1
|
Samsonova AY, Mamaeva MP, Murzin AO, Spanou V, Bashegurova EA, Petrov YV, Stoumpos CC, Kapitonov YV. Cathodoluminescence of MAPbCl 3 Halide Perovskite Single Crystal. J Phys Chem Lett 2024; 15:9405-9410. [PMID: 39241198 DOI: 10.1021/acs.jpclett.4c01933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Chloride perovskites are semiconductors with a near-ultraviolet bandgap that are promising for applications in optoelectronics and photonics. One of the most studied representatives of this family is the methylammonium lead chloride MAPbCl3 (MA+ = CH3NH3+). Low-temperature luminescence spectroscopy of this material demonstrates a complex emission structure. In this work, we have studied the cathodoluminescecne of the MAPbCl3 halide perovskite single crystal at 70 K. Excitation by an electron beam was used to localize different emitters: excitons, defect-related states, and inclusions, previously assigned to the material itself. Exciton luminescence is observed from an undamaged sample, while the defect band is emitted from regions with dislocations, growth defects, and crystal damage. Defect formation under electron beam irradiation was studied. It was found that MAPbCl3 is resistant to irradiation, which supports the defect tolerance of halide perovskites and paves the way for their electron-beam modification for applications.
Collapse
Affiliation(s)
- Anna Yu Samsonova
- Saint Petersburg State University, Ulyanovskaya d.1, Saint Petersburg 198504, Russia
| | - Mariia P Mamaeva
- Saint Petersburg State University, Ulyanovskaya d.1, Saint Petersburg 198504, Russia
| | - Aleksei O Murzin
- Saint Petersburg State University, Ulyanovskaya d.1, Saint Petersburg 198504, Russia
| | - Violeta Spanou
- Department of Materials Science and Engineering, University of Crete, Voutes, 70013 Heraklion, Greece
- Department of Chemistry, University of Crete, Voutes, 71003 Heraklion, Greece
| | - Elena A Bashegurova
- Saint Petersburg State University, Ulyanovskaya d.1, Saint Petersburg 198504, Russia
| | - Yuri V Petrov
- Saint Petersburg State University, Ulyanovskaya d.1, Saint Petersburg 198504, Russia
| | - Constantinos C Stoumpos
- Saint Petersburg State University, Ulyanovskaya d.1, Saint Petersburg 198504, Russia
- Department of Materials Science and Engineering, University of Crete, Voutes, 70013 Heraklion, Greece
| | - Yury V Kapitonov
- Saint Petersburg State University, Ulyanovskaya d.1, Saint Petersburg 198504, Russia
| |
Collapse
|
2
|
Mi Z, Bian H, Yang C, Dou Y, Bettiol AA, Liu X. Real-time single-proton counting with transmissive perovskite nanocrystal scintillators. NATURE MATERIALS 2024; 23:803-809. [PMID: 38191632 DOI: 10.1038/s41563-023-01782-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/06/2023] [Indexed: 01/10/2024]
Abstract
High-sensitivity radiation detectors for energetic particles are essential for advanced applications in particle physics, astronomy and cancer therapy. Current particle detectors use bulk crystals, and thin-film organic scintillators have low light yields and limited radiation tolerance. Here we present transmissive thin scintillators made from CsPbBr3 nanocrystals, designed for real-time single-proton counting. These perovskite scintillators exhibit exceptional sensitivity, with a high light yield (~100,000 photons per MeV) when subjected to proton beams. This enhanced sensitivity is attributed to radiative emission from biexcitons generated through proton-induced upconversion and impact ionization. These scintillators can detect as few as seven protons per second, a sensitivity level far below the rates encountered in clinical settings. The combination of rapid response (~336 ps) and pronounced ionostability enables diverse applications, including single-proton tracing, patterned irradiation and super-resolution proton imaging. These advancements have the potential to improve proton dosimetry in proton therapy and radiography.
Collapse
Affiliation(s)
- Zhaohong Mi
- Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Institute of Modern Physics, Fudan University, Shanghai, China.
- Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore, Singapore.
| | - Hongyu Bian
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Chengyuan Yang
- Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore, Singapore
| | - Yanxin Dou
- Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore, Singapore
| | - Andrew A Bettiol
- Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore, Singapore.
- Division of Science, Yale-NUS College, Singapore, Singapore.
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore, Singapore.
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, Shenzhen University, Shenzhen, China.
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, Singapore, Singapore.
| |
Collapse
|
3
|
Moon J, Mehta Y, Gundogdu K, So F, Gu Q. Metal-Halide Perovskite Lasers: Cavity Formation and Emission Characteristics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211284. [PMID: 36841548 DOI: 10.1002/adma.202211284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Hybrid metal-halide perovskites (MHPs) have shown remarkable optoelectronic properties as well as facile and cost-effective processability. With the success of MHP solar cells and light-emitting diodes, MHPs have also exhibited great potential as gain media for on-chip lasers. However, to date, stable operation of optically pumped MHP lasers and electrically driven MHP lasers-an essential requirement for MHP laser's insertion into chip-scale photonic integrated circuits-is not yet demonstrated. The main obstacles include the instability of MHPs in the atmosphere, rudimentary MHP laser cavity patterning methods, and insufficient understanding of emission mechanisms in MHP materials and cavities. This review aims to provide a detailed overview of different strategies to improve the intrinsic properties of MHPs in the atmosphere and to establish an optimal MHP cavity patterning method. In addition, this review discusses different emission mechanisms in MHP materials and cavities and how to distinguish them.
Collapse
Affiliation(s)
- Jiyoung Moon
- Electrical and Computer Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Yash Mehta
- Materials Science and Engineering, North Carolina State University, Raleigh, NC, 27695, USA
- Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Kenan Gundogdu
- Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
- Physics, North Carolina State University, Raleigh, NC, 27695, USA
| | - Franky So
- Materials Science and Engineering, North Carolina State University, Raleigh, NC, 27695, USA
- Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Qing Gu
- Organic and Carbon Electronics Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
- Physics, North Carolina State University, Raleigh, NC, 27695, USA
- Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
4
|
Han Q, Wang J, Tian S, Hu S, Wu X, Bai R, Zhao H, Zhang DW, Sun Q, Ji L. Inorganic perovskite-based active multifunctional integrated photonic devices. Nat Commun 2024; 15:1536. [PMID: 38378620 PMCID: PMC10879536 DOI: 10.1038/s41467-024-45565-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 01/25/2024] [Indexed: 02/22/2024] Open
Abstract
The development of highly efficient active integrated photonic circuits is crucial for advancing information and computing science. Lead halide perovskite semiconductors, with their exceptional optoelectronic properties, offer a promising platform for such devices. In this study, active micro multifunctional photonic devices were fabricated on monocrystalline CsPbBr3 perovskite thin films using a top-down etching technique with focused ion beams. The etched microwire exhibited a high-quality micro laser that could serve as a light source for integrated devices, facilitating angle-dependent effective propagation between coupled perovskite-microwire waveguides. Employing this strategy, multiple perovskite-based active integrated photonic devices were realized for the first time. These devices included a micro beam splitter that coherently separated lasing signals, an X-coupler performing transfer matrix functions with two distinguishable light sources, and a Mach-Zehnder interferometer manipulating the splitting and coalescence of coherent light beams. These results provide a proof-of-concept for active integrated functionalized photonic devices based on perovskite semiconductors, representing a promising avenue for practical applications in integrated optical chips.
Collapse
Affiliation(s)
- Qi Han
- State Key Laboratory of ASIC & System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Jun Wang
- Department of Optical Science and Engineering, School of Information Science and Technology, Key Laboratory of Micro & Nano Photonic Structures, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, and Shanghai Ultra-precision Optical Manufacturing Engineering Research Center, Fudan University, Shanghai, 200433, China.
| | - Shuangshuang Tian
- Department of Optical Science and Engineering, School of Information Science and Technology, Key Laboratory of Micro & Nano Photonic Structures, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, and Shanghai Ultra-precision Optical Manufacturing Engineering Research Center, Fudan University, Shanghai, 200433, China
| | - Shen Hu
- State Key Laboratory of ASIC & System, School of Microelectronics, Fudan University, Shanghai, 200433, China.
- Jiashan Fudan Institute, Jiaxing, 314110, China.
| | - Xuefeng Wu
- State Key Laboratory of ASIC & System, School of Microelectronics, Fudan University, Shanghai, 200433, China
- Zhangjiang Fudan International Innovation Center, Shanghai, 201210, China
| | - Rongxu Bai
- State Key Laboratory of ASIC & System, School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Haibin Zhao
- Department of Optical Science and Engineering, School of Information Science and Technology, Key Laboratory of Micro & Nano Photonic Structures, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, and Shanghai Ultra-precision Optical Manufacturing Engineering Research Center, Fudan University, Shanghai, 200433, China
| | - David W Zhang
- State Key Laboratory of ASIC & System, School of Microelectronics, Fudan University, Shanghai, 200433, China
- Jiashan Fudan Institute, Jiaxing, 314110, China
- Zhangjiang Fudan International Innovation Center, Shanghai, 201210, China
- Hubei Yangtze Memory Laboratories, Wuhan, 430205, China
| | - Qingqing Sun
- State Key Laboratory of ASIC & System, School of Microelectronics, Fudan University, Shanghai, 200433, China.
- Jiashan Fudan Institute, Jiaxing, 314110, China.
- Zhangjiang Fudan International Innovation Center, Shanghai, 201210, China.
| | - Li Ji
- State Key Laboratory of ASIC & System, School of Microelectronics, Fudan University, Shanghai, 200433, China.
- Jiashan Fudan Institute, Jiaxing, 314110, China.
- Zhangjiang Fudan International Innovation Center, Shanghai, 201210, China.
- Hubei Yangtze Memory Laboratories, Wuhan, 430205, China.
| |
Collapse
|
5
|
Liu CC, Hsiao HH, Chang YC. Nonlinear two-photon pumped vortex lasing based on quasi-bound states in the continuum from perovskite metasurface. SCIENCE ADVANCES 2023; 9:eadf6649. [PMID: 37256940 PMCID: PMC10413678 DOI: 10.1126/sciadv.adf6649] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/24/2023] [Indexed: 06/02/2023]
Abstract
The experimental observation of nonlinear two-photon pumped vortex lasing from perovskite metasurfaces is demonstrated. The vortex lasing beam is based on symmetry-protected quasi-bound states in the continuum (QBICs). The topological charge is estimated to be +1 according to the simulation result. The quality factor and lasing threshold are around 1100 and 4.28 mJ/cm2, respectively. Theoretical analysis reveals that the QBIC mode originates from the magnetic dipole mode. The lasing wavelength can be experimentally designed within a broad spectral range by changing the diameter and periodicity of the metasurface. The finite array size effect of QBIC can affect the quality factor of the lasing and be used to modulate the lasing. Results shown in this study can lead to more complex vortex beam lasing from a single chip and previously unidentified ways to obtain ultrafast modulation of the QBIC lasing via the finite array size effect.
Collapse
Affiliation(s)
- Chi-Ching Liu
- Department of Physics, National Taiwan University, Taipei, Taiwan
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
- Nano Science and Technology, Taiwan International Graduate Program, Academia Sinica and National Taiwan University, Taipei, Taiwan
| | - Hui-Hsin Hsiao
- Department of Engineering Science and Ocean Engineering, National Taiwan University, Taipei, Taiwan
| | - Yun-Chorng Chang
- Department of Physics, National Taiwan University, Taipei, Taiwan
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
- Nano Science and Technology, Taiwan International Graduate Program, Academia Sinica and National Taiwan University, Taipei, Taiwan
| |
Collapse
|
6
|
Hu Z, González MU, Chen Z, Gredin P, Mortier M, García-Martín A, Aigouy L. Luminescence enhancement effects on nanostructured perovskite thin films for Er/Yb-doped solar cells. NANOSCALE ADVANCES 2022; 4:1786-1792. [PMID: 36132159 PMCID: PMC9419586 DOI: 10.1039/d1na00782c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/01/2022] [Indexed: 06/15/2023]
Abstract
Recent attempts to improve solar cell performance by increasing their spectral absorption interval incorporate up-converting fluorescent nanocrystals on the structure. These nanocrystals absorb low energy light and emit higher energy photons that can then be captured by the solar cell active layer. However, this process is very inefficient and it needs to be enhanced by different strategies. In this work, we have studied the effect of nanostructuration of perovskite thin films used in the fabrication of hybrid solar cells on their local optical properties. The perovskite surface was engraved with a focused ion beam to form gratings of one-dimensional grooves. We characterized the surfaces with a fluorescence scanning near-field optical microscope, and obtained maps showing a fringe pattern oriented in a direction parallel to the grooves. By scanning structures as a function of the groove depth, ranging from 100 nm to 200 nm, we observed that a 3-fold luminescence enhancement could be obtained for the deeper ones. Near-field luminescence was found to be enhanced between the grooves, not inside them, independent of the groove depth and the incident polarization direction. This indicates that the ideal position of the nanocrystals is between the grooves. In addition, we also studied the influence of the inhomogeneities of the perovskite layer and we observed that roughness tends to locally modify the intensity of the fringes and distort their alignment. All the experimental results are in good agreement with numerical simulations.
Collapse
Affiliation(s)
- Zhelu Hu
- Laboratoire de Physique et d'Etude des Matériaux (LPEM), CNRS, ESPCI Paris, PSL Research University, UPMC, Sorbonne Universités F-75231 Paris France
| | - María Ujué González
- Instituto de Micro y Nanotecnología IMN-CNM, CSIC, CEI UAM+CSIC Isaac Newton 8 E-28760 Tres Cantos Madrid Spain
| | - Zhuoying Chen
- Laboratoire de Physique et d'Etude des Matériaux (LPEM), CNRS, ESPCI Paris, PSL Research University, UPMC, Sorbonne Universités F-75231 Paris France
| | - Patrick Gredin
- Institut de Recherche de Chimie Paris, Chimie ParisTech, CNRS, PSL Research University 11 rue Pierre et Marie Curie F-75005 Paris France
- Sorbonne Université, Faculté des sciences en Ingénierie 4 place Jussieu F-75005 Paris France
| | - Michel Mortier
- Institut de Recherche de Chimie Paris, Chimie ParisTech, CNRS, PSL Research University 11 rue Pierre et Marie Curie F-75005 Paris France
| | - Antonio García-Martín
- Instituto de Micro y Nanotecnología IMN-CNM, CSIC, CEI UAM+CSIC Isaac Newton 8 E-28760 Tres Cantos Madrid Spain
| | - Lionel Aigouy
- Laboratoire de Physique et d'Etude des Matériaux (LPEM), CNRS, ESPCI Paris, PSL Research University, UPMC, Sorbonne Universités F-75231 Paris France
| |
Collapse
|
7
|
Jia L, Wu J, Zhang Y, Qu Y, Jia B, Chen Z, Moss DJ. Fabrication Technologies for the On-Chip Integration of 2D Materials. SMALL METHODS 2022; 6:e2101435. [PMID: 34994111 DOI: 10.1002/smtd.202101435] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/12/2021] [Indexed: 06/14/2023]
Abstract
With compact footprint, low energy consumption, high scalability, and mass producibility, chip-scale integrated devices are an indispensable part of modern technological change and development. Recent advances in 2D layered materials with their unique structures and distinctive properties have motivated their on-chip integration, yielding a variety of functional devices with superior performance and new features. To realize integrated devices incorporating 2D materials, it requires a diverse range of device fabrication techniques, which are of fundamental importance to achieve good performance and high reproducibility. This paper reviews the state-of-art fabrication techniques for the on-chip integration of 2D materials. First, an overview of the material properties and on-chip applications of 2D materials is provided. Second, different approaches used for integrating 2D materials on chips are comprehensively reviewed, which are categorized into material synthesis, on-chip transfer, film patterning, and property tuning/modification. Third, the methods for integrating 2D van der Waals heterostructures are also discussed and summarized. Finally, the current challenges and future perspectives are highlighted.
Collapse
Affiliation(s)
- Linnan Jia
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Jiayang Wu
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Yuning Zhang
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Yang Qu
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Baohua Jia
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Zhigang Chen
- MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin, 300457, China
- Department of Physics and Astronomy, San Francisco State University, San Francisco, CA, 94132, USA
| | - David J Moss
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| |
Collapse
|
8
|
Zhizhchenko AY, Cherepakhin AB, Masharin MA, Pushkarev AP, Kulinich SA, Kuchmizhak AA, Makarov SV. Directional Lasing from Nanopatterned Halide Perovskite Nanowire. NANO LETTERS 2021; 21:10019-10025. [PMID: 34802241 DOI: 10.1021/acs.nanolett.1c03656] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Halide perovskite nanowire-based lasers have become a powerful tool for modern nanophotonics, being deeply subwavelength in cross-section and demonstrating low-threshold lasing within the whole visible spectral range owing to the huge gain of material even at room temperature. However, their emission directivity remains poorly controlled because of the efficient outcoupling of radiation through their subwavelength facets working as pointlike light sources. Here, we achieve directional lasing from a single perovskite CsPbBr3 nanowire by imprinting a nanograting on its surface, which provides stimulated emission outcoupling to its vertical direction with a divergence angle around 2°. The nanopatterning is carried out by the high-throughput laser ablation method, which preserves the luminescent properties of the material that is typically deteriorated after processing via conventional lithographic approaches. Moreover, nanopatterning of the perovskite nanowire is found to decrease the number of the lasing modes with a 2-fold increase of the quality factor of the remaining modes.
Collapse
Affiliation(s)
- Alexey Yu Zhizhchenko
- Far Eastern Federal University, Vladivostok 690091, Russia
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Science, Vladivostok 690041, Russia
| | - Artem B Cherepakhin
- Far Eastern Federal University, Vladivostok 690091, Russia
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Science, Vladivostok 690041, Russia
| | | | | | - Sergei A Kulinich
- Far Eastern Federal University, Vladivostok 690091, Russia
- Research Institute of Science and Technology, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
| | - Aleksandr A Kuchmizhak
- Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Science, Vladivostok 690041, Russia
- Pacific Quantum Center, Far Eastern Federal University, Russky Island, Vladivostok 690922, Russia
| | | |
Collapse
|
9
|
Liu G, Jia S, Wang J, Li Y, Yang H, Wang S, Gong Q. Toward Microlasers with Artificial Structure Based on Single-Crystal Ultrathin Perovskite Films. NANO LETTERS 2021; 21:8650-8656. [PMID: 34609149 DOI: 10.1021/acs.nanolett.1c02618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A perovskite microlaser is potentially valuable for integrated photonics due to its excellent properties. The artificial microlasers were mostly made on polycrystalline films. Though a perovskite single crystal has significantly improved properties in comparison with its polycrystalline counterpart, an artificial microlaser based on single-crystal perovskite has been much less explored due to the difficulty in producing an ultrathin-single-crystal (UTSC) film. Here we show a device processing based on a perovskite UTSC film, confirming the high performance of the UTSC device with a quality factor of 1250. The single-crystal device shows 4.5 times the quality factor and 8 times the radiation intensity in comparison with its polycrystalline counterpart. The experiment first proved that hybrid perovskite microlasers with a subwavelength fine structure can be processed by focused ion beams (FIB). In addition, a wavelength-tunable distributed feedback (DFB) laser is demonstrated, with a tuning range of ∼4.6 nm. The research provides an easily applicable approach for perovskite photonic devices with excellent performance.
Collapse
Affiliation(s)
- Guodong Liu
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Shangtong Jia
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Ju Wang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Yifan Li
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Hong Yang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Shufeng Wang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, People's Republic of China
- Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, People's Republic of China
- Peking University, Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu226010, People's Republic of China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Qihuang Gong
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871, People's Republic of China
- Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, People's Republic of China
- Peking University, Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu226010, People's Republic of China
| |
Collapse
|
10
|
Sheng Y, Liu C, Yu L, Yang Y, Hu F, Sheng C, Di Y, Dong L, Gan Z. Microsteganography on all inorganic perovskite micro-platelets by direct laser writing. NANOSCALE 2021; 13:14450-14459. [PMID: 34473165 DOI: 10.1039/d1nr02511b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Direct laser writing (DLW) is a mask-free and cost-efficient micro-fabrication technology, which has been explored to pattern structures on perovskites. However, there is still a lack of research on DLW methods for microsteganography. Herein, we developed a sophisticated DLW condition to pattern on CsPbBr3 perovskite micro-platelets (MPs). In addition to the reversible PL quenching caused by photo-induced ion migration, permanent nonradiative centers are also produced by the DLW treatment. Therefore, the patterned information is retained after long-term storage. Meanwhile, the mild DLW condition only results in a faint trace, which is almost invisible under a regular optical microscope. Thus, the patterned information is hidden unless applying an excitation source, which paves the way for applications in microsteganography and anti-counterfeiting. As a proof-of-concept, different patterns are drawn on the CsPbBr3 MPs by DLW, which are only observable under a fluorescence microscope.
Collapse
Affiliation(s)
- Yuhang Sheng
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China.
| | - Cihui Liu
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China.
| | - Liyan Yu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yunyi Yang
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, 3122 Australia
| | - Fengrui Hu
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| | - Chong Sheng
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| | - Yunsong Di
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China.
| | - Lifeng Dong
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Zhixing Gan
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China.
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
11
|
Murakami Y, Ishiwari F, Okamoto K, Kozawa T, Saeki A. Electron Beam Irradiation of Lead Halide Perovskite Solar Cells: Dedoping of Organic Hole Transport Materials despite Hardness of the Perovskite Layer. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24824-24832. [PMID: 34008952 DOI: 10.1021/acsami.1c04439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Organic-inorganic lead halide perovskite solar cells (PSCs) are highly efficient, flexible, lightweight, and even tolerant to radiation, such as protons, electron beams (EB), and γ-rays, all of which makes them plausible candidates for use in space satellites and spacecrafts. However, the mechanisms of radiation damage of each component of PSC [an organic hole transport material (HTM), a perovskite layer, and an electron transport material (ETM)] are not yet fully understood. Herein, we investigated the EB irradiation effect (100 keV, up to 2.5 × 1015 cm-2) on binary-mixed A site cations and halide perovskite (MA0.13FA0.87PbI2.61Br0.39, MA:methylammonium cation and FA:formaminidium cation), a molecular HTM of doped SpiroOMeTAD, and an inorganic ETM of mesoporous TiO2. Despite the decreased power conversion efficiency of PSCs upon EB exposure, the photoconductivities of the perovskite, HTM, and ETM layers remained intact. In contrast, significant dedoping of HTM was observed, as confirmed by steady-state conductivity, photoabsorption, and X-ray photoelectron spectroscopy measurements. Notably, this damage could be healed by exposure to short-wavelength light, leading to a partial recovery of the PSC efficiency. Our work exemplifies the robustness of perovskite against EB and the degradation mechanism of the overall PSC performance.
Collapse
Affiliation(s)
- Yoshiyuki Murakami
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Fumitaka Ishiwari
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Frontier Research Base for Global Young Researchers, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - Kazumasa Okamoto
- The Institute of Scientific and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Takahiro Kozawa
- The Institute of Scientific and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Akinori Saeki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
12
|
Wang K, Xing G, Song Q, Xiao S. Micro- and Nanostructured Lead Halide Perovskites: From Materials to Integrations and Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2000306. [PMID: 32578267 DOI: 10.1002/adma.202000306] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/09/2020] [Indexed: 05/25/2023]
Abstract
In the past decade, lead halide perovskites have been intensively explored due to their promising future in photovoltaics. Owing to their remarkable material properties such as solution processability, nice defect tolerance, broad bandgap tunability, high quantum yields, large refractive index, and strong nonlinear effects, this family of materials has also shown advantages in many other optoelectronic devices including microlasers, photodetectors, waveguides, and metasurfaces. Very recently, the stability of perovskite devices has been improved with the optimization of synthesis methods and device architectures. It is widely accepted that it is the time to integrate all the perovskite devices into a real system. However, for integrated photonic circuits, the shapes and distributions of chemically synthesized perovskites are quite random and not suitable for integration. Consequently, controlled synthesis and the top-down fabrication process are highly desirable to break the barriers. Herein, the developments of patterning and integration techniques for halide perovskites, as well as the structure/function relationships, are systematically reviewed. The recent progress in the study of optical responses originating from nanostructured perovskites is also presented. Lastly, the challenges and perspective for nanostructured-perovskite devices are discussed.
Collapse
Affiliation(s)
- Kaiyang Wang
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, P. R. China
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR, 999078, P. R. China
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR, 999078, P. R. China
| | - Qinghai Song
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, P. R. China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, P. R. China
| | - Shumin Xiao
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, P. R. China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, P. R. China
| |
Collapse
|
13
|
Zhong Y, Liao K, Du W, Zhu J, Shang Q, Zhou F, Wu X, Sui X, Shi J, Yue S, Wang Q, Zhang Y, Zhang Q, Hu X, Liu X. Large-Scale Thin CsPbBr 3 Single-Crystal Film Grown on Sapphire via Chemical Vapor Deposition: Toward Laser Array Application. ACS NANO 2020; 14:15605-15615. [PMID: 33169976 DOI: 10.1021/acsnano.0c06380] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Single-crystal perovskites with excellent photophysical properties are considered to be ideal materials for optoelectronic devices, such as lasers, light-emitting diodes and photodetectors. However, the growth of large-scale perovskite single-crystal films (SCFs) with high optical gain by vapor-phase epitaxy remains challenging. Herein, we demonstrated a facile method to fabricate large-scale thin CsPbBr3 SCFs (∼300 nm) on the c-plane sapphire substrate. High temperature is found to be the key parameter to control low reactant concentration and sufficient surface diffusion length for the growth of continuous CsPbBr3 SCFs. Through the comprehensive study of the carrier dynamics, we clarify that the trapped-related exciton recombination has the main effect under low carrier density, while the recombination of excitons and free carriers coexist until free carriers plays the dominate role with increasing carrier density. Furthermore, an extremely low-threshold (∼8 μJ cm-2) amplified spontaneous emission was achieved at room temperature due to the high optical gain up to 1255 cm-1 at a pump power of 20 times threshold (∼20 Pth). A microdisk array was prepared using a focused ion beam etching method, and a single-mode laser was achieved on a 3 μm diameter disk with the threshold of 1.6 μJ cm-2. Our experimental results not only present a versatile method to fabricate large-scale SCFs of CsPbBr3 but also supply an arena to boost the optoelectronic applications of CsPbBr3 with high performance.
Collapse
Affiliation(s)
- Yangguang Zhong
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Kun Liao
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Collaborative Innovation Center of Quantum Matter Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, P.R. China
| | - Wenna Du
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jiangrui Zhu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Qiuyu Shang
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Fan Zhou
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Xianxin Wu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xinyu Sui
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jianwei Shi
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Shuai Yue
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Qi Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Yanfeng Zhang
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Qing Zhang
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Xiaoyong Hu
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Collaborative Innovation Center of Quantum Matter Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, P.R. China
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
14
|
Jeong B, Han H, Park C. Micro- and Nanopatterning of Halide Perovskites Where Crystal Engineering for Emerging Photoelectronics Meets Integrated Device Array Technology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000597. [PMID: 32530144 DOI: 10.1002/adma.202000597] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/04/2020] [Accepted: 03/11/2020] [Indexed: 05/25/2023]
Abstract
Tremendous efforts have been devoted to developing thin film halide perovskites (HPs) for use in high-performance photoelectronic devices, including solar cells, displays, and photodetectors. Furthermore, structured HPs with periodic micro- or nanopatterns have recently attracted significant interest due to their potential to not only improve the efficiency of an individual device via the controlled arrangement of HP crystals into a confined geometry, but also to technologically pixelate the device into arrays suitable for future commercialization. However, micro- or nanopatterning of HPs is not usually compatible with conventional photolithography, which is detrimental to ionic HPs and requires special techniques. Herein, a comprehensive overview of the state-of-the-art technologies used to develop micro- and nanometer-scale HP patterns, with an emphasis on their controlled microstructures based on top-down and bottom-up approaches, and their potential for future applications, is provided. Top-down approaches include modified conventional lithographic techniques and soft-lithographic methods, while bottom-up approaches include template-assisted patterning of HPs based on lithographically defined prepatterns and self-assembly. HP patterning is shown here to not only improve device performance, but also to reveal the unprecedented functionality of HPs, leading to new research areas that utilize their novel photophysical properties.
Collapse
Affiliation(s)
- Beomjin Jeong
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyowon Han
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Cheolmin Park
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
15
|
Ushakova EV, Cherevkov SA, Kuznetsova VA, Baranov AV. Lead-Free Perovskites for Lighting and Lasing Applications: A Minireview. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3845. [PMID: 31766585 PMCID: PMC6926615 DOI: 10.3390/ma12233845] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 11/16/2022]
Abstract
Research on materials with perovskite crystal symmetry for photonics applications represent a rapidly growing area of the photonics development due to their unique optical and electrical properties. Among them are high charge carrier mobility, high photoluminescence quantum yield, and high extinction coefficients, which can be tuned through all visible range by a controllable change in chemical composition. To date, most of such materials contain lead atoms, which is one of the obstacles for their large-scale implementation. This disadvantage can be overcome via the substitution of lead with less toxic chemical elements, such as Sn, Bi, Yb, etc., and their mixtures. Herein, we summarized the scientific works from 2016 related to the lead-free perovskite materials with stress on the lasing and lighting applications. The synthetic approaches, chemical composition, and morphology of materials, together with the optimal device configurations depending on the material parameters are summarized with a focus on future challenges.
Collapse
Affiliation(s)
- Elena V. Ushakova
- Center of Information Optical Technologies, ITMO University, 49 Kronverksky pr., Saint Petersburg 197101, Russia; (S.A.C.); (V.A.K.); (A.V.B.)
- Department of Materials Science and Engineering, and Center for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Sergei A. Cherevkov
- Center of Information Optical Technologies, ITMO University, 49 Kronverksky pr., Saint Petersburg 197101, Russia; (S.A.C.); (V.A.K.); (A.V.B.)
| | - Vera A. Kuznetsova
- Center of Information Optical Technologies, ITMO University, 49 Kronverksky pr., Saint Petersburg 197101, Russia; (S.A.C.); (V.A.K.); (A.V.B.)
| | - Alexander V. Baranov
- Center of Information Optical Technologies, ITMO University, 49 Kronverksky pr., Saint Petersburg 197101, Russia; (S.A.C.); (V.A.K.); (A.V.B.)
| |
Collapse
|
16
|
Gold Nanoparticles and Nanorods in Nuclear Medicine: A Mini Review. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9163232] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In the last decade, many innovative nanodrugs have been developed, as well as many nanoradiocompounds that show amazing features in nuclear imaging and/or radiometabolic therapy. Their potential uses offer a wide range of possibilities. It can be possible to develop nondimensional systems of existing radiopharmaceuticals or build engineered systems that combine a nanoparticle with the radiopharmaceutical, a tracer, and a target molecule, and still develop selective nanodetection systems. This review focuses on recent advances regarding the use of gold nanoparticles and nanorods in nuclear medicine. The up-to-date advancements will be shown concerning preparations with special attention on the dimensions and functionalizations that are most used to attain an enhanced performance of gold engineered nanomaterials. Many ideas are offered regarding recent in vitro and in vivo studies. Finally, the recent clinical trials and applications are discussed.
Collapse
|