1
|
Meng Q, Chi T, Guo S, Razbin M, Wu S, He S, Han S, Peng S. Highly sensitive strain sensors with ultra-low detection limit based on pre-defined serpentine cracks. MATERIALS HORIZONS 2024. [PMID: 39466650 DOI: 10.1039/d4mh01136h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Flexible and stretchable strain sensors have garnered significant interest due to their potential applications in various fields including human health monitoring and human-machine interfaces. Previous studies have shown that strain sensors based on microcracks can exhibit both high sensitivity and a wide sensing range by manipulating the opening and closing of randomly generated cracks within conductive thin films. However, the uncontrolled nature of microcrack formation can cause a drift in the sensor's performance over time, affecting its accuracy and reliability. In this study, by pre-defining the cracks, we introduce a novel resistive strain sensor with high sensitivity, excellent linearity, an ultra-low detection limit, and robustness against off-axis deformation. The sensor operates on a simple mechanism involving the modulation of ohmic contact within intricately designed conductive serpentine curves, which are encapsulated by pre-stretched thin films. This design facilitates a high gauge factor of 495, exceptional linearity (R2 > 0.98), and an ultra-low detection threshold of 0.01% strain. Moreover, it maintains performance integrity during off-axis deformations such as bending and twisting, features that are indispensable for accurately monitoring human motion. To explore practical applications, a driving scenario was simulated where a sensor array was positioned on the driver's neck. The sensor output was analyzed using machine learning algorithms to successfully determine the presence of driver fatigue. This demonstration underlines the potential of our sensor technology in applications ranging from healthcare monitoring to wearable biomechanical systems and human-machine interfaces.
Collapse
Affiliation(s)
- Qingshi Meng
- College of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, China.
| | - Tengfei Chi
- College of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, China.
| | - Shuang Guo
- Health Service Department, Northern Theatre General Hospital, Shenyang, 110016, China
| | - Milad Razbin
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Shuying Wu
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Shuai He
- School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - Sensen Han
- College of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, China.
| | - Shuhua Peng
- School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
2
|
Fu X, Cheng W, Wan G, Yang Z, Tee BCK. Toward an AI Era: Advances in Electronic Skins. Chem Rev 2024; 124:9899-9948. [PMID: 39198214 PMCID: PMC11397144 DOI: 10.1021/acs.chemrev.4c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
Abstract
Electronic skins (e-skins) have seen intense research and rapid development in the past two decades. To mimic the capabilities of human skin, a multitude of flexible/stretchable sensors that detect physiological and environmental signals have been designed and integrated into functional systems. Recently, researchers have increasingly deployed machine learning and other artificial intelligence (AI) technologies to mimic the human neural system for the processing and analysis of sensory data collected by e-skins. Integrating AI has the potential to enable advanced applications in robotics, healthcare, and human-machine interfaces but also presents challenges such as data diversity and AI model robustness. In this review, we first summarize the functions and features of e-skins, followed by feature extraction of sensory data and different AI models. Next, we discuss the utilization of AI in the design of e-skin sensors and address the key topic of AI implementation in data processing and analysis of e-skins to accomplish a range of different tasks. Subsequently, we explore hardware-layer in-skin intelligence before concluding with an analysis of the challenges and opportunities in the various aspects of AI-enabled e-skins.
Collapse
Affiliation(s)
- Xuemei Fu
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
| | - Wen Cheng
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
| | - Guanxiang Wan
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
| | - Zijie Yang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
| | - Benjamin C K Tee
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
- Institute of Materials Research and Engineering, Agency for Science Technology and Research, Singapore 138634, Singapore
| |
Collapse
|
3
|
Yao G, Gan X, Lin Y. Flexible self-powered bioelectronics enables personalized health management from diagnosis to therapy. Sci Bull (Beijing) 2024; 69:2289-2306. [PMID: 38821746 DOI: 10.1016/j.scib.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/20/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024]
Abstract
Flexible self-powered bioelectronics (FSPBs), incorporating flexible electronic features in biomedical applications, have revolutionized the human-machine interface since they hold the potential to offer natural and seamless human interactions while overcoming the limitations of battery-dependent power sources. Furthermore, as biosensors or actuators, FSPBs can dynamically monitor physiological signals to reveal real-time health abnormalities and provide timely and precise treatments. Therefore, FSPBs are increasingly shaping the landscape of health monitoring and disease treatment, weaving a sophisticated and personalized bond between humans and health management. Here, we examine the recent advanced progress of FSPBs in developing working mechanisms, design strategies, and structural configurations toward personalized health management, emphasizing its role in clinical medical scenarios from biophysical/biochemical sensors for sensing diagnosis to robust/biodegradable actuators for intervention therapy. Future perspectives on the challenges and opportunities in emerging multifunctional FSPBs for the next-generation health management systems are also forecasted.
Collapse
Affiliation(s)
- Guang Yao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China; State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China; Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, China.
| | - Xingyi Gan
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yuan Lin
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China; State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China; Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu 610054, China.
| |
Collapse
|
4
|
Feng X, Ding L, Hao N, Wang K. A Piezoelectric Nanogenerator-Driven Dual-Mode Platform for Visualization and Impedance Sensing. Anal Chem 2024. [PMID: 39014979 DOI: 10.1021/acs.analchem.4c02495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Traditional visual biosensing platforms rely on color to display detection results, which can be influenced by individual visual abilities, equipment, parameters, and lighting conditions during photo capture. This limitation significantly impedes the advancement of next-generation portable electrochemical biosensors. Therefore, we propose a visual biosensing device that utilizes distance as an indicator, enabling the facile determination of the length of discoloration, which is inversely proportional to the concentration of the target analyte. The separation of the Signal Generation (SG) and Signal Output (SO) regions effectively mitigates potential interference from the sample color. Additionally, the SG region can be disassembled to facilitate electrochemical impedance spectroscopy (EIS) detection in laboratory settings, enabling dual-mode detection. Meanwhile, the utilization of piezoelectric nanogenerators (PENG) empowers the entire point-of-care testing (POCT) sensing device, effectively addressing the issue of a limited battery life. The biosensing device exhibited a satisfactory linear range (EIS mode, 5 pg/L to 5 mg/L; visual mode, 0.5 ng/L to 5 mg/L) and a low limit of detection (EIS mode, 2.3 pg/L; visual mode, 0.14 ng/L) with S/N = 3 for ochratoxin A (OTA) under optimized conditions. The self-powered and cost-effective dual-mode biosensing platform developed for OTA detection offers clear and easily interpretable results, demonstrating a high accuracy in laboratory settings.
Collapse
Affiliation(s)
- Xujing Feng
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Lijun Ding
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, P. R. China
| | - Nan Hao
- School of Chemistry and Materials Science, Nanjing University of Information, Science & Technology, Nanjing, Jiangsu 210044, P. R. China
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, P. R. China
| |
Collapse
|
5
|
Feng J, Ao H, Cao P, Yang T, Xing B. Flexible tactile sensors with interlocking serrated structures based on stretchable multiwalled carbon nanotube/silver nanowire/silicone rubber composites. RSC Adv 2024; 14:13934-13943. [PMID: 38686300 PMCID: PMC11056684 DOI: 10.1039/d4ra00381k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024] Open
Abstract
Flexible tactile sensors have attracted significant interest because of their application scope in the fields of biomedicine, motion detection, and human-computer interaction. However, the development of tactile sensors with high sensitivity and flexibility remains a critical challenge. This study develops a patterned, stretchable, and fully elastomeric multiwalled carbon nanotube (MWCNT)/silver nanowire (Ag NW)/silicone rubber (SR) composite. The addition of Ag NWs to MWCNTs enhances the transmission path of the conductive network, yielding a CNT/Ag NW/SR composite with a sensitivity coefficient of 40. This characteristic renders it suitable for use as a piezoresistive sensing material. The interlocking sawtooth structure can convert the mechanical stimuli of the sensor to the tensile strain of the composite, thereby enhancing its sensitivity and flexibility. Experimental results indicate that the developed tactile sensor exhibited a sensitivity of 2.82 N-1 at 0-0.5 N and 1.51 N-1 at 0.5-2 N. These haptic sensors also demonstrate good dynamic response, repeatability, and long life. Furthermore, experimental results show that these haptic sensors exhibit high reproducibility, fast dynamic response, and good mechanical and electrical stability. Because of these exceptional properties, the as-prepared sensor can be applied in the development of smart robots, prosthetics, and wearable devices.
Collapse
Affiliation(s)
- Junyan Feng
- College of Mechanical and Electronic Engineering, Jiaxing Nanhu University Jiaxing 314001 China
| | - Hezheng Ao
- College of Mechanical Engineering, Zhejiang University of Technology Hangzhou 310014 Zhejiang China
| | - Peng Cao
- College of Mechanical Engineering, Zhejiang University of Technology Hangzhou 310014 Zhejiang China
| | - Tao Yang
- College of Mechanical Engineering, Zhejiang University of Technology Hangzhou 310014 Zhejiang China
| | - Bo Xing
- College of Information Science and Engineering, Jiaxing University Jiaxing 314000 China
| |
Collapse
|
6
|
Hou S, Chen C, Bai L, Yu J, Cheng Y, Huang W. Stretchable Electronics with Strain-Resistive Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306749. [PMID: 38078789 DOI: 10.1002/smll.202306749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/15/2023] [Indexed: 03/16/2024]
Abstract
Stretchable electronics have attracted tremendous attention amongst academic and industrial communities due to their prospective applications in personal healthcare, human-activity monitoring, artificial skins, wearable displays, human-machine interfaces, etc. Other than mechanical robustness, stable performances under complex strains in these devices that are not for strain sensing are equally important for practical applications. Here, a comprehensive summarization of recent advances in stretchable electronics with strain-resistive performance is presented. First, detailed overviews of intrinsically strain-resistive stretchable materials, including conductors, semiconductors, and insulators, are given. Then, systematic representations of advanced structures, including helical, serpentine, meshy, wrinkled, and kirigami-based structures, for strain-resistive performance are summarized. Next, stretchable arrays and circuits with strain-resistive performance, that integrate multiple functionalities and enable complex behaviors, are introduced. This review presents a detailed overview of recent progress in stretchable electronics with strain-resistive performances and provides a guideline for the future development of stretchable electronics.
Collapse
Affiliation(s)
- Sihui Hou
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Cong Chen
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Libing Bai
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Junsheng Yu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yuhua Cheng
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Wei Huang
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| |
Collapse
|
7
|
Tang W, Sun Q, Wang ZL. Self-Powered Sensing in Wearable Electronics─A Paradigm Shift Technology. Chem Rev 2023; 123:12105-12134. [PMID: 37871288 PMCID: PMC10636741 DOI: 10.1021/acs.chemrev.3c00305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/25/2023]
Abstract
With the advancements in materials science and micro/nanoengineering, the field of wearable electronics has experienced a rapid growth and significantly impacted and transformed various aspects of daily human life. These devices enable individuals to conveniently access health assessments without visiting hospitals and provide continuous, detailed monitoring to create comprehensive health data sets for physicians to analyze and diagnose. Nonetheless, several challenges continue to hinder the practical application of wearable electronics, such as skin compliance, biocompatibility, stability, and power supply. In this review, we address the power supply issue and examine recent innovative self-powered technologies for wearable electronics. Specifically, we explore self-powered sensors and self-powered systems, the two primary strategies employed in this field. The former emphasizes the integration of nanogenerator devices as sensing units, thereby reducing overall system power consumption, while the latter focuses on utilizing nanogenerator devices as power sources to drive the entire sensing system. Finally, we present the future challenges and perspectives for self-powered wearable electronics.
Collapse
Affiliation(s)
- Wei Tang
- CAS
Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy
and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
- Institute
of Applied Nanotechnology, Jiaxing, Zhejiang 314031, P.R. China
| | - Qijun Sun
- CAS
Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy
and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong Lin Wang
- CAS
Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy
and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- Yonsei
Frontier Lab, Yonsei University, Seoul 03722, Republic of Korea
- Georgia
Institute of Technology, Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
8
|
Hu H, Zhang C, Ding Y, Chen F, Huang Q, Zheng Z. A Review of Structure Engineering of Strain-Tolerant Architectures for Stretchable Electronics. SMALL METHODS 2023; 7:e2300671. [PMID: 37661591 DOI: 10.1002/smtd.202300671] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/01/2023] [Indexed: 09/05/2023]
Abstract
Stretchable electronics possess significant advantages over their conventional rigid counterparts and boost game-changing applications such as bioelectronics, flexible displays, wearable health monitors, etc. It is, nevertheless, a formidable task to impart stretchability to brittle electronic materials such as silicon. This review provides a concise but critical discussion of the prevailing structural engineering strategies for achieving strain-tolerant electronic devices. Not only the more commonly discussed lateral designs of structures such as island-bridge, wavy structures, fractals, and kirigami, but also the less discussed vertical architectures such as strain isolation and elastoplastic principle are reviewed. Future opportunities are envisaged at the end of the paper.
Collapse
Affiliation(s)
- Hong Hu
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Chi Zhang
- Department of Applied Biology and Chemical Technology, Faculty of Science, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Yichun Ding
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Fan Chen
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Qiyao Huang
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Zijian Zheng
- Laboratory for Advanced Interfacial Materials and Devices, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
- Department of Applied Biology and Chemical Technology, Faculty of Science, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
- Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| |
Collapse
|
9
|
Wang Q, Zhang J, Yao G, Lou W, Zhang T, Zhang Z, Xie M, Gan X, Pan T, Gao M, Zhao Z, Zhang H, Wang J, Lin Y. Effective Orthodontic Tooth Movement via an Occlusion-Activated Electromechanical Synergistic Dental Aligner. ACS NANO 2023; 17:16757-16769. [PMID: 37590490 DOI: 10.1021/acsnano.3c03385] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Malocclusion is a prevalent dental health problem plaguing over 56% worldwide. Mechanical orthodontic aligners render directional teeth movement extensively used for malocclusion treatment in the clinic, while mechanical regulation inefficiency prolongs the treatment course and induces adverse complications. As a noninvasive physiotherapy, an appropriate electric field plays a vital role in tissue metabolism engineering. Here, we propose an occlusion-activated electromechanical synergistic dental aligner that converts occlusal energy into a piezo-excited alternating electric field for accelerating orthodontic tooth movement. Within an 18-day intervention, significantly facilitated orthodontic results were obtained from young and aged Sprague-Dawley rats, increasing by 34% and 164% in orthodontic efficiency, respectively. The different efficiencies were attributed to age-distributed periodontal tissue status. Mechanistically, the electromechanical synergistic intervention modulated the microenvironment, enhanced osteoblast and osteoclast activity, promoted alveolar bone metabolism, and ultimately accelerated tooth movement. This work holds excellent potential for personalized and effective treatment for malocclusions, which would vastly reduce the suffering of the long orthodontic course.
Collapse
Affiliation(s)
- Qian Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Jie Zhang
- Department of Orthodontics, National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Guang Yao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
- Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, Guangdong, China
| | - Wenhao Lou
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Tianyao Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Zihan Zhang
- Department of Orthodontics, National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Maowen Xie
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Xingyi Gan
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Taisong Pan
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Min Gao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Zhihe Zhao
- Department of Orthodontics, National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hulin Zhang
- College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Jun Wang
- Department of Orthodontics, National Clinical Research Center for Oral Diseases, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuan Lin
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
- Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| |
Collapse
|
10
|
Bian X, Yang Z, Zhang T, Yu J, Xu G, Chen A, He Q, Pan J. Multifunctional Flexible AgNW/MXene/PDMS Composite Films for Efficient Electromagnetic Interference Shielding and Strain Sensing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41906-41915. [PMID: 37610108 DOI: 10.1021/acsami.3c08093] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
With the rapid development of electronic information technology, composite materials with outstanding performance in terms of electromagnetic interference (EMI) shielding and strain sensing are crucial for next-generation smart wearable electronic devices. However, the fabrication of flexible composite films with dual functionality remains a significant challenge. Herein, multifunctional flexible composite films with exciting EMI shielding and strain sensing properties were constructed using a facile vacuum-assisted filtration process and transfer method. The films consisted of ultrathin AgNW/MXene (Ti3C2Tx)/AgNW conductive networks (1 μm) attached to a flexible polydimethylsiloxane (PDMS) substrate. The obtained AgNW/MXene/PDMS composite film exhibited an exceptional EMI shielding effectiveness of 50.82 dB and good flexibility (retaining 93.67 and 90.18% of its original value after 1000 bending and stretching cycles, respectively), which are attributed to the enhanced multilayer internal reflection network created by the AgNWs and MXene as well as the synergistic effect of PDMS. Besides EMI shielding, the composite films also displayed remarkable strain sensing properties. They exhibited a wide linear range of tensile strain up to 68% with a gauge factor of 468. They also showed fast response, ultralow detection limit, and high mechanical stability. Interestingly, the composite films could also detect motion and voice recognition, demonstrating their potential as wearable sensors. This study highlights the effectiveness of multifunctional flexible AgNW/MXene/PDMS composite films in resisting electromagnetic radiation and monitoring human motion, thereby providing a promising solution for the development of flexible wearable electronic devices in complex electromagnetic environments.
Collapse
Affiliation(s)
- Xiaolong Bian
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Zhonglin Yang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Tao Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Jiewen Yu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Gaopeng Xu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - An Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Qingquan He
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Jun Pan
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
11
|
Yan Z, Liu Y, Xiong J, Wang B, Dai L, Gao M, Pan T, Yang W, Lin Y. Hierarchical Serpentine-Helix Combination for 3D Stretchable Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210238. [PMID: 36896499 DOI: 10.1002/adma.202210238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/21/2023] [Indexed: 06/09/2023]
Abstract
3D stretchable electronics attract growing interest due to their new and more complex functionalities compared to 1D or 2D counterparts. Among all 3D configuration designs, a 3D helical structure is commonly used as it can be designed to achieve outstanding stretching ratios as well as highly robust mechanical performance. However, the stretching ratio that mainly focuses on the axis direction hinders its applications. Inspired by hierarchies in a tendon, a novel structural design of hierarchical 3D serpentine-helix combination is proposed. The structural design constructed by a sequence with repeating small units winding in a helical manner around the axis can enable large mechanical forces transferred down to a smaller scale with the dissipation of potentially damaging stresses by microscale buckling, thereby endowing the electronic components made from high-performance but hard-to-stretch materials with large stretchability (≥200%) in x-, y-, or z-axis direction, high structural stability, and extraordinary electromechanical performance. Two applications including a wireless charging patch and an epidermal electronic system are demonstrated. The epidermal electronic system made of several hierarchical 3D serpentine-helix combinations allows for high-fidelity monitoring of electrophysiological signals, galvanic skin response, and finger-movement-induced electrical signals, which can achieve good tactile pattern recognition when combined with an artificial neural network.
Collapse
Affiliation(s)
- Zhuocheng Yan
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Yuting Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Jian Xiong
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Bin Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Lingliang Dai
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Min Gao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Taisong Pan
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
- Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Weiqing Yang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Yuan Lin
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
- Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| |
Collapse
|
12
|
Hwang GS, Bae JY, Kim JW, Park SY, Kim J, Kang SK, Kim JY. Highly Elastic and Conductive Metallic Interconnect with Crystalline-Amorphous Nanolaminate. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15863-15871. [PMID: 36920289 DOI: 10.1021/acsami.2c22833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nanolaminate with alternating layers of nanocrystalline Cu and amorphous CuZrTi is suggested as highly stretchable and conductive interconnect material in stretchable devices. 50 nm nanocrystalline Cu and 20 nm amorphous CuZrTi are the optimum thicknesses of the constituent layers, which result in an elastic deformation limit of 3.33% similar to that of the monolithic amorphous CuZrTi film and an electrical conductivity of 11.83 S/μm corresponding to 70% of that of the monolithic nanocrystalline Cu film. The enhanced elastic deformability and conductivity of the nanolaminates enable the maintenance of the interconnect performance for cyclic stretching with a tensile strain of 114% in the form of a free-standing serpentine structure and a tensile strain of 30% in the form of an ordinary circular coil on an elastomer substrate.
Collapse
Affiliation(s)
- Gyeong-Seok Hwang
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jae-Young Bae
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Joon-Woo Kim
- Department of Electronic Convergence Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Sun-Young Park
- Materials Safety Technology Development Division, Korea Atomic Energy Research Institute (KAERI), Daejeon 34057, Republic of Korea
| | - Jeonghyun Kim
- Department of Electronic Convergence Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Seung-Kyun Kang
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ju-Young Kim
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
13
|
Wang Y, Adam ML, Zhao Y, Zheng W, Gao L, Yin Z, Zhao H. Machine Learning-Enhanced Flexible Mechanical Sensing. NANO-MICRO LETTERS 2023; 15:55. [PMID: 36800133 PMCID: PMC9936950 DOI: 10.1007/s40820-023-01013-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/08/2023] [Indexed: 05/31/2023]
Abstract
To realize a hyperconnected smart society with high productivity, advances in flexible sensing technology are highly needed. Nowadays, flexible sensing technology has witnessed improvements in both the hardware performances of sensor devices and the data processing capabilities of the device's software. Significant research efforts have been devoted to improving materials, sensing mechanism, and configurations of flexible sensing systems in a quest to fulfill the requirements of future technology. Meanwhile, advanced data analysis methods are being developed to extract useful information from increasingly complicated data collected by a single sensor or network of sensors. Machine learning (ML) as an important branch of artificial intelligence can efficiently handle such complex data, which can be multi-dimensional and multi-faceted, thus providing a powerful tool for easy interpretation of sensing data. In this review, the fundamental working mechanisms and common types of flexible mechanical sensors are firstly presented. Then how ML-assisted data interpretation improves the applications of flexible mechanical sensors and other closely-related sensors in various areas is elaborated, which includes health monitoring, human-machine interfaces, object/surface recognition, pressure prediction, and human posture/motion identification. Finally, the advantages, challenges, and future perspectives associated with the fusion of flexible mechanical sensing technology and ML algorithms are discussed. These will give significant insights to enable the advancement of next-generation artificial flexible mechanical sensing.
Collapse
Affiliation(s)
- Yuejiao Wang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Mukhtar Lawan Adam
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Yunlong Zhao
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Weihao Zheng
- School of Mechano-Electronic Engineering, Xidian University, Xi'an , 710071, People's Republic of China
| | - Libo Gao
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen, 361102, People's Republic of China.
| | - Zongyou Yin
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia.
| | - Haitao Zhao
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
14
|
Wu S, Moody K, Kollipara A, Zhu Y. Highly Sensitive, Stretchable, and Robust Strain Sensor Based on Crack Propagation and Opening. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1798-1807. [PMID: 36548931 PMCID: PMC10403976 DOI: 10.1021/acsami.2c16741] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Soft and stretchable strain sensors have been attracting significant attention. However, the trade-off between the sensitivity (gauge factor) and the sensing range has been a major challenge. In this work, we report a soft stretchable resistive strain sensor with an unusual combination of high sensitivity, large sensing range, and high robustness. The sensor is made of a silver nanowire network embedded below the surface of an elastomeric matrix (e.g., poly(dimethylsiloxane)). Periodic mechanical cuts are applied to the top surface of the sensor, changing the current flow from uniformly across the sensor to along the conducting path defined by the open cracks. Both experiment and finite element analysis are conducted to study the effect of the slit depth, slit length, and pitch between the slits. The stretchable strain sensor can be integrated into wearable systems for monitoring physiological functions and body motions associated with different levels of strain, such as blood pressure and lower back health. Finally, a soft three-dimensional (3D) touch sensor that tracks both normal and shear stresses is developed for human-machine interfaces and tactile sensing for robotics.
Collapse
Affiliation(s)
- Shuang Wu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina27695, United States
| | - Katherine Moody
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina27695, United States
| | - Abhiroop Kollipara
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina27695, United States
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina27695, United States
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina27695, United States
- Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill and NC State University, Chapel Hill, North Carolina27599, United States
| |
Collapse
|
15
|
Kang Z, Li X, Zhao X, Wang X, Shen J, Wei H, Zhu X. Piezo-Resistive Flexible Pressure Sensor by Blade-Coating Graphene-Silver Nanosheet-Polymer Nanocomposite. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:4. [PMID: 36615914 PMCID: PMC9823304 DOI: 10.3390/nano13010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
The demand for flexible pressure sensors in wearable devices is dramatically increasing. However, challenges still exist in making flexible pressure sensors, including complex or costly fabrication processes and difficulty in mass production. In this paper, a new method is proposed for preparing the flexible pressure sensors that combines an imprinting technique with blade-coating of a graphene-silver nanosheet-polymer nanocomposite. The piezo-resistive type flexible pressure sensor consists of interdigital electrodes and nanocomposite as a sensing layer, as well as a micropillar array structure. The morphology of the sensitive layer of the sensor is characterized by scanning electron microscopy (SEM). The response performance, sensitivity, and stability of the sensor are investigated. The test results show that the initial resistance of the pressure sensor is only 1.6 Ω, the sensitivity is 0.04 kPa-1, and the response time is about 286 ms. In addition, a highly hydrophobic wetting property can be observed on the functional structure surface of the sensor. The contact angle is 137.2 degrees, revealing the self-cleaning property of the sensor. Finally, the prepared sensor is demonstrated as a wearable device, indicating promising potential in practical applications.
Collapse
Affiliation(s)
- Zheng Kang
- Shanxi Provincial Key Laboratory of Advanced Manufacturing Technology, North University of China, Taiyuan 030051, China
| | - Xiangmeng Li
- Shanxi Provincial Key Laboratory of Advanced Manufacturing Technology, North University of China, Taiyuan 030051, China
- State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Xiaodong Zhao
- Shanxi Provincial Key Laboratory of Advanced Manufacturing Technology, North University of China, Taiyuan 030051, China
| | - Xiaoqiang Wang
- Shanxi Provincial Key Laboratory of Advanced Manufacturing Technology, North University of China, Taiyuan 030051, China
| | - Jian Shen
- Shanxi Provincial Key Laboratory of Advanced Manufacturing Technology, North University of China, Taiyuan 030051, China
| | - Huifen Wei
- Shanxi Provincial Key Laboratory of Advanced Manufacturing Technology, North University of China, Taiyuan 030051, China
| | - Xijing Zhu
- Shanxi Provincial Key Laboratory of Advanced Manufacturing Technology, North University of China, Taiyuan 030051, China
| |
Collapse
|
16
|
Yi X, Huang J, Tong Y, Zhao H, Cao X, Wu W. Self-Assembled Serpentine Ni 3Si 2O 5(OH) 4 Hybrid Sheets with Ammonium Polyphosphate for Fire Safety Enhancement of Polylactide Composites. Polymers (Basel) 2022; 14:polym14235255. [PMID: 36501647 PMCID: PMC9741248 DOI: 10.3390/polym14235255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
Biodegradable polylactide (PLA) has been widely utilized in people's daily lives. In order to improve the fire safety of PLA, ammonium polyphosphate (APP) was self-assembled onto the surface of serpentine Ni3Si2O5(OH)4 through the electrostatic method, followed by mixing with PLA by melt compounding. The APP-modified serpentine (serpentine@APP) dispersed uniformly in the PLA matrix. Compared with pure PLA, the PLA composite with 2 wt% serpentine@APP reduced the peak heat release rate (pHRR) and total heat release (THR) by 43.9% and 16.3%, respectively. The combination of APP and serpentine exhibited suitable synergistic flame-retardant effects on the fire safety enhancement of PLA. In addition, the dynamical rheological tests revealed that the presence of APP and serpentine could reduce the viscosity of PLA composites. The plasticizing effects of APP and serpentine benefited the processing of PLA. The mechanical properties of PLA/serpentine@APP maintained suitable performance as pure PLA. This study provided a feasible way to enhance the fire safety of PLA without sacrificing its mechanical properties.
Collapse
Affiliation(s)
| | - Jingshu Huang
- Key Laboratory of Polymer Processing Engineering of Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Yizhang Tong
- Key Laboratory of Polymer Processing Engineering of Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Hui Zhao
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou 542899, China
- Correspondence: (H.Z.); (W.W.)
| | - Xianwu Cao
- Key Laboratory of Polymer Processing Engineering of Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Wei Wu
- Jihua Laboratory, Foshan 528200, China
- Key Laboratory of Polymer Processing Engineering of Ministry of Education, South China University of Technology, Guangzhou 510640, China
- Correspondence: (H.Z.); (W.W.)
| |
Collapse
|
17
|
Improved performance of stretchable piezoelectric energy harvester based on stress rearrangement. Sci Rep 2022; 12:19149. [PMID: 36352018 PMCID: PMC9646885 DOI: 10.1038/s41598-022-23005-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022] Open
Abstract
With the development of wearable devices and soft electronics, the demand for stretchable piezoelectric energy harvesters (SPEHs) has increased. Energy harvesting can provide energy when large batteries or power sources cannot be employed, and stretchability provides a user-friendly experience. However, the performance of SPEHs remains low, which limits their application. In this study, a wearable SPEH is developed by adopting a kirigami structure on a polyvinylidene fluoride film. The performance of the SPEH is improved by rearranging the stress distribution throughout the film. This is conducted using two approaches: topological depolarization, which eliminates the opposite charge generation by thermal treatment, and optimization of the neutral axis, which maximizes the stress applied at the surface of the piezoelectric film. The SPEH performance is experimentally measured and compared with that of existing SPEHs. Using these two approaches, the stress was rearranged in both the x-y plane and z-direction, and the output voltage increased by 21.57% compared with that of the original film with the same stretching motion. The generated energy harvester was successfully applied to smart transmittance-changing contact lenses.
Collapse
|
18
|
Tian L, Jiang M, Su M, Cao X, Jiang Q, Liu Q, Yu C. Sweat cortisol determination utilizing MXene and multi-walled carbon nanotube nanocomposite functionalized immunosensor. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Cho H, Lee B, Jang D, Yoon J, Chung S, Hong Y. Recent progress in strain-engineered elastic platforms for stretchable thin-film devices. MATERIALS HORIZONS 2022; 9:2053-2075. [PMID: 35703019 DOI: 10.1039/d2mh00470d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Strain-engineered elastic platforms that can efficiently distribute mechanical stress under deformation offer adjustable mechanical compliance for stretchable electronic systems. By fully exploiting strain-free regions that are favourable for fabricating thin-film devices and interconnecting with reliably stretchable conductors, various electronic systems can be integrated onto stretchable platforms with the assistance of strain engineering strategies. Over the last decade, applications of multifunctional stretchable thin-film devices simultaneously exhibiting superior electrical and mechanical performance have been demonstrated, shedding light on the realization of further reliable human-machine interfaces. This review highlights recent developments in enabling technologies for strain-engineered elastic platforms. In particular, representative approaches to realize strain-engineered substrates and stretchable interconnects in island-bridge configurations are introduced from the perspective of the material homogeneity and structural design of the substrate. State-of-the-art achievements in sophisticated stretchable electronic devices on strain-engineered elastic platforms are also presented, such as stretchable sensors, energy devices, thin-film transistors, and displays, and then, the challenges and outlook are discussed.
Collapse
Affiliation(s)
- Hyeon Cho
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Seoul 08826, Korea.
| | - Byeongmoon Lee
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Korea.
| | - Dongju Jang
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Seoul 08826, Korea.
| | - Jinsu Yoon
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Seoul 08826, Korea.
| | - Seungjun Chung
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Korea.
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, Korea
| | - Yongtaek Hong
- Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center (ISRC), Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
20
|
Li X, Zhu P, Zhang S, Wang X, Luo X, Leng Z, Zhou H, Pan Z, Mao Y. A Self-Supporting, Conductor-Exposing, Stretchable, Ultrathin, and Recyclable Kirigami-Structured Liquid Metal Paper for Multifunctional E-Skin. ACS NANO 2022; 16:5909-5919. [PMID: 35312286 DOI: 10.1021/acsnano.1c11096] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Electronic skin (E-skin) is a crucial seamless human-machine interface (HMI), holding promise in healthcare monitoring and personal electronics. Liquid metal (LM) has been recognized as an ideal electrode material to fabricate E-skins. However, conventional sealed LM electrodes cannot expose the LM layer for direct contact with the skin resulting in the low performance of electrophysiological monitoring. Furthermore, traditional printed LM electrodes are difficult to transfer or recycle, and fractures easily occur under stretching of the substrate. Here, we report a kind of LM electrode that we call a kirigami-structured LM paper (KLP), which is self-supporting, conductor-exposing, stretchable, ultrathin, and recyclable for multifunctional E-skin. The KLP is fabricated by the kirigami paper cutting art with three types of structures including uniaxial, biaxial, and square spiral. The KLP can act as an E-skin to acquire high-quality electrophysiological signals, such as electroencephalogram (EEG), electrocardiogram (ECG), and electromyogram (EMG). Upon integration with a triboelectric nanogenerator (TENG), the KLP can also operate as a self-powered E-skin. On the basis of the self-powered E-skin, we further developed a smart dialing communication system, which is applied on human skin to call a cellphone. Compared with conventional sealed or printed LM electrodes, the KLP can simultaneously achieve self-supporting, conductor-exposing, stretchable, ultrathin, and recyclable features. Such KLP offers potential for E-skins in healthcare monitoring and intelligent control, as well as smart robots, virtual reality, on-skin personal electronics, etc.
Collapse
Affiliation(s)
- Xing Li
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Pengcheng Zhu
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Shichuan Zhang
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Xiangcheng Wang
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Xuepeng Luo
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Ziwei Leng
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Hao Zhou
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Zhifeng Pan
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Yanchao Mao
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
21
|
Deng W, Zhou Y, Libanori A, Chen G, Yang W, Chen J. Piezoelectric nanogenerators for personalized healthcare. Chem Soc Rev 2022; 51:3380-3435. [PMID: 35352069 DOI: 10.1039/d1cs00858g] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The development of flexible piezoelectric nanogenerators has experienced rapid progress in the past decade and is serving as the technological foundation of future state-of-the-art personalized healthcare. Due to their highly efficient mechanical-to-electrical energy conversion, easy implementation, and self-powering nature, these devices permit a plethora of innovative healthcare applications in the space of active sensing, electrical stimulation therapy, as well as passive human biomechanical energy harvesting to third party power on-body devices. This article gives a comprehensive review of the piezoelectric nanogenerators for personalized healthcare. After a brief introduction to the fundamental physical science of the piezoelectric effect, material engineering strategies, device structural designs, and human-body centered energy harvesting, sensing, and therapeutics applications are also systematically discussed. In addition, the challenges and opportunities of utilizing piezoelectric nanogenerators for self-powered bioelectronics and personalized healthcare are outlined in detail.
Collapse
Affiliation(s)
- Weili Deng
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA. .,School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Yihao Zhou
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | - Alberto Libanori
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | - Guorui Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | - Weiqing Yang
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
| |
Collapse
|
22
|
Li G, Sun F, Chen H, Jin Y, Zhang A, Du J. High-Efficiency Large-Area Printed Multilayer Liquid Metal Wires for Stretchable Biomedical Sensors with Recyclability. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56961-56971. [PMID: 34802230 DOI: 10.1021/acsami.1c17514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stretchable conductors are essential for soft robots, wearable on-skin electronic technologies, and bioelectronics. The utilization of sophisticated stretchable conductors requires a new, simple, rapid, and large-scale printing process whose features include high stretchability, high precision, multilayers, and recyclability simultaneously for commercial wearable electronics. To address this need, an LM (liquid metal) wire was developed using a simple, rapid, and large-scale soft stamper-based printing process and employed to realize LM wire-based conductors and capacitors, which simultaneously offer high stretchability (>380%), high precision past 50 μm, and electromechanical response stability after stretching for up to an hour. Based on the excellent electromechanical responses, the LM wire-based capacitors, as strain sensors, attached to finger joints resulted in precise gesture detection. Meanwhile, a simple transparent wearable e-skin consisting of a 6 × 6 LM wire-based capacitor array without rigid parts successfully monitored a multi-point touch. At last, a portable noninvasive stretchable multilayer LM wire-based pulse sensor with recyclability is fabricated to monitor the patient's heartbeats. The experimental results reveal that the stretchable biomedical sensors have the potential to help patients to improve their life in healthcare, including replacement prosthetic devices, daily and sports activity tracking, continuous health monitoring, and others.
Collapse
Affiliation(s)
- Guangyong Li
- Smart Materials and Advanced Structure Laboratory, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, Zhejiang, China
- Key Laboratory of Impact and Safety Engineering (Ningbo University), Ministry of Education, Ningbo 315211, China
| | - Fankai Sun
- Key Laboratory of Impact and Safety Engineering (Ningbo University), Ministry of Education, Ningbo 315211, China
| | - Husheng Chen
- Key Laboratory of Impact and Safety Engineering (Ningbo University), Ministry of Education, Ningbo 315211, China
| | - Yuan Jin
- Smart Materials and Advanced Structure Laboratory, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, Zhejiang, China
- Key Laboratory of Impact and Safety Engineering (Ningbo University), Ministry of Education, Ningbo 315211, China
| | - Aibing Zhang
- Smart Materials and Advanced Structure Laboratory, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, Zhejiang, China
- Key Laboratory of Impact and Safety Engineering (Ningbo University), Ministry of Education, Ningbo 315211, China
| | - Jianke Du
- Smart Materials and Advanced Structure Laboratory, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, Zhejiang, China
- Key Laboratory of Impact and Safety Engineering (Ningbo University), Ministry of Education, Ningbo 315211, China
| |
Collapse
|
23
|
Fernandez SV, Cai F, Chen S, Suh E, Tiepelt J, McIntosh R, Marcus C, Acosta D, Mejorado D, Dagdeviren C. On-Body Piezoelectric Energy Harvesters through Innovative Designs and Conformable Structures. ACS Biomater Sci Eng 2021; 9:2070-2086. [PMID: 34735770 DOI: 10.1021/acsbiomaterials.1c00800] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Recent advancements in wearable technology have improved lifestyle and medical practices, enabling personalized care ranging from fitness tracking, to real-time health monitoring, to predictive sensing. Wearable devices serve as an interface between humans and technology; however, this integration is far from seamless. These devices face various limitations such as size, biocompatibility, and battery constraints wherein batteries are bulky, are expensive, and require regular replacement. On-body energy harvesting presents a promising alternative to battery power by utilizing the human body's continuous generation of energy. This review paper begins with an investigation of contemporary energy harvesting methods, with a deep focus on piezoelectricity. We then highlight the materials, configurations, and structures of such methods for self-powered devices. Here, we propose a novel combination of thin-film composites, kirigami patterns, and auxetic structures to lay the groundwork for an integrated piezoelectric system to monitor and sense. This approach has the potential to maximize energy output by amplifying the piezoelectric effect and manipulating the strain distribution. As a departure from bulky, rigid device design, we explore compositions and microfabrication processes for conformable energy harvesters. We conclude by discussing the limitations of these harvesters and future directions that expand upon current applications for wearable technology. Further exploration of materials, configurations, and structures introduce interdisciplinary applications for such integrated systems. Considering these factors can revolutionize the production and consumption of energy as wearable technology becomes increasingly prevalent in everyday life.
Collapse
Affiliation(s)
- Sara V Fernandez
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Fiona Cai
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Sophia Chen
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Architecture, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Emma Suh
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jan Tiepelt
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Rachel McIntosh
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Colin Marcus
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Daniel Acosta
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States.,Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - David Mejorado
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Canan Dagdeviren
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
24
|
Mokhtari F, Azimi B, Salehi M, Hashemikia S, Danti S. Recent advances of polymer-based piezoelectric composites for biomedical applications. J Mech Behav Biomed Mater 2021; 122:104669. [PMID: 34280866 DOI: 10.1016/j.jmbbm.2021.104669] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/19/2021] [Accepted: 06/27/2021] [Indexed: 02/07/2023]
Abstract
Over the past decades, electronics have become central to many aspects of biomedicine and wearable device technologies as a promising personalized healthcare platform. Lead-free piezoelectric materials for converting mechanical into electrical energy through piezoelectric transduction are of significant value in a diverse range of technological applications. Organic piezoelectric biomaterials have attracted widespread attention as the functional materials in the biomedical devices due to their advantages of excellent biocompatibility. They include synthetic and biological polymers. Many biopolymers have been discovered to possess piezoelectricity in an appreciable amount, however their investigation is still preliminary. Due to their piezoelectric properties, better known synthetic fluorinated polymers have been intensively investigated and applied in biomedical applications including controlled drug delivery systems, tissue engineering, microfluidic and artificial muscle actuators, among others. Piezoelectric polymers, especially poly (vinylidene fluoride) (PVDF) and its copolymers are increasingly receiving interest as smart biomaterials due to their ability to convert physiological movements to electrical signals when in a controllable and reproducible manner. Despite possessing the greatest piezoelectric coefficients among all piezoelectric polymers, it is often desirable to increase the electrical outputs. The most promising routes toward significant improvements in the piezoelectric response and energy-harvesting performance of such materials is loading them with various inorganic nanofillers and/or applying some modification during the fabrication process. This paper offers a comprehensive review of the principles, properties, and applications of organic piezoelectric biomaterials (polymers and polymer/ceramic composites) with special attention on PVDF-based polymers and their composites in sensors, drug delivery and tissue engineering. Subsequently focuses on the most common fabrication routes to produce piezoelectric scaffolds, tissue and sensors which is electrospinning process. Promising upcoming strategies and new piezoelectric materials and fabrication techniques for these applications are presented to enable a future integration among these applications.
Collapse
Affiliation(s)
- Fatemeh Mokhtari
- Intelligent Polymer Research Institute, University of Wollongong, Wollongong NSW, Australia
| | - Bahareh Azimi
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy; Department. of Civil and Environmental Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Maryam Salehi
- Department of Civil Engineering, The University of Memphis, Memphis, TN, USA
| | - Samaneh Hashemikia
- Faculty of Textile Engineering, Urmia University of Technology, Urmia, Iran
| | - Serena Danti
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy; Department. of Civil and Environmental Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA.
| |
Collapse
|
25
|
Jiang C, Li X, Lian SWM, Ying Y, Ho JS, Ping J. Wireless Technologies for Energy Harvesting and Transmission for Ambient Self-Powered Systems. ACS NANO 2021; 15:9328-9354. [PMID: 34124880 DOI: 10.1021/acsnano.1c02819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The era of the Internet of Things (IoT) requires sustainable and convenient methods to power widely distributed sensing devices. Self-powered systems have emerged as a potential solution that utilizes ambient energy from environmental sources such as electromagnetic fields, mechanical motion, solar power, and temperature gradients. Recently, the integration of wireless technologies with self-powered systems has attracted significant attention as a way to address challenges in energy harvesting and transport without the cost and inherent physical constraints of wires. This review summarizes recent progress in the application of wireless technology in self-powered systems for applications in harvesting ambient electromagnetic energy and in transferring power between devices. In addition, challenges and development trends in the future of wireless self-powered sensor networks are discussed.
Collapse
Affiliation(s)
- Chengmei Jiang
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P.R. China
| | - Xunjia Li
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P.R. China
| | - Sophie Wan Mei Lian
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Yibin Ying
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P.R. China
| | - John S Ho
- Department of Electrical and Computer Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
| | - Jianfeng Ping
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P.R. China
| |
Collapse
|
26
|
Wang Z, Luan C, Liao G, Liu J, Yao X, Fu J. High-Performance Auxetic Bilayer Conductive Mesh-Based Multi-Material Integrated Stretchable Strain Sensors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23038-23048. [PMID: 33956431 DOI: 10.1021/acsami.1c06295] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
High-performance stretchable strain sensors, particularly those with high sensitivity and broad sensing range, are highly important for wearable devices. Herein, a novel auxetic bilayer conductive mesh strain sensor (ABSS), composed of multi-hardness silicones, is proposed and fabricated by the direct ink writing 3D printing and ink spraying technique. The bilayer conductive mesh comprises a thin layer of high-conductive and crack-prone single-walled carbon nanotubes (SWCNTs) coated on a stretchable carbon-black-doped Ecoflex silicone rubber (CB/Ecoflex) mesh. The former serves as the dominant sensing material by generating SWCNT cracks in the full strain range, while the latter mainly plays the roles of both generating the resistance change and maintaining the conductive paths under high strain conditions. The presence of high-hardness auxetic frame contributes to the formation of longitudinal SWCNT cracks on transverse meshes, enhancing the sensitivity of the sensors. It is shown that the synergistic effect of the bilayer conductive mesh, strain concentration, and auxetic deformation strategy endow ABSS with a high gauge factor (∼ 13.4) that is 6.6 times larger than that of the common sensor. Additionally, this study demonstrates the superior sensing performance of the ABSS for wearable applications including swallowing recognition, respiration monitoring, and joint movement detection.
Collapse
Affiliation(s)
- Zhenwei Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Congcong Luan
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Engineering Training Center, Zhejiang University, Hangzhou 310058, China
| | - Guangxin Liao
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiapeng Liu
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xinhua Yao
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jianzhong Fu
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Engineering Training Center, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
27
|
Tsikriteas ZM, Roscow JI, Bowen CR, Khanbareh H. Flexible ferroelectric wearable devices for medical applications. iScience 2021; 24:101987. [PMID: 33490897 PMCID: PMC7811144 DOI: 10.1016/j.isci.2020.101987] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Wearable electronics are becoming increasingly important for medical applications as they have revolutionized the way physiological parameters are monitored. Ferroelectric materials show spontaneous polarization below the Curie temperature, which changes with electric field, temperature, and mechanical deformation. Therefore, they have been widely used in sensor and actuator applications. In addition, these materials can be used for conversion of human-body energy into electricity for powering wearable electronics. In this paper, we review the recent advances in flexible ferroelectric materials for wearable human energy harvesting and sensing. To meet the performance requirements for medical applications, the most suitable materials and manufacturing techniques are reviewed. The approaches used to enhance performance and achieve long-term sustainability and multi-functionality by integrating other active sensing mechanisms (e.g. triboelectric and piezoresistive effects) are discussed. Data processing and transmission as well as the contribution of wearable piezoelectric devices in early disease detection and monitoring vital signs are reviewed.
Collapse
Affiliation(s)
- Zois Michail Tsikriteas
- Materials and Structures Research Centre, Department of Mechanical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - James I. Roscow
- Materials and Structures Research Centre, Department of Mechanical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Chris R. Bowen
- Materials and Structures Research Centre, Department of Mechanical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Hamideh Khanbareh
- Materials and Structures Research Centre, Department of Mechanical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK
| |
Collapse
|
28
|
Diversiform sensors and sensing systems driven by triboelectric and piezoelectric nanogenerators. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213597] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Stretchable piezoelectric energy harvesters and self-powered sensors for wearable and implantable devices. Biosens Bioelectron 2020; 168:112569. [DOI: 10.1016/j.bios.2020.112569] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/31/2022]
|
30
|
Stretchable Strain Sensor for Human Motion Monitoring Based on an Intertwined-Coil Configuration. NANOMATERIALS 2020; 10:nano10101980. [PMID: 33036403 PMCID: PMC7600075 DOI: 10.3390/nano10101980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/03/2020] [Accepted: 10/03/2020] [Indexed: 02/07/2023]
Abstract
Wearable electronics, such as sensors, actuators, and supercapacitors, have attracted broad interest owing to their promising applications. Nevertheless, practical problems involving their sensitivity and stretchability remain as challenges. In this work, efforts were devoted to fabricating a highly stretchable and sensitive strain sensor based on dip-coating of graphene onto an electrospun thermoplastic polyurethane (TPU) nanofibrous membrane, followed by spinning of the TPU/graphene nanomembrane into an intertwined-coil configuration. Owing to the intertwined-coil configuration and the synergy of the two structures (nanoscale fiber gap and microscale twisting of the fiber gap), the conductive strain sensor showed a stretchability of 1100%. The self-inter-locking of the sensor prevents the coils from uncoiling. Thanks to the intertwined-coil configuration, most of the fibers were wrapped into the coils in the configuration, thus avoiding the falling off of graphene. This special configuration also endowed our strain sensor with an ability of recovery under a strain of 400%, which is higher than the stretching limit of knees and elbows in human motion. The strain sensor detected not only subtle movements (such as perceiving a pulse and identifying spoken words), but also large movements (such as recognizing the motion of fingers, wrists, knees, etc.), showing promising application potential to perform as flexible strain sensors.
Collapse
|
31
|
Wang P, Hu M, Wang H, Chen Z, Feng Y, Wang J, Ling W, Huang Y. The Evolution of Flexible Electronics: From Nature, Beyond Nature, and To Nature. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001116. [PMID: 33101851 PMCID: PMC7578875 DOI: 10.1002/advs.202001116] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/24/2020] [Indexed: 05/05/2023]
Abstract
The flourishing development of multifunctional flexible electronics cannot leave the beneficial role of nature, which provides continuous inspiration in their material, structural, and functional designs. During the evolution of flexible electronics, some originated from nature, some were even beyond nature, and others were implantable or biodegradable eventually to nature. Therefore, the relationship between flexible electronics and nature is undoubtedly vital since harmony between nature and technology evolution would promote the sustainable development. Herein, materials selection and functionality design for flexible electronics that are mostly inspired from nature are first introduced with certain functionality even beyond nature. Then, frontier advances on flexible electronics including the main individual components (i.e., energy (the power source) and the sensor (the electric load)) are presented from nature, beyond nature, and to nature with the aim of enlightening the harmonious relationship between the modern electronics technology and nature. Finally, critical issues in next-generation flexible electronics are discussed to provide possible solutions and new insights in prospective exploration directions.
Collapse
Affiliation(s)
- Panpan Wang
- State Key Laboratory of Advanced Welding and JoiningShenzhen518055China
- Flexible Printed Electronic Technology CenterShenzhen518055China
- School of Materials Science and EngineeringShenzhen518055China
| | - Mengmeng Hu
- State Key Laboratory of Advanced Welding and JoiningShenzhen518055China
- Flexible Printed Electronic Technology CenterShenzhen518055China
- School of Materials Science and EngineeringShenzhen518055China
| | - Hua Wang
- State Key Laboratory of Advanced Welding and JoiningShenzhen518055China
- Flexible Printed Electronic Technology CenterShenzhen518055China
- School of Materials Science and EngineeringShenzhen518055China
| | - Zhe Chen
- State Key Laboratory of Advanced Welding and JoiningShenzhen518055China
- Flexible Printed Electronic Technology CenterShenzhen518055China
- School of Materials Science and EngineeringShenzhen518055China
| | - Yuping Feng
- State Key Laboratory of Advanced Welding and JoiningShenzhen518055China
- Flexible Printed Electronic Technology CenterShenzhen518055China
- School of Materials Science and EngineeringShenzhen518055China
| | - Jiaqi Wang
- State Key Laboratory of Advanced Welding and JoiningShenzhen518055China
- Flexible Printed Electronic Technology CenterShenzhen518055China
- School of Materials Science and EngineeringShenzhen518055China
| | - Wei Ling
- State Key Laboratory of Advanced Welding and JoiningShenzhen518055China
- Flexible Printed Electronic Technology CenterShenzhen518055China
- School of Materials Science and EngineeringShenzhen518055China
| | - Yan Huang
- State Key Laboratory of Advanced Welding and JoiningShenzhen518055China
- Flexible Printed Electronic Technology CenterShenzhen518055China
- School of Materials Science and EngineeringShenzhen518055China
| |
Collapse
|
32
|
Zhu L, Wang Y, Mei D, Ding W, Jiang C, Lu Y. Fully Elastomeric Fingerprint-Shaped Electronic Skin Based on Tunable Patterned Graphene/Silver Nanocomposites. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31725-31737. [PMID: 32569461 DOI: 10.1021/acsami.0c09653] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Multifunctional electronic skins (e-skins), which mimic the somatosensory system of human skin, have been widely employed in wearable devices for intelligent robotics, prosthetics, and human health monitoring. Relatively low sensitivity and severe mutual interferences of multiple stimuli detection have limited the applications of the existing e-skins. To address these challenges, inspired by the physical texture of the natural fingerprint, a novel fully elastomeric e-skin is developed herein for highly sensitive pressure and temperature sensing. A region-partition strategy is utilized to construct the multifunctional fingerprint-shaped sensing elements, where strain isolation structure of indurated film patterns are further embedded to enhance the sensitivity and effectively reduce mutual interferences between the differentiated units. The fully elastomeric graphene/silver/silicone rubber nanocomposites are synthesized with tunable properties including conductivity and sensitivity to satisfy the requirements of highly sensitive pressure and temperature sensing as well as stretchable electrodes. Remarkable progress in sensitivities for both pressure and temperature, up to 5.53 kPa-1 in a wide range of 0.5-120 kPa and 0.42% °C-1 in 25-60 °C, respectively, are achieved with the inappreciable mutual interferences. Further studies demonstrate the great potential of the proposed e-skin in the next-generation of wearable electronics for human-machine interfaces.
Collapse
Affiliation(s)
- Lingfeng Zhu
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yancheng Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Deqing Mei
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wen Ding
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chengpeng Jiang
- Research Center for Smart Sensing, Zhejiang Lab, Hangzhou 310000, China
| | - Yingtong Lu
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
33
|
Leal C, Lopes PA, Serra A, Coelho JFJ, de Almeida AT, Tavakoli M. Untethered Disposable Health Monitoring Electronic Patches with an Integrated Ag 2O-Zn Battery, a AgInGa Current Collector, and Hydrogel Electrodes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:3407-3414. [PMID: 31888325 DOI: 10.1021/acsami.9b18462] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Stretchable electronics stickers that adhere to the human skin and collect biopotentials are becoming increasingly popular for biomonitoring applications. Such stickers include electrodes, stretchable interconnects, silicon chips for processing and communication, and batteries. Here, we demonstrate a material architecture and fabrication technique for a multilayer, stretchable, low-cost, rapidly deployable, and disposable sticker that integrates skin-interfacing hydrogel electrodes, stretchable interconnects, and a Ag2O-Zn (silver oxide-zinc) battery. In addition, the application of a printed biphasic current collector (AgInGa) for the Ag2O-Zn battery is reported for the first time. Surprisingly, and unlike previously reported batteries, the battery capacity increases after being subjected to strain cycles and reaches a record-breaking areal capacity of 6.88 mAh cm-2 post stretch. As a proof of concept, an application of heart rate monitoring is presented. The disposable patch is interfaced with a miniature battery-free electronics circuit for data acquisition, processing, and wireless transmission. A version of the patch partially covering the patient's chest can supply enough energy for continuous operation for ∼6 days.
Collapse
Affiliation(s)
- Cristina Leal
- Institute of Systems and Robotics, Department of Electrical Engineering , University of Coimbra , 3030-290 Coimbra , Portugal
| | - Pedro Alhais Lopes
- Institute of Systems and Robotics, Department of Electrical Engineering , University of Coimbra , 3030-290 Coimbra , Portugal
| | - Arménio Serra
- Department of Chemical Engineering , University of Coimbra , 3030-290 Coimbra , Portugal
| | - Jorge F J Coelho
- Department of Chemical Engineering , University of Coimbra , 3030-290 Coimbra , Portugal
| | - Aníbal T de Almeida
- Institute of Systems and Robotics, Department of Electrical Engineering , University of Coimbra , 3030-290 Coimbra , Portugal
| | - Mahmoud Tavakoli
- Institute of Systems and Robotics, Department of Electrical Engineering , University of Coimbra , 3030-290 Coimbra , Portugal
| |
Collapse
|
34
|
Li Z, Zheng Q, Wang ZL, Li Z. Nanogenerator-Based Self-Powered Sensors for Wearable and Implantable Electronics. RESEARCH (WASHINGTON, D.C.) 2020; 2020:8710686. [PMID: 32259107 PMCID: PMC7085499 DOI: 10.34133/2020/8710686] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/29/2020] [Indexed: 12/19/2022]
Abstract
Wearable and implantable electronics (WIEs) are more and more important and attractive to the public, and they have had positive influences on all aspects of our lives. As a bridge between wearable electronics and their surrounding environment and users, sensors are core components of WIEs and determine the implementation of their many functions. Although the existing sensor technology has evolved to a very advanced level with the rapid progress of advanced materials and nanotechnology, most of them still need external power supply, like batteries, which could cause problems that are difficult to track, recycle, and miniaturize, as well as possible environmental pollution and health hazards. In the past decades, based upon piezoelectric, pyroelectric, and triboelectric effect, various kinds of nanogenerators (NGs) were proposed which are capable of responding to a variety of mechanical movements, such as breeze, body drive, muscle stretch, sound/ultrasound, noise, mechanical vibration, and blood flow, and they had been widely used as self-powered sensors and micro-nanoenergy and blue energy harvesters. This review focuses on the applications of self-powered generators as implantable and wearable sensors in health monitoring, biosensor, human-computer interaction, and other fields. The existing problems and future prospects are also discussed.
Collapse
Affiliation(s)
- Zhe Li
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Zheng
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
- School of Material Science and Engineering Georgia Institute of Technology Atlanta, GA 30332-0245, USA
| | - Zhou Li
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|