- Wanlin Fu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China.
| | - Wanlin Xu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China.
| | - Kuibo Yin
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
| | - Xiangyu Meng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China.
| | - Yujie Wen
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Luming Peng
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Mingyu Tang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China.
| | - Litao Sun
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, School of Electronic Science and Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China
| | - Yueming Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China.
| | - Yunqian Dai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China.
| |
Collapse
|
10
|
Abdulhamid MA, Muzamil K. Recent progress on electrospun nanofibrous polymer membranes for water and air purification: A review. CHEMOSPHERE 2023; 310:136886. [PMID: 36265699 DOI: 10.1016/j.chemosphere.2022.136886] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/29/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Developing new polymer membranes with excellent thermal, mechanical, and chemical stability has shown great potential for various environmental remediation applications such as wastewater treatment and air filtration. Polymer membranes have been widely investigated over the past years and utilized to overcome severe ecological issues. Membrane-based technologies play a critical role in water purification and air filtration with the ability to act efficiently and sustainably. Electrospun nanofiber membranes have displayed excellent performance in removing various contaminants from water, such as bacteria, dyes, heavy metals, and oil. These nanofibrous membranes have shown good potential to filter the air from tiny particles, volatile organic compounds, and toxic gases. The performance of polymer membranes can be enhanced by fine-tuning polymer structure, varying surface properties, and strengthening overall membrane porosity. In this review, we discuss the involvement of electrospun nanofibrous membranes in different environmental remediation applications. It further reviews the recent progress of polymer membrane development by utilizing nanoparticles and naturally occurring polymers.
Collapse
Affiliation(s)
- Mahmoud A Abdulhamid
- Sustainable and Resilient Materials Lab, Center for Integrative Petroleum Research (CIPR), College of Petroleum Engineering and Geosciences (CPG), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia.
| | - Khatri Muzamil
- Nano Fusion Technology Research Lab, Division of Frontier Fibers, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster of Cutting-Edge Research (ICCER), Shishu University, Tokida 3-15-1, Ueda, 386-8567, Japan
| |
Collapse
|
11
|
Atighi M, Hasanzadeh M, Sadatalhosseini AA, Azimzadeh HR. Metal–Organic Framework@Graphene Oxide Composite-Incorporated Polyacrylonitrile Nanofibrous Filters for Highly Efficient Particulate Matter Removal and Breath Monitoring. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Milad Atighi
- Department of Textile Engineering, Yazd University, P.O. Box 89195-741, Yazd89195-741, Iran
| | - Mahdi Hasanzadeh
- Department of Textile Engineering, Yazd University, P.O. Box 89195-741, Yazd89195-741, Iran
| | | | | |
Collapse
|
12
|
Bian Y, Zhang C, Wang H, Cao Q. Degradable Nanofiber for Eco-friendly Air Filtration: Progress and Perspectives. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Wu H, Hu Z, Geng Q, Chen Z, Song Y, Chu J, Ning X, Dong S, Yuan D. Facile preparation of CuMOF-modified multifunctional nanofiber membrane for high-efficient filtration/separation in complex environments. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Methylethynyl-Terminated Polyimide Nanofibrous Membranes: High-Temperature-Resistant Adhesives with Low-Temperature Processability. Polymers (Basel) 2022; 14:polym14194078. [PMID: 36236026 PMCID: PMC9571861 DOI: 10.3390/polym14194078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 11/17/2022] Open
Abstract
As an alternative to traditional riveting and welding materials, high-temperature-resistant adhesives, with their unique advantages, have been widely used in aviation, aerospace, and other fields. Among them, polyimide (PI) adhesives have been one of the most studied species both from basic and practical application aspects. However, in the main applications of solvent-type PI adhesives, pinholes or bubbles often exist in the cured PI adhesive layers due to the solvent volatilization and dehydration reaction, which directly affect the adhesive performance. To address this issue, electrospun PI nanofibrous membranes (NFMs) were employed as solvent-free or solvent-less adhesives for stainless steel in the current work. To enhance the adhesion of PI adhesives to the metal substrates, phenolphthalein groups and flexible ether bonds were introduced into the main chain of PIs via the monomers of 4,4′-oxydiphthalic anhydride (ODPA) and 3,3-bis[4-(4-aminophenoxy)phenyl] phthalide (BAPPT). At the same time, the methylethynyl group was used as the end-capping component, and the crosslinking reaction of the alkynyl group at high temperature further increased the adhesive strength of the PI adhesives. Three kinds of methylethynyl-terminated PI (METI) NFMs with the set molecular weights of 5000, 10,000, and 20,000 g/mol were first prepared via the one-step high-temperature polycondensation procedure. Then, the PI NFMs were fabricated via the standard electrospinning procedure from the soluble METI solutions. The afforded METI NFMs showed excellent melt-flowing behaviors at high temperature. Incorporation of the methylethynyl end-capping achieved a crosslinking reaction at 280−310 °C for the NFMs, which was about 70 °C lower than those of the phenylacetylene end-capping counterparts. Using the METI NFMs as adhesive, stainless steel adherends were successfully bonded, and the single-lap shear strength (LSS) was higher than 20.0 MPa at both room temperature (25 °C) and high temperature (200 °C).
Collapse
|
15
|
Couzon N, Dhainaut J, Campagne C, Royer S, Loiseau T, Volkringer C. Porous textile composites (PTCs) for the removal and the decomposition of chemical warfare agents (CWAs) – A review. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Xie J, Liu C, Gui H, Ding Y, Yao C, Zhang T. Nanofibrous, hierarchically porous poly(ether sulfone) xerogels templated from gel emulsions for removing organic vapors and particulate matters. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Metal-organic framework decorated polyimide nanofiber aerogels for efficient high-temperature particulate matter removal. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Bian Y, Niu Z, Wang S, Pan Y, Zhang L, Chen C. Removal of Size-Dependent Submicron Particles Using Metal-Organic Framework-Based Nanofiber Air Filters. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23570-23576. [PMID: 35579237 DOI: 10.1021/acsami.2c04970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Particulate matter poses a serious threat to human health. In particular, exposure to submicron particles can result in more severe health effects as they can deposit more deeply into human tissues. Metal-organic framework (MOF)-based nanofiber filters are regarded as promising candidates for efficient particle control. In this study, ZIF-8@PAN nanofiber filters that were developed via an in situ growth strategy were selected for the filtration of submicron particles. The addition of ZIF-8 more effectively enhanced the filtration of particles with smaller sizes. For the most penetrating particle size of around 0.3 μm, the MOF-based nanofiber filter exhibited an 8.9% increase in filtration efficiency compared with that of the pure nanofiber filter. Meanwhile, for particles with large aerodynamic diameters (in the range of 0.7-1 μm, for example), the role of ZIF-8 was negligible. This work provides important insights into the filtration performance of MOF-based nanofiber filters in capturing submicron particles and may aid in designing nanofiber filters for efficient control of particles.
Collapse
Affiliation(s)
- Ye Bian
- School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Zhuolun Niu
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T. 999077, Hong Kong SAR, China
| | - Shijie Wang
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050 Shanghai, China
| | - Yue Pan
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T. 999077, Hong Kong SAR, China
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T. 999077, Hong Kong SAR, China
| | - Chun Chen
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T. 999077, Hong Kong SAR, China
| |
Collapse
|
19
|
Advances in particulate matter filtration: Materials, performance, and application. GREEN ENERGY & ENVIRONMENT 2022. [PMCID: PMC10119549 DOI: 10.1016/j.gee.2022.03.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Air-borne pollutants in particulate matter (PM) form, produced either physically during industrial processes or certain biological routes, have posed a great threat to human health. Particularly during the current COVID-19 pandemic, effective filtration of the virus is an urgent matter worldwide. In this review, we first introduce some fundamentals about PM, including its source and classification, filtration mechanisms, and evaluation parameters. Advanced filtration materials and their functions are then summarized, among which polymers and MOFs are discussed in detail together with their antibacterial performance. The discussion on the application is divided into end-of-pipe treatment and source control. Finally, we conclude this review with our prospective view on future research in this area.
Collapse
|
20
|
Bansal P, Batra R, Yadav R, Purwar R. Electrospun polyacrylonitrile nanofibrous membranes supported with montmorillonite for efficient
PM2
.5 filtration and adsorption of Cu (
II
) ions. J Appl Polym Sci 2022. [DOI: 10.1002/app.51582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Priya Bansal
- Discipline of Polymer Science and Chemical Technology, Department of Applied Chemistry Delhi Technological University Delhi India
| | - Radhika Batra
- Discipline of Polymer Science and Chemical Technology, Department of Applied Chemistry Delhi Technological University Delhi India
| | - Reetu Yadav
- Discipline of Polymer Science and Chemical Technology, Department of Applied Chemistry Delhi Technological University Delhi India
| | - Roli Purwar
- Discipline of Polymer Science and Chemical Technology, Department of Applied Chemistry Delhi Technological University Delhi India
| |
Collapse
|
21
|
High-Performance photoinduced antimicrobial membrane toward efficient PM2.5-0.3 capture and Oil-Water separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Geng Q, Pu Y, Li Y, Yang X, Wu H, Dong S, Yuan D, Ning X. Multi-Component Nanofiber Composite Membrane Enabled High PM 0.3 Removal Efficiency and Oil/Water Separation Performance in Complex Environment. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126835. [PMID: 34391969 DOI: 10.1016/j.jhazmat.2021.126835] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/20/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Currently, industrial waste gas and oily wastewater are usually at high temperature and contain corrosive components (e.g., acid, alkali, oxidant, or high salt, etc.), presenting great challenges on filtration/separation materials. Here, a multi-purpose Poly(m-phenylene isophthalamide)/polyacrylonitrile/silica (PMIA/PAN/SiO2) nanofiber composite membrane with a high yield was prepared simply via electrospinning to satisfy the demands of air filtration and oil/water separation in complex environments. Under the synergy of PMIA, PAN and SiO2, the composite membrane possesses high PM0.3 removal capacity of 99.69%, robust purification ability against real smoke PM2.5, effective oil/water separation performance of > 99.6%, superior high temperature stability (about 250 °C) and excellent chemical resistance, showing the potential application in filtration/separation process under complex conditions. Moreover, the influence mechanism of SiO2 NPs on mechanical properties and filtration performance was systematically investigated through experiments and simulations, paving the way for future intensive research. This study provides an option for the facile and effective preparation of high-performance filtration/separation membranes applied in the field of dust filtration and oily wastewater separation, even in harsh environments.
Collapse
Affiliation(s)
- Qian Geng
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, PR China
| | - Yi Pu
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, PR China
| | - Yajian Li
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, PR China
| | - Xue Yang
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, PR China
| | - Huizhi Wu
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, PR China
| | - Senjie Dong
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, PR China.
| | - Ding Yuan
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, PR China.
| | - Xin Ning
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, PR China
| |
Collapse
|
23
|
Facemask Global Challenges: The Case of Effective Synthesis, Utilization, and Environmental Sustainability. SUSTAINABILITY 2022. [DOI: 10.3390/su14020737] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Coronavirus disease (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a rapidly spreading pandemic and is severely threatening public health globally. The human-to-human transmission route of SARS-CoV-2 is now well established. The reported clinical observations and symptoms of this infection in humans appear in the range between being asymptomatic and severe pneumonia. The virus can be transmitted through aerosols and droplets that are released into the air by a carrier, especially when the person coughs, sneezes, or talks forcefully in a closed environment. As the disease progresses, the use and handling of contaminated personal protective equipment and facemasks have become major issues with significant environmental risks. Therefore, providing an effective method for treating used/contaminated facemasks is crucial. In this paper, we review the environmental challenges and risks associated with the surge in facemask production. We also discuss facemasks and their materials as sources of microplastics and how disposal procedures can potentially lead to the contamination of water resources. We herein review the potential of developing nanomaterial-based antiviral and self-cleaning facemasks. This review discusses these challenges and concludes that the use of sustainable and alternative facemask materials is a promising and viable solution. In this context, it has become essential to address the emerging challenges by developing a new class of facemasks that are effective against the virus, while being biodegradable and sustainable. This paper represents the potentials of natural and/or biodegradable polymers for manufacturing facemasks, such as wood-based polymers, chitosan, and other biodegradable synthetic polymers for achieving sustainability goals during and after pandemics.
Collapse
|
24
|
Anchoring metal organic frameworks on nanofibers via etching-assisted strategy: Toward water-in-oil emulsion separation membranes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119812] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
25
|
Li Y, Wang D, Xu G, Qiao L, Li Y, Gong H, Shi L, Li D, Gao M, Liu G, Zhang J, Wei W, Zhang X, Liang X. ZIF-8/PI Nanofibrous Membranes With High-Temperature Resistance for Highly Efficient PM 0.3 Air Filtration and Oil-Water Separation. Front Chem 2021; 9:810861. [PMID: 34957057 PMCID: PMC8702621 DOI: 10.3389/fchem.2021.810861] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Air and water pollution poses a serious threat to public health and the ecological environment worldwide. Particulate matter (PM) is the major air pollutant, and its primary sources are processes that require high temperatures, such as fossil fuel combustion and vehicle exhaust. PM0.3 can penetrate and seriously harm the bronchi of the lungs, but it is difficult to remove PM0.3 due to its small size. Therefore, PM0.3 air filters that are highly efficient and resistant to high temperatures must be developed. Polyimide (PI) is an excellent polymer with a high temperature resistance and a good mechanical property. Air filters made from PI nanofibers have a high PM removal efficiency and a low air flow resistance. Herein, zeolitic imidazolate framework-8 (ZIF-8) was used to modify PI nanofibers to fabricate air filters with a high specific surface area and filtration efficiency. Compared with traditional PI membranes, the ZIF-8/PI multifunction nanofiber membranes achieved super-high filtration efficiency for ultrafine particles (PM0.3, 100%), and the pressure drop was only 63 Pa. The filtration mechanism of performance improvement caused by the introduction of ZIF-8/PI nanofiber membrane is explored. Moreover, the ZIF-8/PI nanofiber membranes exhibited excellent thermal stability (300 C) and efficient water–oil separation ability (99.85%).
Collapse
Affiliation(s)
- Yu Li
- Shandong Provincial Key Laboratory of High Strength Lightweight Metallic Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Dan Wang
- Shandong Provincial Key Laboratory of High Strength Lightweight Metallic Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Guanchen Xu
- Shandong Provincial Key Laboratory of High Strength Lightweight Metallic Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Li Qiao
- Shandong Provincial Key Laboratory of High Strength Lightweight Metallic Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yong Li
- Shandong Provincial Key Laboratory of High Strength Lightweight Metallic Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Hongyu Gong
- Shandong Provincial Key Laboratory of High Strength Lightweight Metallic Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Lei Shi
- Shandong Provincial Key Laboratory of High Strength Lightweight Metallic Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Dongwei Li
- Shandong Provincial Key Laboratory of High Strength Lightweight Metallic Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Meng Gao
- Shandong Provincial Key Laboratory of High Strength Lightweight Metallic Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Guoran Liu
- Shandong Provincial Key Laboratory of High Strength Lightweight Metallic Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jingjing Zhang
- Shandong Provincial Key Laboratory of High Strength Lightweight Metallic Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Wenhui Wei
- Shandong Provincial Key Laboratory of High Strength Lightweight Metallic Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xingshuang Zhang
- Shandong Provincial Key Laboratory of High Strength Lightweight Metallic Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xiu Liang
- Shandong Provincial Key Laboratory of High Strength Lightweight Metallic Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
26
|
Luo Y, Shen Z, Ma Z, Chen H, Wang X, Luo M, Wang R, Huang J. A Cleanable Self-Assembled Nano-SiO 2/(PTFE/PEI) n/PPS Composite Filter Medium for High-Efficiency Fine Particulate Filtration. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7853. [PMID: 34947457 PMCID: PMC8706235 DOI: 10.3390/ma14247853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022]
Abstract
A silicon dioxide/polytetrafluoroethylene/polyethyleneimine/polyphenylene sulfide (SiO2/PTFE/PEI/PPS) composite filter medium with three-dimensional network structures was fabricated by using PPS nonwoven as the substrate which was widely employed as a cleanable filter medium. The PTFE/PEI bilayers were firstly coated on the surfaces of the PPS fibers through the layer-by-layer self-assembly technique ten times, followed by the deposition of SiO2 nanoparticles, yielding the SiO2/(PTFE/PEI)10/PPS composite material. The contents of the PTFE component were easily controlled by adjusting the number of self-assembled PTFE/PEI bilayers. As compared with the pure PPS nonwoven, the obtained SiO2/(PTFE/PEI)10/PPS composite material exhibits better mechanical properties and enhanced wear, oxidation and heat resistance. When employed as a filter material, the SiO2/(PTFE/PEI)10/PPS composite filter medium exhibited excellent filtration performance for fine particulate. The PM2.5 (particulate matter less than 2.5 μm) filtration efficiency reached up to 99.55%. The superior filtration efficiency possessed by the SiO2/(PTFE/PEI)10/PPS composite filter medium was due to the uniformly modified PTFE layers, which played a dual role in fine particulate filtration. On the one hand, the PTFE layers not only increase the specific surface area and pore volume of the composite filter material but also narrow the spaces between the fibers, which were conducive to forming the dust cake quickly, resulting in intercepting the fine particles more efficiently than the pure PPS filter medium. On the other hand, the PTFE layers have low surface energy, which is in favor of the detachment of dust cake during pulse-jet cleaning, showing superior reusability. Thanks to the three-dimensional network structures of the SiO2/(PTFE/PEI)10/PPS composite filter medium, the pressure drop during filtration was low.
Collapse
Affiliation(s)
- Yan Luo
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China;
- Shaoxing Testing Institute of Quality and Technical Supervision, Market Supervision Administration of Shaoxing Municipahty, Shaoxing 312366, China; (Z.M.); (X.W.); (M.L.)
| | - Zhongyun Shen
- Shaoxing Testing Institute of Quality and Technical Supervision, Market Supervision Administration of Shaoxing Municipahty, Shaoxing 312366, China; (Z.M.); (X.W.); (M.L.)
| | - Zhihao Ma
- Shaoxing Testing Institute of Quality and Technical Supervision, Market Supervision Administration of Shaoxing Municipahty, Shaoxing 312366, China; (Z.M.); (X.W.); (M.L.)
| | - Hongfeng Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China;
- Shaoxing Testing Institute of Quality and Technical Supervision, Market Supervision Administration of Shaoxing Municipahty, Shaoxing 312366, China; (Z.M.); (X.W.); (M.L.)
| | - Xiaodong Wang
- Shaoxing Testing Institute of Quality and Technical Supervision, Market Supervision Administration of Shaoxing Municipahty, Shaoxing 312366, China; (Z.M.); (X.W.); (M.L.)
| | - Minger Luo
- Shaoxing Testing Institute of Quality and Technical Supervision, Market Supervision Administration of Shaoxing Municipahty, Shaoxing 312366, China; (Z.M.); (X.W.); (M.L.)
| | - Ran Wang
- CAM-China Productivity Center for Machinery, China Academy of Machinery Science and Technology, Beijing 100044, China;
| | - Jianguo Huang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China;
| |
Collapse
|
27
|
Xu W, Fu W, Meng X, Tang M, Huang C, Sun Y, Dai Y. One stone two birds: a sinter-resistant TiO 2 nanofiber-based unbroken mat enables PM capture and in situ elimination. NANOSCALE 2021; 13:20564-20575. [PMID: 34870662 DOI: 10.1039/d1nr06582c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Airborne particulate matter (PM) primarily resulting from fossil fuel burning is an increasingly global issue. In this work, an intrinsically fragile TiO2 nanofibrous mat was facilely engineered with good structural integrity, flexibility, foldability, and high-temperature resistance (~1300 °C), by suppressing the sintering (i.e., growth) of nanocrystallites in each single nanofiber. Such functionalization enables self-regenerative air filtration for PM capture and in situ catalytic elimination in a "one-stone-two-birds" approach. Finite element analysis simulation revealed the retained nanopores in each anti-sintering nanofiber could facilitate the air flow during filtration. Without any chemical or physical modification, this self-standing and lightweight (7.1 g m-2) fibrous mat showed 96.05% filtration efficiency for 3-5 μm NaCl particles, with a low pressure drop of only 18 Pa and high quality factor of 0.179 Pa-1 under an airflow velocity of 32 L min-1. By utilizing its photocatalytic attribute, the nanofibrous mat in situ eliminated the captured particles from incense burning under one Sun irradiation in 4 h, and thereby spontaneously regenerated in an easy manner. The straightforward grafting of Au nanoparticles onto nanofibers could enable a quick degradation toward cigarette smoke, mainly due to the photothermally elevated local temperature by Au around the reactive sites. The plasmonic fibrous mat kept a high and stable filtration efficiency of PM0.3, PM2.5, and PM10 over 98.62%, 99.76%, and 99.99% during an outdoor long-term filtration test for 12 h under sunlight irradiation (Nanjing, China, September, 26th, 2020, 7:30 to 19:30). This work provides a solution for solving the airborne pollution from its source, prolonging the lifetime of the filter, and avoiding the risk of producing secondary pollution.
Collapse
Affiliation(s)
- Wanlin Xu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, P. R. China.
| | - Wanlin Fu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, P. R. China.
| | - Xiangyu Meng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, P. R. China.
| | - Mingyu Tang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, P. R. China.
| | - Chaobo Huang
- Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, P. R. China
| | - Yueming Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, P. R. China.
| | - Yunqian Dai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, P. R. China.
| |
Collapse
|
28
|
Babaahmadi V, Amid H, Naeimirad M, Ramakrishna S. Biodegradable and multifunctional surgical face masks: A brief review on demands during COVID-19 pandemic, recent developments, and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149233. [PMID: 34329934 PMCID: PMC8302485 DOI: 10.1016/j.scitotenv.2021.149233] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 05/14/2023]
Abstract
Providing the greater public with the current coronavirus (SARS-CoV-2) vaccines is time-consuming and research-intensive; intermediately, some essential ways to reduce the transmission include social distancing, personal hygiene, testing, contact tracing, and universal masking. The data suggests that universal masking, especially using multilayer surgical face masks, offers a powerful efficacy for indoor places. These layers have different functions including antiviral/antibacterial, fluid barrier, particulate and bacterial filtration, and fit and comfort. However, universal masking poses a serious environmental threat since billions of them are disposed on a daily basis; the current coronavirus disease (COVID-19) has put such demands and consequences in perspective. This review focuses on surgical face mask structures and classifications, their impact on our environment, some of their desirable functionalities, and the recent developments around their biodegradability. The authors believe that this review provides an insight into the fabrication and deployment of effective surgical face masks, and it discusses the utilization of multifunctional structures along with biodegradable materials to deal with future demands in a more eco-friendly fashion.
Collapse
Affiliation(s)
- Vahid Babaahmadi
- Department of Materials and Textile Engineering, Faculty of Engineering, Razi University, Kermanshah 6714414971, Iran.
| | - Hooman Amid
- Saint-Gobain Inc., Research and Development Supervisor, Nonwoven Abrasives, McAllen, TX 78503, United States of America
| | - Mohammadreza Naeimirad
- Department of Materials and Textile Engineering, Faculty of Engineering, Razi University, Kermanshah 6714414971, Iran
| | - Seeram Ramakrishna
- Centre for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| |
Collapse
|
29
|
Guo Q, Li Y, Wei XY, Zheng LW, Li ZQ, Zhang KG, Yuan CG. Electrospun metal-organic frameworks hybrid nanofiber membrane for efficient removal of As(III) and As(V) from water. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112990. [PMID: 34798359 DOI: 10.1016/j.ecoenv.2021.112990] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/06/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Metal-organic frameworks (MOFs) have been widely applied for pollutants removal in water. However, the powdered MOFs are always suffered from aggregation during use and difficult collection after use. These problems discount their efficiency and inhibit their reusability. In this work, Zr-based MOF (UiO-66) was successfully imprisoned into a water-stable polyacrylonitrile (PAN) substrate by electrospinning. The containing UiO-66 hybrid membrane was confirmed by instrumental characterizations and its stability was also investigated by ICP-OES analysis. The obtained composite membrane can efficiently remove both arsenite (AsIII) and arsenate (AsV) from water under natural pH conditions. The adsorption kinetic fitted well with pseudo-second-order model and was dominated by chemisorption. Its adsorption isotherm can be described by Langmuir model. The maximal adsorption capacities of the hybrid membrane for As(V) and As(III) were 42.17 mg/g and 32.90 mg/g, respectively. Our results demonstrated that the MOFs-dispersed electrospun nanofiber membrane can greatly inherit the MOFs' original adsorption properties and exhibits good regenerability without loss of MOFs. Electrospinning is an effective and practical method for the preparation of MOFs hybrid membrane, which makes the composite very easy to be collected after use.
Collapse
Affiliation(s)
- Qi Guo
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China; Wetland Research Center for Baiyangdian Lake, North China Electric Power University, Baoding 071000, China
| | - Yuan Li
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China; Wetland Research Center for Baiyangdian Lake, North China Electric Power University, Baoding 071000, China
| | - Xiao-Yang Wei
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China; Wetland Research Center for Baiyangdian Lake, North China Electric Power University, Baoding 071000, China
| | - Li-Wei Zheng
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China; Wetland Research Center for Baiyangdian Lake, North China Electric Power University, Baoding 071000, China
| | - Zhi-Qiong Li
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China; Environmental Science Laboratory Centre, Department of Environmental Science, Jiamusi University, Jiamusi 154002, China
| | - Ke-Gang Zhang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China; Wetland Research Center for Baiyangdian Lake, North China Electric Power University, Baoding 071000, China
| | - Chun-Gang Yuan
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China; Wetland Research Center for Baiyangdian Lake, North China Electric Power University, Baoding 071000, China.
| |
Collapse
|
30
|
High-resolution microscopy assisted mechanical modeling of ultrafine electrospun network. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Li Y, Yuan D, Geng Q, Yang X, Wu H, Xie Y, Wang L, Ning X, Ming J. MOF-Embedded Bifunctional Composite Nanofiber Membranes with a Tunable Hierarchical Structure for High-Efficiency PM 0.3 Purification and Oil/Water Separation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39831-39843. [PMID: 34374511 DOI: 10.1021/acsami.1c09463] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Herein, a unique hierarchically structured composite nanofiber membrane, consisting of a zeolitic imidazolate framework-8-embedded polyethersulfone (PES@ZIF8) fiber layer and a polysulfonamide/polyethersulfone (PSA/PES) fiber layer, was successfully developed to cope with the complex environments during the actual filtration/separation process and overcome the conflict between high filtration efficiency and low air pressure resistance. Due to the advantages of the synergistic effect of multicomponents and the bi-layer hierarchical structure, the integrated PES@ZIF8-PSA/PES filter possesses an extremely high air filtration efficiency (up to 99.986%) under a very low pressure drop (only 15 Pa), superior PM0.3 purification capacity (close to 99.95%), long-term recycling ability for purifying real smoke PM2.5 from >800 to <10 μg/m3, extremely high temperature resistance (exceed 200 °C), flame retardancy, good chemical stability, satisfactory transmittance, and robust self-cleaning ability. Apart from these, it achieves effective separation of oil-water mixtures and oil-water emulsions as a result of selective wettability including hydrophobicity and superoleophilicity. In particular, the PES@ZIF8-PSA/PES nanofiber membranes maintain outstanding air filtration and oil/water separation properties under the high temperature or strong acid/alkali conditions. This special comprehensive performance gives the PES@ZIF8-PSA/PES-based filtration/separation membranes a wider application prospect ranging from environmental governance to individual protection and industrial security.
Collapse
Affiliation(s)
- Yajian Li
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Ding Yuan
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Qian Geng
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Xue Yang
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Huizhi Wu
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Yuze Xie
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Liming Wang
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Xin Ning
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Jinfa Ming
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles & Clothing, Qingdao University, Qingdao 266071, Shandong, P. R. China
| |
Collapse
|
32
|
Yoo DK, Woo HC, Jhung SH. Removal of Particulate Matters by Using Zeolitic Imidazolate Framework-8s (ZIF-8s) Coated onto Cotton: Effect of the Pore Size of ZIF-8s on Removal. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35214-35222. [PMID: 34275264 DOI: 10.1021/acsami.1c11796] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Removal of particulate matter (PM) like PM2.5 and PM10 from air was carried out with cotton coated with metal-organic frameworks (MOFs) having various pore sizes to understand the effect of the pore size of MOFs (here, ZIF-8s) on the performances in PM elimination. Both removal efficiency and quality factor, based on the unit surface area of ZIF-8s, in the filtration of PMs with ZIF-8/cotton did not rely considerably on the pore size of ZIF-8s. More importantly, small pores (even less than 0.5 nm) of conventional MOFs like ZIF-8 are more than enough in the elimination of large PMs like PM10 with a size of microns probably because small active sites (such as polar functional groups) on PMs can interact with porous materials having polarity. Additionally, electrostatic interactions between PMs and porous materials could be confirmed as a plausible mechanism for PM removal with ZIF-8/cotton.
Collapse
Affiliation(s)
- Dong Kyu Yoo
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ho Chul Woo
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sung Hwa Jhung
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
33
|
ZnO/Ag nanoparticles incorporated multifunctional parallel side by side nanofibers for air filtration with enhanced removing organic contaminants and antibacterial properties. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126564] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Qi HR, Shen DX, Jia YJ, An YC, Wu H, Wei XY, Zhang Y, Zhi XX, Liu JG. Preparation and Properties of Electrospun Phenylethynyl-Terminated Polyimide Nano-Fibrous Membranes with Potential Applications as Solvent-Free and High-Temperature Resistant Adhesives for Harsh Environments. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1525. [PMID: 34207676 PMCID: PMC8227671 DOI: 10.3390/nano11061525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022]
Abstract
High-temperature-resistant polymeric adhesives with high servicing temperatures and high adhesion strengths are highly desired in aerospace, aviation, microelectronic and other high-tech areas. The currently used high-temperature resistant polymeric adhesives, such as polyamic acid (PAA), are usually made from the high contents of solvents in the composition, which might cause adhesion failure due to the undesirable voids caused by the evaporation of the solvents. In the current work, electrospun preimidized polyimide (PI) nano-fibrous membranes (NFMs) were proposed to be used as solvent-free or solvent-less adhesives for stainless steel adhesion. In order to enhance the adhesion reliability of the PI NFMs, thermally crosslinkable phenylethynyl end-cappers were incorporated into the PIs derived from 3,3',4,4'-oxydiphthalic anhydride (ODPA) and 3,3-bis[4-(4-aminophenoxy)phenyl]phthalide (BAPPT). The derived phenylethynyl-terminated PETI-10K and PETI-20K with the controlled molecular weights of 10,000 g mol-1 and 20,000 g mol-1, respectively, showed good solubility in polar aprotic solvents, such as N-methyl-2-pyrrolidinone (NMP) and N,N-dimethylacetamide (DMAc). The PI NFMs were successfully fabricated by electrospinning with the PETI/DMAc solutions. The ultrafine PETI NFMs showed the average fiber diameters (dav) of 627 nm for PETI-10K 695 nm for PETI-20K, respectively. The PETI NFMs showed good thermal resistance, which is reflected in the glass transition temperatures (Tgs) above 270 °C. The PETI NFMs exhibited excellent thermoplasticity at elevated temperatures. The stainless steel adherends were successfully adhered using the PETI NFMs as the adhesives. The PI NFMs provided good adhesion to the stainless steels with the single lap shear strengths (LSS) higher than 20.0 MPa either at room temperature (25 °C) or at an elevated temperature (200 °C).
Collapse
Affiliation(s)
- Hao-ran Qi
- School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China; (H.-r.Q.); (Y.-j.J.); (Y.-c.A.); (H.W.); (X.-y.W.); (Y.Z.); (X.-x.Z.)
| | - Deng-xiong Shen
- Aerospace Research Institute of Materials& Processing Technology, Beijing 100076, China;
| | - Yan-jiang Jia
- School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China; (H.-r.Q.); (Y.-j.J.); (Y.-c.A.); (H.W.); (X.-y.W.); (Y.Z.); (X.-x.Z.)
| | - Yuan-cheng An
- School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China; (H.-r.Q.); (Y.-j.J.); (Y.-c.A.); (H.W.); (X.-y.W.); (Y.Z.); (X.-x.Z.)
| | - Hao Wu
- School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China; (H.-r.Q.); (Y.-j.J.); (Y.-c.A.); (H.W.); (X.-y.W.); (Y.Z.); (X.-x.Z.)
| | - Xin-ying Wei
- School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China; (H.-r.Q.); (Y.-j.J.); (Y.-c.A.); (H.W.); (X.-y.W.); (Y.Z.); (X.-x.Z.)
| | - Yan Zhang
- School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China; (H.-r.Q.); (Y.-j.J.); (Y.-c.A.); (H.W.); (X.-y.W.); (Y.Z.); (X.-x.Z.)
| | - Xin-xin Zhi
- School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China; (H.-r.Q.); (Y.-j.J.); (Y.-c.A.); (H.W.); (X.-y.W.); (Y.Z.); (X.-x.Z.)
| | - Jin-gang Liu
- School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China; (H.-r.Q.); (Y.-j.J.); (Y.-c.A.); (H.W.); (X.-y.W.); (Y.Z.); (X.-x.Z.)
| |
Collapse
|
35
|
Lyu C, Zhao P, Xie J, Dong S, Liu J, Rao C, Fu J. Electrospinning of Nanofibrous Membrane and Its Applications in Air Filtration: A Review. NANOMATERIALS 2021; 11:nano11061501. [PMID: 34204161 PMCID: PMC8228272 DOI: 10.3390/nano11061501] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023]
Abstract
Air pollution caused by particulate matter and toxic gases is violating individual’s health and safety. Nanofibrous membrane, being a reliable filter medium for particulate matter, has been extensively studied and applied in the field of air purification. Among the different fabrication approaches of nanofibrous membrane, electrospinning is considered as the most favorable and effective due to its advantages of controllable process, high production efficiency, and low cost. The electrospun membranes, made of different materials and unique structures, exhibit good PM2.5 filtration performance and multi-functions, and are used as masks and filters against PM2.5. This review presents a brief overview of electrospinning techniques, different structures of electrospun nanofibrous membranes, unique characteristics and functions of the fabricated membranes, and summarization of the outdoor and indoor applications in PM filtration.
Collapse
Affiliation(s)
- Chenxin Lyu
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China; (C.L.); (J.X.); (J.L.); (C.R.); (J.F.)
- Key Lab of 3D Printing Process and Equipment of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Peng Zhao
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China; (C.L.); (J.X.); (J.L.); (C.R.); (J.F.)
- Key Lab of 3D Printing Process and Equipment of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
- Correspondence:
| | - Jun Xie
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China; (C.L.); (J.X.); (J.L.); (C.R.); (J.F.)
- Key Lab of 3D Printing Process and Equipment of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Shuyuan Dong
- School of Mathematics, Jilin University, Changchun 130012, China;
| | - Jiawei Liu
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China; (C.L.); (J.X.); (J.L.); (C.R.); (J.F.)
- Key Lab of 3D Printing Process and Equipment of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Chengchen Rao
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China; (C.L.); (J.X.); (J.L.); (C.R.); (J.F.)
- Key Lab of 3D Printing Process and Equipment of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Jianzhong Fu
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China; (C.L.); (J.X.); (J.L.); (C.R.); (J.F.)
- Key Lab of 3D Printing Process and Equipment of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
36
|
Cui Y, Jiang Z, Xu C, Zhu M, Li W, Wang C. Preparation, filtration, and photocatalytic properties of PAN@g-C 3N 4 fibrous membranes by electrospinning. RSC Adv 2021; 11:19579-19586. [PMID: 35479234 PMCID: PMC9033595 DOI: 10.1039/d1ra03234h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 05/24/2021] [Indexed: 12/03/2022] Open
Abstract
Particulate matter and formaldehyde (HCHO) in closed indoor environments are seriously harmful to human health; hence, techniques for the improvement of air quality have attracted significant attention. PAN@g-C3N4 fibrous membranes with high efficiency, low resistance, and photocatalytic activity were prepared by electrospinning with polyacrylonitrile (PAN) and graphite carbon nitride (g-C3N4), followed by the high-temperature polycondensation of melamine. The addition of g-C3N4 to the nanofibrous membrane effectively improved the filtration efficiency of PM2.5. When the amount of added g-C3N4 was 3 wt%, the filtration efficiency of PM2.5 was 99.76 ± 0.3%, the filtration efficiency was stable for 24 hours at a continuous high concentration, and the filtration cycle stability was good. As a photocatalytic material, g-C3N4 causes the photocatalytic degradation of HCHO, and thus, significantly improves the filtration efficiency of the nanofibrous membrane to HCHO. When the amount of added g-C3N4 was 3 wt%, the filtration efficiency of the nanofibrous membrane to HCHO reached 78.0 ± 1.8%. The mechanism of catalytic degradation showed that the PAN fibres first adsorbed and intercepted the HCHO molecules. Under simulated sunlight irradiation, the photogenerated holes generated by the g-C3N4 nanosheets in the fibres oxidised and decomposed the adsorbed HCHO molecules. This study has broad application potential for high-efficiency filters to improve indoor air quality. Particulate matter and formaldehyde (HCHO) in closed indoor environments are seriously harmful to human health; hence, techniques for the improvement of air quality have attracted significant attention.![]()
Collapse
Affiliation(s)
- Yahui Cui
- College of Chemistry and Chemical Engineering, Research Center for Advanced Mirco- and Nano-Fabrication Materials, Shanghai University of Engineering Science Shanghai 201620 PR China
| | - Zhenlin Jiang
- College of Chemistry and Chemical Engineering, Research Center for Advanced Mirco- and Nano-Fabrication Materials, Shanghai University of Engineering Science Shanghai 201620 PR China .,Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology Changsha 410073 PR China.,Key Laboratory of High Performance Fibers & Products, Ministry of Education, Donghua University Shanghai 201620 PR China
| | - Chenxue Xu
- College of Chemistry and Chemical Engineering, Research Center for Advanced Mirco- and Nano-Fabrication Materials, Shanghai University of Engineering Science Shanghai 201620 PR China
| | - Min Zhu
- College of Chemistry and Chemical Engineering, Research Center for Advanced Mirco- and Nano-Fabrication Materials, Shanghai University of Engineering Science Shanghai 201620 PR China
| | - Weizhen Li
- College of Chemistry and Chemical Engineering, Research Center for Advanced Mirco- and Nano-Fabrication Materials, Shanghai University of Engineering Science Shanghai 201620 PR China
| | - Chaosheng Wang
- Key Laboratory of High Performance Fibers & Products, Ministry of Education, Donghua University Shanghai 201620 PR China
| |
Collapse
|
37
|
Yoo DK, Woo HC, Jhung SH. Ionic Salts@Metal-Organic Frameworks: Remarkable Component to Improve Performance of Fabric Filters to Remove Particulate Matters from Air. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23092-23102. [PMID: 33970607 DOI: 10.1021/acsami.1c02290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The elimination of particulate matters (PMs) from the air is very important for our sustainability. In this study, highly porous metal-organic frameworks (MOFs) like MIL-101 and UiO-67 were first modified, coated onto cotton, and applied in PM removal via filtration. Ionic salts (ISs) like CaCl2 and LiCl, after loading onto the MOFs, remarkably increased the PM removal efficiency. For example, CaCl2(20)@MIL-101/cotton shows 5.7 times the quality factor (QF, which is the most important parameter in filtration) of that of bare cotton and has the most competitive performances in PM removal (with the highest QF of 0.085 Pa-1) compared to any filter modified with porous materials or commercial filters. The noticeable performances of ISs@MOFs can be explained by the contribution of charge separation (that is effective for electrostatic interactions with PMs) of ISs and the high porosity of MOFs. Moreover, how MOFs with small pores of a few nanometers or less can remove large PMs with sizes in the micron range could be explained. Finally, loading ISs onto highly porous materials can be a promising strategy to improve the performances of filters to remove PMs from the air.
Collapse
Affiliation(s)
- Dong Kyu Yoo
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ho Chul Woo
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sung Hwa Jhung
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| |
Collapse
|
38
|
Karmacharya M, Kumar S, Gulenko O, Cho YK. Advances in Facemasks during the COVID-19 Pandemic Era. ACS APPLIED BIO MATERIALS 2021; 4:3891-3908. [PMID: 35006814 PMCID: PMC7839420 DOI: 10.1021/acsabm.0c01329] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022]
Abstract
The outbreak of coronavirus disease (COVID-19) has transformed the daily lifestyles of people worldwide. COVID-19 was characterized as a pandemic owing to its global spread, and technologies based on engineered materials that help to reduce the spread of infections have been reported. Nanotechnology present in materials with enhanced physicochemical properties and versatile chemical functionalization offer numerous ways to combat the disease. Facemasks are a reliable preventive measure, although they are not 100% effective against viral infections. Nonwoven materials, which are the key components of masks, act as barriers to the virus through filtration. However, there is a high chance of cross-infection because the used mask lacks virucidal properties and can become an additional source of infection. The combination of antiviral and filtration properties enhances the durability and reliability of masks, thereby reducing the likelihood of cross-infection. In this review, we focus on masks, from the manufacturing stage to practical applications, and their abilities to combat COVID-19. Herein, we discuss the impacts of masks on the environment, while considering safe industrial production in the future. Furthermore, we discuss available options for future research directions that do not negatively impact the environment.
Collapse
Affiliation(s)
- Mamata Karmacharya
- Center for Soft and Living Matter,
Institute for Basic Science (IBS), UNIST-gil 50, Ulsan 44919,
Republic of Korea
- Department of Chemical Engineering, Ulsan
National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan
44919, Republic of Korea
| | - Sumit Kumar
- Center for Soft and Living Matter,
Institute for Basic Science (IBS), UNIST-gil 50, Ulsan 44919,
Republic of Korea
- Department of Biomedical Engineering, Ulsan
National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan
44919, Republic of Korea
| | - Oleksandra Gulenko
- Center for Soft and Living Matter,
Institute for Basic Science (IBS), UNIST-gil 50, Ulsan 44919,
Republic of Korea
- Department of Biomedical Engineering, Ulsan
National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan
44919, Republic of Korea
| | - Yoon-Kyoung Cho
- Center for Soft and Living Matter,
Institute for Basic Science (IBS), UNIST-gil 50, Ulsan 44919,
Republic of Korea
- Department of Biomedical Engineering, Ulsan
National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan
44919, Republic of Korea
| |
Collapse
|
39
|
Archer B, Shaumbwa VR, Liu D, Li M, Iimaa T, Surenjav U. Nanofibrous Mats for Particulate Matter Filtration. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00829] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bright Archer
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, School of Environment Science & Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Veino Risto Shaumbwa
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, School of Environment Science & Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Dagang Liu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, School of Environment Science & Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Minyu Li
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology, School of Environment Science & Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Tuyajargal Iimaa
- National Center for Public Health, Ministry of Health, Ulaanbaatar, 13381, Mongolia
| | - Unursaikhan Surenjav
- National Center for Public Health, Ministry of Health, Ulaanbaatar, 13381, Mongolia
| |
Collapse
|
40
|
Woo HC, Yoo DK, Jhung SH. Particulate matters removal by using cotton coated with isomeric metal-organic frameworks (MOFs): Effect of voidage of MOFs on removal. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.12.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
41
|
Ryu U, Jee S, Rao PC, Shin J, Ko C, Yoon M, Park KS, Choi KM. Recent advances in process engineering and upcoming applications of metal-organic frameworks. Coord Chem Rev 2021; 426:213544. [PMID: 32981945 PMCID: PMC7500364 DOI: 10.1016/j.ccr.2020.213544] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/25/2022]
Abstract
Progress in metal-organic frameworks (MOFs) has advanced from fundamental chemistry to engineering processes and applications, resulting in new industrial opportunities. The unique features of MOFs, such as their permanent porosity, high surface area, and structural flexibility, continue to draw industrial interest outside the traditional MOF field, both to solve existing challenges and to create new businesses. In this context, diverse research has been directed toward commercializing MOFs, but such studies have been performed according to a variety of individual goals. Therefore, there have been limited opportunities to share the challenges, goals, and findings with most of the MOF field. In this review, we examine the issues and demands for MOF commercialization and investigate recent advances in MOF process engineering and applications. Specifically, we discuss the criteria for MOF commercialization from the views of stability, producibility, regulations, and production cost. This review covers progress in the mass production and formation of MOFs along with future applications that are not currently well known but have high potential for new areas of MOF commercialization.
Collapse
Key Words
- 2,4-DNT, 2,4-dinitrotoluene
- 4-NP, 4-nitrophenol
- ABS, acrylonitril-butadiene-styrene
- BET, Brunauer–Emmett–Teller
- CA, Cellulose-acetate
- CEES, 2-Chloroethyl ethyl sulfide
- CIE, Commission international ed’Eclairage
- CNF, Cellulose nanofiber
- CNG, compressed natural gas
- CVD, Chemical vapor deposition
- CWA, Chemical warfare agent
- CWC, Chemical weapons convention
- Commercialization
- DCP, Diethylchlorophosphonate
- DDM, n-dodecyl β-D-maltoside
- DEF, N,N-Diethyl formamide
- DFP, Diisopropyl fluorophosphate
- DFT, Density functional theory
- DIFP, Diisopropylfluorophosphate
- DLS, Dynamic light scattering
- DMA, Dimethylacetamide
- DMF, N,N-Dimethyl formamide
- DMMP, Dimethyl methylphosphonate
- DRIFTS, Diffuse reflectance infrared fourier transform spectroscopy
- Dispersion
- E. Coli, Escherichia coli
- ECS, Extrusion-crushing-sieving
- EDLCs, Electrochemical double-layer capacitors
- EPA, Environmental protection agency
- EXAFS, Extended X-ray absorption fine structure
- FT-IR, Fourier-transform infrared spectroscopy
- Fn, Fusobacterium nucleatum
- Future applications
- GC–MS, Gas chromatography–mass spectrometry
- GRGDS, Gly-Arg-Gly-Asp-Ser
- ILDs, Interlayer dielectrics
- ITRS, International technology roadmap for semiconductors
- LED, Light-emitting diode
- LIBs, Lithium-ion batteries
- LMOF, Luminescent metal–organic framework
- LOD, Limit of detection
- MB, methylene blue
- MBC, Minimum bactericidal concentration
- MIC, Minimum inhibitory concentration
- MIM, Metal-insulator–metal
- MMP, Methyl methylphosphonate
- MOF, metal–organic framework
- MOGs, Metal-organic gels
- MRA, mesoporous ρ-alumina
- MRSA, Methicillin-resistant staphylococcus aureus
- MVTR, Moisture vapor transport rate
- Mass production
- Metal–organic framework
- NMP, N-methyl-2-pyrrolidone
- NMR, Nuclear magnetic resonance
- PAN, Polyacrylonitrile
- PANI, Polyaniline
- PEG-CCM, polyethylene-glycol-modified mono-functional curcumin
- PEI, Polyetherimide
- PEMFCs, Proton-exchange membrane fuel cells
- PM, Particulate matter
- POM, Polyoxometalate
- PPC, Polypropylene/polycarbonate
- PS, Polystyrene
- PSM, Post-synthetic modification
- PVA, Polyvinyl alcohol
- PVB, Polyvinyl Butyral
- PVC, Polyvinylchloride
- PVF, Polyvinylformal
- PXRD, Powder x-ray diffraction
- Pg, Porphyromonas gingivalis
- RDX, 1,3,5-trinitro-1,3,5-triazinane
- ROS, Reactive oxygen species
- SALI, Solvent assisted ligand incorporation
- SBU, Secondary building unit
- SCXRD, Single-crystal X-ray diffraction
- SEM, Scanning electron microscope
- SIBs, Sodium-ion batteries
- SSEs, Solid-state electrolytes
- STY, space–time yield, grams of MOF per cubic meter of reaction mixture per day of synthesis
- Shaping
- TEA, Triethylamine
- TIPS-HoP, Thermally induced phase separation-hot pressing
- TNP, 2,4,6-trinitrophenol
- TNT, 2,4,6-trinitrotoluene
- UPS, Ultraviolet photoelectron spectroscopy
- VOC, Volatile organic compound
- WHO, World health organization
- WLED, White light emitting diode
- XPS, X-ray photoelectron spectroscopy
- ZIF, zeolitic imidazolate framework
- hXAS, Hard X-ray absorption spectroscopy
- sXAS, Soft X-ray absorption spectroscopy
Collapse
Affiliation(s)
- UnJin Ryu
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47 gil, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Seohyeon Jee
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47 gil, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Purna Chandra Rao
- Department of Chemistry & Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jeeyoung Shin
- Department of Mechanical Systems Engineering, Sookmyung Women's University, Seoul 04310, Republic of Korea
- Institute of Advanced Materials & Systems, Sookmyung Women's University, 100 Cheongpa-ro 47 gil, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Changhyun Ko
- Institute of Advanced Materials & Systems, Sookmyung Women's University, 100 Cheongpa-ro 47 gil, Yongsan-gu, Seoul 04310, Republic of Korea
- Department of Applied Physics, College of Engineering, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Minyoung Yoon
- Department of Chemistry & Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyo Sung Park
- Corporation R&D, Research Park, LG Chem, LG Science Park, 30, Magokjungang-10-Ro, Gangseo-Gu, Seoul, Republic of Korea
| | - Kyung Min Choi
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47 gil, Yongsan-gu, Seoul 04310, Republic of Korea
- Institute of Advanced Materials & Systems, Sookmyung Women's University, 100 Cheongpa-ro 47 gil, Yongsan-gu, Seoul 04310, Republic of Korea
| |
Collapse
|
42
|
Aghakhani A, Ghanbari A, Asl AH, Khanlarkhani A. Thin‐film solid‐phase microextraction of fluoxetine using a novel sorbent prepared by direct decoration of zeolitic imidazolate frameworks on the surface of polyacrylonitrile electrospun nanofibers. SEPARATION SCIENCE PLUS 2021. [DOI: 10.1002/sscp.202000071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ali Aghakhani
- Department of Food Science, Engineering and Technology University of Tehran Karaj Iran
- Materials and Energy Research Center Karaj Iran
| | - Ali Ghanbari
- Materials and Energy Research Center Karaj Iran
- School of Chemical, Gas and Petroleum Engineering Semnan University Semnan Iran
| | - Ali Haghighi Asl
- School of Chemical, Gas and Petroleum Engineering Semnan University Semnan Iran
| | | |
Collapse
|
43
|
Effective and facile fabrication of MOFs/cellulose composite paper for air hazards removal by virtue of in situ synthesis of MOFs/chitosan hydrogel. Carbohydr Polym 2020; 250:116955. [DOI: 10.1016/j.carbpol.2020.116955] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 08/07/2020] [Accepted: 08/13/2020] [Indexed: 12/23/2022]
|
44
|
Liao J, Zhang Y, Yang H. Hybrid membrane with controllable surface microroughness by micro-nano structure processing for diluted PM 2.5 capture. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115249. [PMID: 32738727 DOI: 10.1016/j.envpol.2020.115249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 07/04/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
Tremendous efforts have been devoted by researchers on air particulate matter pollution for the increasing harm, however, the Air Pollution Index (API) from "good" to "excellent" is something hard to achieve. Here, halloysite nanotubes/polyvinyl alcohol (HNTs/PVA) hybrid membrane with surface micro-nano structure processing using a one-step method for efficient PM2.5 capture was prepared. The filtration efficiency is 45.35% and the pressure drop is 41.57 Pa of composite membrane with a 60 wt% halloysite dosage. Specially, it resulted in a relatively safer PM index value of about 16.54, which tends to be more stringent than the restriction by Government of China (PM2.5 < 35 μg/m3). The filtration performance was mainly attributed to the controllable microroughness surface as well as the hierarchical structure constructed by one-step method, which has a functional role in obstruction and adsorption for diluted PM2.5. The methodology can employ halloysite onto various polymers, like polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), polyacrylonitrile (PAN) and also polycaprolactone (PCL) to yield hybrid membranes with the similar modification of surface and structure. Such versatile membrane filters can be purposely designed and scaled up, which endows the existing hybrid membrane with great potentials in both residential and public areas pollution control to achieve a healthier living environment.
Collapse
Affiliation(s)
- Juan Liao
- Hunan Key Lab of Mineral Materials and Application, Central South University, Changsha, 410083, China; School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Yi Zhang
- Hunan Key Lab of Mineral Materials and Application, Central South University, Changsha, 410083, China; School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China.
| | - Huaming Yang
- Hunan Key Lab of Mineral Materials and Application, Central South University, Changsha, 410083, China; School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China.
| |
Collapse
|
45
|
Li TT, Fan Y, Cen X, Wang Y, Shiu BC, Ren HT, Peng HK, Jiang Q, Lou CW, Lin JH. Polypropylene/Polyvinyl Alcohol/Metal-Organic Framework-Based Melt-Blown Electrospun Composite Membranes for Highly Efficient Filtration of PM 2.5. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2025. [PMID: 33066527 PMCID: PMC7602219 DOI: 10.3390/nano10102025] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/24/2022]
Abstract
Particulate matter 2.5 (PM2.5) has become a public hazard to people's lives and health. Traditional melt-blown membranes cannot filter dangerous particles due to their limited diameter, and ultra-fine electrospinning fibers are vulnerable to external forces. Therefore, creating highly efficient air filters by using an innovative technique and structure has become necessary. In this study, a combination of polypropylene (PP) melt-blown and polyvinyl alcohol (PVA)/zeolite imidazole frameworks-8 (ZIF-8) electrospinning technique is employed to construct a PP/PVA/ZIF-8 membrane with a hierarchical fibrous structure. The synergistic effect of hierarchical fibrous structure and ZIF-8 effectively captures PM2.5. The PP/PVA composite membrane loaded with 2.5% loading ZIF-8 has an average filtration efficacy reaching as high as 96.5% for PM2.5 and quality factor (Qf) of 0.099 Pa-1. The resultant membrane resists 33.34 N tensile strength and has a low pressure drop, excellent filtration efficiency, and mechanical strength. This work presents a facile preparation method that is suitable for mass production and the application of membranes to be used as air filters for highly efficient filtration of PM2.5.
Collapse
Affiliation(s)
- Ting-Ting Li
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textiles Science and Engineering, Tiangong University, Tianjin 300387, China; (T.-T.L.); (Y.F.); (X.C.); (Y.W.); (H.-T.R.); (H.-K.P.); (Q.J.)
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Yujia Fan
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textiles Science and Engineering, Tiangong University, Tianjin 300387, China; (T.-T.L.); (Y.F.); (X.C.); (Y.W.); (H.-T.R.); (H.-K.P.); (Q.J.)
| | - Xixi Cen
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textiles Science and Engineering, Tiangong University, Tianjin 300387, China; (T.-T.L.); (Y.F.); (X.C.); (Y.W.); (H.-T.R.); (H.-K.P.); (Q.J.)
| | - Yi Wang
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textiles Science and Engineering, Tiangong University, Tianjin 300387, China; (T.-T.L.); (Y.F.); (X.C.); (Y.W.); (H.-T.R.); (H.-K.P.); (Q.J.)
| | | | - Hai-Tao Ren
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textiles Science and Engineering, Tiangong University, Tianjin 300387, China; (T.-T.L.); (Y.F.); (X.C.); (Y.W.); (H.-T.R.); (H.-K.P.); (Q.J.)
| | - Hao-Kai Peng
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textiles Science and Engineering, Tiangong University, Tianjin 300387, China; (T.-T.L.); (Y.F.); (X.C.); (Y.W.); (H.-T.R.); (H.-K.P.); (Q.J.)
| | - Qian Jiang
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textiles Science and Engineering, Tiangong University, Tianjin 300387, China; (T.-T.L.); (Y.F.); (X.C.); (Y.W.); (H.-T.R.); (H.-K.P.); (Q.J.)
| | - Ching-Wen Lou
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textiles Science and Engineering, Tiangong University, Tianjin 300387, China; (T.-T.L.); (Y.F.); (X.C.); (Y.W.); (H.-T.R.); (H.-K.P.); (Q.J.)
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou 350108, China
| | - Jia-Horng Lin
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textiles Science and Engineering, Tiangong University, Tianjin 300387, China; (T.-T.L.); (Y.F.); (X.C.); (Y.W.); (H.-T.R.); (H.-K.P.); (Q.J.)
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
- Ocean College, Minjiang University, Fuzhou 350108, China
- Laboratory of Fiber Application and Manufacturing, Department of Fiber and Composite Materials, Feng Chia University, Taichung 40724, Taiwan
- School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
46
|
Tang Z, Kong N, Zhang X, Liu Y, Hu P, Mou S, Liljeström P, Shi J, Tan W, Kim JS, Cao Y, Langer R, Leong KW, Farokhzad OC, Tao W. A materials-science perspective on tackling COVID-19. NATURE REVIEWS. MATERIALS 2020; 5:847-860. [PMID: 33078077 PMCID: PMC7556605 DOI: 10.1038/s41578-020-00247-y] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/14/2020] [Indexed: 05/08/2023]
Abstract
The ongoing SARS-CoV-2 pandemic highlights the importance of materials science in providing tools and technologies for antiviral research and treatment development. In this Review, we discuss previous efforts in materials science in developing imaging systems and microfluidic devices for the in-depth and real-time investigation of viral structures and transmission, as well as material platforms for the detection of viruses and the delivery of antiviral drugs and vaccines. We highlight the contribution of materials science to the manufacturing of personal protective equipment and to the design of simple, accurate and low-cost virus-detection devices. We then investigate future possibilities of materials science in antiviral research and treatment development, examining the role of materials in antiviral-drug design, including the importance of synthetic material platforms for organoids and organs-on-a-chip, in drug delivery and vaccination, and for the production of medical equipment. Materials-science-based technologies not only contribute to the ongoing SARS-CoV-2 research efforts but can also provide platforms and tools for the understanding, protection, detection and treatment of future viral diseases.
Collapse
Affiliation(s)
- Zhongmin Tang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Xingcai Zhang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA USA
| | - Yuan Liu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Ping Hu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Shan Mou
- Institute of Molecular Medicine (IMM), Renji Hospital, State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Peter Liljeström
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Weihong Tan
- Institute of Molecular Medicine (IMM), Renji Hospital, State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | | | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Robert Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA USA
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY USA
| | - Omid C. Farokhzad
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| |
Collapse
|
47
|
Copper//terbium dual metal organic frameworks incorporated side-by-side electrospun nanofibrous membrane: A novel tactics for an efficient adsorption of particulate matter and luminescence property. J Colloid Interface Sci 2020; 578:155-163. [DOI: 10.1016/j.jcis.2020.05.113] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 11/23/2022]
|
48
|
Chua MH, Cheng W, Goh SS, Kong J, Li B, Lim JYC, Mao L, Wang S, Xue K, Yang L, Ye E, Zhang K, Cheong WCD, Tan BH, Li Z, Tan BH, Loh XJ. Face Masks in the New COVID-19 Normal: Materials, Testing, and Perspectives. RESEARCH (WASHINGTON, D.C.) 2020; 2020:7286735. [PMID: 32832908 PMCID: PMC7429109 DOI: 10.34133/2020/7286735] [Citation(s) in RCA: 210] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/16/2020] [Indexed: 01/08/2023]
Abstract
The increasing prevalence of infectious diseases in recent decades has posed a serious threat to public health. Routes of transmission differ, but the respiratory droplet or airborne route has the greatest potential to disrupt social intercourse, while being amenable to prevention by the humble face mask. Different types of masks give different levels of protection to the user. The ongoing COVID-19 pandemic has even resulted in a global shortage of face masks and the raw materials that go into them, driving individuals to self-produce masks from household items. At the same time, research has been accelerated towards improving the quality and performance of face masks, e.g., by introducing properties such as antimicrobial activity and superhydrophobicity. This review will cover mask-wearing from the public health perspective, the technical details of commercial and home-made masks, and recent advances in mask engineering, disinfection, and materials and discuss the sustainability of mask-wearing and mask production into the future.
Collapse
Affiliation(s)
- Ming Hui Chua
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Weiren Cheng
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Shermin Simin Goh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Junhua Kong
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Bing Li
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Jason Y. C. Lim
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Lu Mao
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Suxi Wang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Kun Xue
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Le Yang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Enyi Ye
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Kangyi Zhang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Wun Chet Davy Cheong
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Beng Hoon Tan
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Zibiao Li
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| | - Ban Hock Tan
- Department of Infectious Disease, Singapore General Hospital, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR), 2 Fusionopolis Way, Innovis, Singapore 138634
| |
Collapse
|
49
|
Jiamjirangkul P, Inprasit T, Intasanta V, Pangon A. Metal organic framework-integrated chitosan/poly(vinyl alcohol) (PVA) nanofibrous membrane hybrids from green process for selective CO2 capture and filtration. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115650] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
50
|
Yoo DK, Woo HC, Jhung SH. Removal of Particulate Matters with Isostructural Zr-Based Metal-Organic Frameworks Coated on Cotton: Effect of Porosity of Coated MOFs on Removal. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34423-34431. [PMID: 32608961 DOI: 10.1021/acsami.0c08881] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Effective removal of particulate matters (PMs) from air is very important for our safe environment, health, and sustainability. In this study, isostructural (with the same topology of fcu) Zr-metal-organic frameworks (Zr-MOFs) such as UiO-66, UiO-67, and DUT-52 (with different porosity) were coated onto cotton and utilized in PM removal from air to understand the contribution of MOFs in improving the performances of air filters. Moreover, UiO-66s with different porosities were also prepared under different conditions from the same reaction mixture. Experiments to remove PMs such as PM2.5 and PM10 showed a critical role of porosity of coated MOFs in the PM removal. Or, the removal efficiency or quality factor increased linearly with the increasing surface area of all the studied MOFs, irrespective of the applied linkers (for synthesizing different MOFs) and synthesis conditions (for different porosities of UiO-66s). Therefore, this work confirms, for the first time, that the porosity of MOF is one of the most important parameters to improve the performance of air filter (to remove PMs) that is modified with coated MOFs. Moreover, we could suggest why porous materials with small pores were effective in capturing PMs (larger in size than pores of porous materials) from air.
Collapse
Affiliation(s)
- Dong Kyu Yoo
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ho Chul Woo
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sung Hwa Jhung
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|