1
|
Gu DH, Choi W, Son JS. Self-Assembly of Matchstick-Shaped Inorganic Nano-Surfactants with Controlled Surface Amphiphilicity. JACS AU 2022; 2:2307-2315. [PMID: 36311835 PMCID: PMC9597596 DOI: 10.1021/jacsau.2c00333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/10/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Molecular and nanoscale amphiphiles have been extensively studied as building blocks for organizing macroscopic matter through specific and local interactions. Among various amphiphiles, inorganic Janus nanoparticles have attracted a lot of attention owing to their ability to impart multifunctionalities, although the programmability to achieve complicated self-assembly remains a challenge. Here, we synthesized matchstick-shaped Janus nano-surfactants that mimic organic surfactant molecules and studied their programmable self-assembly. High amphiphilicity was achieved through the hard-soft acid-base-based ligand-exchange reaction with strong selectivity on the surface of nano-matchsticks consisting of Ag2S heads and CdS stems. The obtained nano-surfactants spontaneously assembled into diverse ordered structures such as lamellar, curved, wrinkled, cylindrical, and micellar structures depending on the vertical asymmetry and the interfacial tension controlled by their geometry and surface ligands. The correlation between the phase selectivity of suprastructures and the characteristics of nano-surfactants is discussed. This study realized the molecular amphiphile-like programmability of inorganic Janus nanostructures in self-assembly with the precise control on the surface chemistry.
Collapse
Affiliation(s)
- Da Hwi Gu
- Department
of Materials Science and Engineering, Ulsan
National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Wooyong Choi
- Department
of Materials Science and Engineering, Ulsan
National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jae Sung Son
- Department
of Materials Science and Engineering, Ulsan
National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Graduate
School of Semiconductor Materials and Devices, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
2
|
He X, Deng L, Shi L, Deng Y, Zhou T, Wen L. The interaction between silica flat substrate and functional group–modified nanoparticles. Electrophoresis 2022; 43:1984-1992. [DOI: 10.1002/elps.202100262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 04/27/2022] [Accepted: 05/10/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaohan He
- Mechanical and Electrical Engineering College Hainan University Haikou Hainan P. R. China
| | - Luyu Deng
- Mechanical and Electrical Engineering College Hainan University Haikou Hainan P. R. China
| | - Liuyong Shi
- Mechanical and Electrical Engineering College Hainan University Haikou Hainan P. R. China
| | - Yongbo Deng
- State Key Laboratory of Applied Optics Changchun Institute of Optics Fine Mechanics and Physics (CIOMP) Chinese Academy of Sciences Changchun Jilin P. R. China
| | - Teng Zhou
- Mechanical and Electrical Engineering College Hainan University Haikou Hainan P. R. China
| | - Liping Wen
- CAS Key Laboratory of Bio‐inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing P. R. China
| |
Collapse
|
3
|
Wang W, Zhang M, Pan Z, Biesold GM, Liang S, Rao H, Lin Z, Zhong X. Colloidal Inorganic Ligand-Capped Nanocrystals: Fundamentals, Status, and Insights into Advanced Functional Nanodevices. Chem Rev 2021; 122:4091-4162. [PMID: 34968050 DOI: 10.1021/acs.chemrev.1c00478] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Colloidal nanocrystals (NCs) are intriguing building blocks for assembling various functional thin films and devices. The electronic, optoelectronic, and thermoelectric applications of solution-processed, inorganic ligand (IL)-capped colloidal NCs are especially promising as the performance of related devices can substantially outperform their organic ligand-capped counterparts. This in turn highlights the significance of preparing IL-capped NC dispersions. The replacement of initial bulky and insulating ligands capped on NCs with short and conductive inorganic ones is a critical step in solution-phase ligand exchange for preparing IL-capped NCs. Solution-phase ligand exchange is extremely appealing due to the highly concentrated NC inks with completed ligand exchange and homogeneous ligand coverage on the NC surface. In this review, the state-of-the-art of IL-capped NCs derived from solution-phase inorganic ligand exchange (SPILE) reactions are comprehensively reviewed. First, a general overview of the development and recent advancements of the synthesis of IL-capped colloidal NCs, mechanisms of SPILE, elementary reaction principles, surface chemistry, and advanced characterizations is provided. Second, a series of important factors in the SPILE process are offered, followed by an illustration of how properties of NC dispersions evolve after ILE. Third, surface modifications of perovskite NCs with use of inorganic reagents are overviewed. They are necessary because perovskite NCs cannot withstand polar solvents or undergo SPILE due to their soft ionic nature. Fourth, an overview of the research progresses in utilizing IL-capped NCs for a wide range of applications is presented, including NC synthesis, NC solid and film fabrication techniques, field effect transistors, photodetectors, photovoltaic devices, thermoelectric, and photoelectrocatalytic materials. Finally, the review concludes by outlining the remaining challenges in this field and proposing promising directions to further promote the development of IL-capped NCs in practical application in the future.
Collapse
Affiliation(s)
- Wenran Wang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.,School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Meng Zhang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zhenxiao Pan
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Gill M Biesold
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Shuang Liang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Huashang Rao
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zhiqun Lin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Xinhua Zhong
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
4
|
Magne TM, de Oliveira Vieira T, Alencar LMR, Junior FFM, Gemini-Piperni S, Carneiro SV, Fechine LMUD, Freire RM, Golokhvast K, Metrangolo P, Fechine PBA, Santos-Oliveira R. Graphene and its derivatives: understanding the main chemical and medicinal chemistry roles for biomedical applications. JOURNAL OF NANOSTRUCTURE IN CHEMISTRY 2021; 12:693-727. [PMID: 34512930 PMCID: PMC8419677 DOI: 10.1007/s40097-021-00444-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/30/2021] [Indexed: 05/05/2023]
Abstract
Over the past few years, there has been a growing potential use of graphene and its derivatives in several biomedical areas, such as drug delivery systems, biosensors, and imaging systems, especially for having excellent optical, electronic, thermal, and mechanical properties. Therefore, nanomaterials in the graphene family have shown promising results in several areas of science. The different physicochemical properties of graphene and its derivatives guide its biocompatibility and toxicity. Hence, further studies to explain the interactions of these nanomaterials with biological systems are fundamental. This review has shown the applicability of the graphene family in several biomedical modalities, with particular attention for cancer therapy and diagnosis, as a potent theranostic. This ability is derivative from the considerable number of forms that the graphene family can assume. The graphene-based materials biodistribution profile, clearance, toxicity, and cytotoxicity, interacting with biological systems, are discussed here, focusing on its synthesis methodology, physicochemical properties, and production quality. Despite the growing increase in the bioavailability and toxicity studies of graphene and its derivatives, there is still much to be unveiled to develop safe and effective formulations. Graphic abstract
Collapse
Affiliation(s)
- Tais Monteiro Magne
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro, 21941906 Brazil
| | | | - Luciana Magalhães Rebelo Alencar
- Biophysics and Nanosystems Laboratory, Department of Physics, Federal University of Maranhão, São Luis, Maranhão 65080805 Brazil
| | - Francisco Franciné Maia Junior
- Department of Natural Sciences, Mathematics and Statistics, Federal Rural University of the Semi-Arid, Mossoró, RN 59625-900 Brazil
| | - Sara Gemini-Piperni
- Laboratory of Advanced Science, Universidade Unigranrio, Duque de Caxias, RJ 25071-202 Brazil
| | - Samuel V. Carneiro
- Group of Chemistry of Advanced Materials (GQMat)-Department of Analytical Chemistry and Physic-Chemistry, Federal University of Ceará-Campus do Pici, Fortaleza, Ceará 60451-970 Brazil
| | - Lillian M. U. D. Fechine
- Group of Chemistry of Advanced Materials (GQMat)-Department of Analytical Chemistry and Physic-Chemistry, Federal University of Ceará-Campus do Pici, Fortaleza, Ceará 60451-970 Brazil
| | - Rafael M. Freire
- Institute of Applied Chemical Sciences, Universidad Autónoma de Chile, 8910060 Santiago, Chile
| | - Kirill Golokhvast
- Education and Scientific Center of Nanotechnology, School of Engineering, Far Eastern Federal University, Vladivostok, Russia
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, Saint-Petersburg, Russia
| | - Pierangelo Metrangolo
- Laboratory of Supramolecular and Bio-Nanomaterials, Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta” Politecnico Di Milano, Via L. Mancinelli 7, 20131 Milano, Italy
| | - Pierre B. A. Fechine
- Group of Chemistry of Advanced Materials (GQMat)-Department of Analytical Chemistry and Physic-Chemistry, Federal University of Ceará-Campus do Pici, Fortaleza, Ceará 60451-970 Brazil
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro, 21941906 Brazil
- Laboratory of Nanoradiopharmacy and Synthesis of Radiopharmaceuticals, Zona Oeste State University, Av Manuel Caldeira de Alvarenga, 200, Campo Grande, Rio de Janeiro, 2100000 Brazil
| |
Collapse
|
5
|
Lin Y, Tian Y, Sun H, Hagio T. Progress in modifications of 3D graphene-based adsorbents for environmental applications. CHEMOSPHERE 2021; 270:129420. [PMID: 33423000 DOI: 10.1016/j.chemosphere.2020.129420] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
3D graphene-based materials are promising adsorbents for environmental applications. Furthermore, increasing attention has been paid to the improvement of 3D graphene adsorbents for removing pollutants. In this article, the progress in the modification of 3D graphene materials and their performance for removing pollutants were reviewed. The modification strategies, which were classified as (1) the activation with CO2 (steam and other oxidants) and (2) the surface functionalization with polymers (metals, and metal oxides), were evaluated. The performances of modified 3D graphene materials were assessed for the removal of waste gases (such as CO2), refractory organics, and heavy metals. The challenges and future research directions were discussed for the environmental applications of 3D graphene materials.
Collapse
Affiliation(s)
- Yan Lin
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Yanqin Tian
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Hefei Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Takeshi Hagio
- Institute of Materials Innovation, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan.
| |
Collapse
|
6
|
Deng L, Shi L, Zhou T, Zhang X, Joo SW. Charge Properties and Electric Field Energy Density of Functional Group-Modified Nanoparticle Interacting with a Flat Substrate. MICROMACHINES 2020; 11:E1038. [PMID: 33256021 PMCID: PMC7760699 DOI: 10.3390/mi11121038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 12/23/2022]
Abstract
Functionalized nanofluidics devices have recently emerged as a powerful platform for applications of energy conversion. Inspired by biological cells, we theoretically studied the effect of the interaction between the nanoparticle and the plate which formed the brush layer modified by functional zwitterionic polyelectrolyte (PE) on the bulk charge density of the nanoparticle brush layer, and the charge/discharge effect when the distance between the particle and the plate was changed. In this paper, The Poisson-Nernst-Planck equation system is used to build the theoretical model to study the interaction between the nanoparticle and the plate modified by the PE brush layer, considering brush layer charge regulation in the presence of multiple ionic species. The results show that the bulk charge density of the brush layer decreases with the decrease of the distance between the nanoparticle and the flat substrate when the interaction occurs between the nanoparticle and the plate. When the distance between the particle and the plate is about 2 nm, the charge density of the brush layer at the bottom of the particle is about 69% of that at the top, and the electric field energy density reaches the maximum value when the concentration of the background salt solution is 10 mm.
Collapse
Affiliation(s)
- Luyu Deng
- Mechanical and Electrical Engineering College, Hainan University, Haikou 570228, China; (L.D.); (L.S.); (X.Z.)
| | - Liuyong Shi
- Mechanical and Electrical Engineering College, Hainan University, Haikou 570228, China; (L.D.); (L.S.); (X.Z.)
| | - Teng Zhou
- Mechanical and Electrical Engineering College, Hainan University, Haikou 570228, China; (L.D.); (L.S.); (X.Z.)
| | - Xianman Zhang
- Mechanical and Electrical Engineering College, Hainan University, Haikou 570228, China; (L.D.); (L.S.); (X.Z.)
| | - Sang W. Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
7
|
Kwon YT, Kim H, Mahmood M, Kim YS, Demolder C, Yeo WH. Printed, Wireless, Soft Bioelectronics and Deep Learning Algorithm for Smart Human-Machine Interfaces. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49398-49406. [PMID: 33085453 DOI: 10.1021/acsami.0c14193] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Recent advances in flexible materials and wearable electronics offer a noninvasive, high-fidelity recording of biopotentials for portable healthcare, disease diagnosis, and machine interfaces. Current device-manufacturing methods, however, still heavily rely on the conventional cleanroom microfabrication that requires expensive, time-consuming, and complicated processes. Here, we introduce an additive nanomanufacturing technology that explores a contactless direct printing of aerosol nanomaterials and polymers to fabricate stretchable sensors and multilayered wearable electronics. Computational and experimental studies prove the mechanical flexibility and reliability of soft electronics, considering direct mounting to the deformable human skin with a curvilinear surface. The dry, skin-conformal graphene biosensor, without the use of conductive gels and aggressive tapes, offers an enhanced biopotential recording on the skin and multiple uses (over ten times) with consistent measurement of electromyograms. The combination of soft bioelectronics and deep learning algorithm allows classifying six classes of muscle activities with an accuracy of over 97%, which enables wireless, real-time, continuous control of external machines such as a robotic hand and a robotic arm. Collectively, the comprehensive study of nanomaterials, flexible mechanics, system integration, and machine learning shows the potential of the printed bioelectronics for portable, smart, and persistent human-machine interfaces.
Collapse
Affiliation(s)
- Young-Tae Kwon
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Hojoong Kim
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Musa Mahmood
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yun-Soung Kim
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Carl Demolder
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Wallace H. Coulter Department of Biomedical Engineering, Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Center for Human-Centric Interfaces and Engineering, Neural Engineering Center, Institute for Materials, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
8
|
Kwon YT, Kim YS, Kwon S, Mahmood M, Lim HR, Park SW, Kang SO, Choi JJ, Herbert R, Jang YC, Choa YH, Yeo WH. All-printed nanomembrane wireless bioelectronics using a biocompatible solderable graphene for multimodal human-machine interfaces. Nat Commun 2020; 11:3450. [PMID: 32651424 PMCID: PMC7351733 DOI: 10.1038/s41467-020-17288-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/19/2020] [Indexed: 12/22/2022] Open
Abstract
Recent advances in nanomaterials and nano-microfabrication have enabled the development of flexible wearable electronics. However, existing manufacturing methods still rely on a multi-step, error-prone complex process that requires a costly cleanroom facility. Here, we report a new class of additive nanomanufacturing of functional materials that enables a wireless, multilayered, seamlessly interconnected, and flexible hybrid electronic system. All-printed electronics, incorporating machine learning, offers multi-class and versatile human-machine interfaces. One of the key technological advancements is the use of a functionalized conductive graphene with enhanced biocompatibility, anti-oxidation, and solderability, which allows a wireless flexible circuit. The high-aspect ratio graphene offers gel-free, high-fidelity recording of muscle activities. The performance of the printed electronics is demonstrated by using real-time control of external systems via electromyograms. Anatomical study with deep learning-embedded electrophysiology mapping allows for an optimal selection of three channels to capture all finger motions with an accuracy of about 99% for seven classes. Though wearable electronics remain an attractive technology for bioelectronics, fabrication methods that precisely print biocompatible materials for electronics are needed. Here, the authors report an additive manufacturing process that yields all-printed nanomaterial-based wireless electronics.
Collapse
Affiliation(s)
- Young-Tae Kwon
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Yun-Soung Kim
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Shinjae Kwon
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Musa Mahmood
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hyo-Ryoung Lim
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Si-Woo Park
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, South Korea
| | - Sung-Oong Kang
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, South Korea
| | - Jeongmoon J Choi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Robert Herbert
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Young C Jang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.,Wallace H. Coulter Department of Biomedical Engineering, Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Yong-Ho Choa
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, South Korea
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA. .,Wallace H. Coulter Department of Biomedical Engineering, Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA. .,Neural Engineering Center, Flexible and Wearable Electronics Advanced Research, Institute for Materials, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
9
|
Wu L, Zhang Z, Yang M, Yuan J, Li P, Men X. Graphene enhanced and in situ-formed alginate hydrogels for reducing friction and wear of polymers. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|