1
|
Ma Y, Peng J, Tian J, Gao W, Xu J, Li F, Tieu P, Hu H, Wu Y, Chen W, Pan L, Shang W, Tao P, Song C, Zhu H, Pan X, Deng T, Wu J. Highly stable and active catalyst in fuel cells through surface atomic ordering. SCIENCE ADVANCES 2024; 10:eado4935. [PMID: 39423264 PMCID: PMC11488532 DOI: 10.1126/sciadv.ado4935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 09/13/2024] [Indexed: 10/21/2024]
Abstract
Shape-controlled alloy nanoparticle catalysts have been shown to exhibit improved performance in the oxygen reduction reaction (ORR) in liquid half-cells. However, translating the success to catalyst layers in fuel cells faces challenges due to the more demanding operation conditions in membrane electrode assembly (MEA). Balancing durability and activity is crucial. Here, we developed a strategy that limits the atomic diffusion within surface layers, fostering the phase transition and shape retention during thermal treatment. This enables selective transformation of platinum-iron nanowire surfaces into intermetallic structures via atomic ordering at a low temperature. The catalysts exhibit enhanced MEA stability with 50% less Fe loss while maintaining high catalytic activity comparable to that in half-cells. Density functional calculations suggest that the ordered intermetallic surface stabilizes morphology against rapid corrosion and improves the ORR activity. The surface engineering through atomic ordering presents potential for practical application in fuel cells with shape-controlled Pt-based alloy catalysts.
Collapse
Affiliation(s)
- Yanling Ma
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Jiaheng Peng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Jiakang Tian
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Wenpei Gao
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- Department of Materials Science and Engineering, University of California, Irvine, 5200 Engineering Hall, Irvine, CA 92697, USA
- Department of Materials Science and Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC 27695, USA
- Future Material Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jialiang Xu
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Fan Li
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Peter Tieu
- Department of Chemistry, University of California, Irvine, 1102 Natural Science II, Irvine, CA 92697, USA
| | - Hao Hu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Yi Wu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Wenlong Chen
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Lei Pan
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Wen Shang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Peng Tao
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Chengyi Song
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Hong Zhu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Xiaoqing Pan
- Department of Materials Science and Engineering, University of California, Irvine, 5200 Engineering Hall, Irvine, CA 92697, USA
- Department of Physics and Astronomy, University of California, Irvine, 4129 Frederick Reines Hall, Irvine, CA 92697, USA
| | - Tao Deng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- Center of Hydrogen Science, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Jianbo Wu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- Future Material Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Center of Hydrogen Science, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- Materials Genome Initiative Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
2
|
Ko K, Kim D, Min J, Sravani B, Kim Y, Lee S, Sul T, Jang S, Jung N. Redesign of Anode Catalyst for Sustainable Survival of Fuel Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307073. [PMID: 38225690 DOI: 10.1002/advs.202307073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/15/2023] [Indexed: 01/17/2024]
Abstract
Polymer electrolyte membrane fuel cells (PEMFCs) suffer from severe performance degradation when operating under harsh conditions such as fuel starvation, shut-down/start-up, and open circuit voltage. A fundamental solution to these technical issues requires an integrated approach rather than condition-specific solutions. In this study, an anode catalyst based on Pt nanoparticles encapsulated in a multifunctional carbon layer (MCL), acting as a molecular sieve layer and protective layer is designed. The MCL enabled selective hydrogen oxidation reaction on the surface of the Pt nanoparticles while preventing their dissolution and agglomeration. Thus, the structural deterioration of a membrane electrode assembly can be effectively suppressed under various harsh operating conditions. The results demonstrated that redesigning the anode catalyst structure can serve as a promising strategy to maximize the service life of the current PEMFC system.
Collapse
Affiliation(s)
- Keonwoo Ko
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Dongsu Kim
- School of Mechanical Engineering, Kookmin University, Seoul, 02707, Republic of Korea
| | - Jiho Min
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
- Fuel Cell Laboratory, Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea
| | - Bathinapatla Sravani
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Yunjin Kim
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Sanghyeok Lee
- School of Mechanical Engineering, Kookmin University, Seoul, 02707, Republic of Korea
| | - Taejun Sul
- School of Mechanical Engineering, Kookmin University, Seoul, 02707, Republic of Korea
| | - Segeun Jang
- School of Mechanical Engineering, Kookmin University, Seoul, 02707, Republic of Korea
| | - Namgee Jung
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| |
Collapse
|
3
|
Wang J, Pan F, Chen W, Li B, Yang D, Ming P, Wei X, Zhang C. Pt-Based Intermetallic Compound Catalysts for the Oxygen Reduction Reaction: Structural Control at the Atomic Scale to Achieve a Win–Win Situation Between Catalytic Activity and Stability. ELECTROCHEM ENERGY R 2023. [DOI: 10.1007/s41918-022-00141-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
4
|
Lin F, Li M, Zeng L, Luo M, Guo S. Intermetallic Nanocrystals for Fuel-Cells-Based Electrocatalysis. Chem Rev 2023; 123:12507-12593. [PMID: 37910391 DOI: 10.1021/acs.chemrev.3c00382] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Electrocatalysis underpins the renewable electrochemical conversions for sustainability, which further replies on metallic nanocrystals as vital electrocatalysts. Intermetallic nanocrystals have been known to show distinct properties compared to their disordered counterparts, and been long explored for functional improvements. Tremendous progresses have been made in the past few years, with notable trend of more precise engineering down to an atomic level and the investigation transferring into more practical membrane electrode assembly (MEA), which motivates this timely review. After addressing the basic thermodynamic and kinetic fundamentals, we discuss classic and latest synthetic strategies that enable not only the formation of intermetallic phase but also the rational control of other catalysis-determinant structural parameters, such as size and morphology. We also demonstrate the emerging intermetallic nanomaterials for potentially further advancement in energy electrocatalysis. Then, we discuss the state-of-the-art characterizations and representative intermetallic electrocatalysts with emphasis on oxygen reduction reaction evaluated in a MEA setup. We summarize this review by laying out existing challenges and offering perspective on future research directions toward practicing intermetallic electrocatalysts for energy conversions.
Collapse
Affiliation(s)
- Fangxu Lin
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Menggang Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Lingyou Zeng
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Li H, Zhao H, Tao B, Xu G, Gu S, Wang G, Chang H. Pt-Based Oxygen Reduction Reaction Catalysts in Proton Exchange Membrane Fuel Cells: Controllable Preparation and Structural Design of Catalytic Layer. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4173. [PMID: 36500796 PMCID: PMC9735689 DOI: 10.3390/nano12234173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Proton exchange membrane fuel cells (PEMFCs) have attracted extensive attention because of their high efficiency, environmental friendliness, and lack of noise pollution. However, PEMFCs still face many difficulties in practical application, such as insufficient power density, high cost, and poor durability. The main reason for these difficulties is the slow oxygen reduction reaction (ORR) on the cathode due to the insufficient stability and catalytic activity of the catalyst. Therefore, it is very important to develop advanced platinum (Pt)-based catalysts to realize low Pt loads and long-term operation of membrane electrode assembly (MEA) modules to improve the performance of PEMFC. At present, the research on PEMFC has mainly been focused on two areas: Pt-based catalysts and the structural design of catalytic layers. This review focused on the latest research progress of the controllable preparation of Pt-based ORR catalysts and structural design of catalytic layers in PEMFC. Firstly, the design principle of advanced Pt-based catalysts was introduced. Secondly, the controllable preparation of catalyst structure, morphology, composition and support, and their influence on catalytic activity of ORR and overall performance of PEMFC, were discussed. Thirdly, the effects of optimizing the structure of the catalytic layer (CL) on the performance of MEA were analyzed. Finally, the challenges and prospects of Pt-based catalysts and catalytic layer design were discussed.
Collapse
Affiliation(s)
- Hongda Li
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
- Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hao Zhao
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Boran Tao
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
- Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guoxiao Xu
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Shaonan Gu
- Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-Scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Guofu Wang
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Haixin Chang
- Liuzhou Key Laboratory for New Energy Vehicle Power Lithium Battery, School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
- Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
6
|
Yang M, Wan J, Yan C. Ordered intermetallic compounds combining precious metals and transition metals for electrocatalysis. Front Chem 2022; 10:1007931. [PMID: 36186599 PMCID: PMC9520242 DOI: 10.3389/fchem.2022.1007931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Ordered intermetallic alloys with significantly improved activity and stability have attracted extensive attention as advanced electrocatalysts for reactions in polymer electrolyte membrane fuel cells (PEMFCs). Here, recent advances in tuning intermetallic Pt- and Pd-based nanocrystals with tunable morphology and structure in PEMFCs to catalyze the cathodic reduction of oxygen and the anodic oxidation of fuels are highlighted. The fabrication/tuning of ordered noble metal-transition metal-bonded intermetallic PtM and PdM (M = Fe, Co) nanocrystals by using high temperature annealing treatments to promote the activity and stability of electrocatalytic reactions are discussed. Furthermore, the further improvement of the efficiency of this unique ordered intermetallic alloys for electrocatalysis are also proposed and discussed. This report aims to demonstrate the potential of the ordered intermetallic strategy of noble and transition metals to facilitate electrocatalysis and facilitate more research efforts in this field.
Collapse
Affiliation(s)
- Meicheng Yang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, PRChina
| | - Jinxin Wan
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, PRChina
| | - Chao Yan
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, PRChina
- *Correspondence: Chao Yan,
| |
Collapse
|
7
|
Chang L, Wu C, Wang Q, Li T, Zhao D, Wang K, Wang Q, Pei W. Operating interfaces to synthesize L1 0-FePt@Bi-rich nanoparticles by modifying the heating process. NANOSCALE 2022; 14:11738-11744. [PMID: 35916325 DOI: 10.1039/d2nr01493a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A facile strategy to operate interfaces when synthesizing L10-FePt@Bi-rich nanoparticles (NPs) has been proposed. Two interfaces are indispensable to obtain the high ordering L10-FePt structure. One is the mismatched interfaces between the initial γ-PtBi2 nuclei and the disordered fcc-FePt phase. The other is the in situ grown coherent interfaces between the L10-FePt and Bi-rich phases. Increasing the heating rates when the temperature rises from 120 °C to 310 °C benefits the formation of mismatched interfaces and improves the uniformity of phases and composition in NPs. Reducing the heating rate at higher temperature ensures sufficient time for Bi to diffuse across the coherent interface, which facilitates the disorder-order transition of L10-FePt NPs. This study provides a new perspective on operating interfaces during the wet-chemical synthesis process.
Collapse
Affiliation(s)
- Ling Chang
- Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China.
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Chun Wu
- Key Laboratory of Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
- School of Materials Science and Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Qunshou Wang
- Key Laboratory of Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
| | - Ting Li
- Key Laboratory of Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
| | - Dong Zhao
- Key Laboratory of Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
| | - Kai Wang
- Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China.
| | - Qiang Wang
- Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China.
| | - Wenli Pei
- Key Laboratory of Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
8
|
Shi J, Zhang J, Chen Y, Xue Y, Zhang J, Zhang C, Chen J, Wang R. Design of Au Surface‐doped PtFe Catalyst to Modulate Oxygen Binding Energy for Highly Efficient Oxygen Reduction Reaction. ChemistrySelect 2022. [DOI: 10.1002/slct.202200675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Junjie Shi
- College of Materials Science and Engineering Sichuan University Chengdu 610065 China
| | - Jie Zhang
- College of Materials Science and Engineering Sichuan University Chengdu 610065 China
| | - Yihan Chen
- College of Materials Science and Engineering Sichuan University Chengdu 610065 China
| | - Yali Xue
- College of Materials Science and Engineering Sichuan University Chengdu 610065 China
| | - Jin Zhang
- College of Materials Science and Engineering Sichuan University Chengdu 610065 China
| | - Chenyang Zhang
- College of Materials Science and Engineering Sichuan University Chengdu 610065 China
| | - Jinwei Chen
- College of Materials Science and Engineering Sichuan University Chengdu 610065 China
| | - Ruilin Wang
- College of Materials Science and Engineering Sichuan University Chengdu 610065 China
| |
Collapse
|
9
|
Liu M, Xiao X, Li Q, Luo L, Ding M, Zhang B, Li Y, Zou J, Jiang B. Recent progress of electrocatalysts for oxygen reduction in fuel cells. J Colloid Interface Sci 2021; 607:791-815. [PMID: 34536936 DOI: 10.1016/j.jcis.2021.09.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/11/2022]
Abstract
Oxygen reduction reaction (ORR) has gradually been in the limelight in recent years because of its great application potential for fuel cells and rechargeable metal-air batteries. Therefore, significant issues are increasingly focused on developing effective and economical ORR electrocatalysts. This review begins with the reaction mechanisms and theoretical calculations of ORR in acidic and alkaline media. The latest reports and challenges in ORR electrocatalysis are traced. Most importantly, the latest advances in the development of ORR electrocatalysts are presented in detail, including platinum group metal (PGM), transition metal, and carbon-based electrocatalysts with various nanostructures. Furthermore, the development prospects and challenges of ORR electrocatalysts are speculated and discussed. These insights would help to formulate the design guidelines for highly-active ORR electrocatalysts and affect future research to obtain new knowledge for ORR mechanisms.
Collapse
Affiliation(s)
- Mingyang Liu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China; College of Materials Science and Chemical Engineering, Harbin Engineering University, China
| | - Xudong Xiao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Qi Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Laiyu Luo
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Minghui Ding
- College of Materials Science and Chemical Engineering, Harbin Engineering University, China.
| | - Bin Zhang
- College of Materials Science and Chemical Engineering, Harbin Engineering University, China; Institute of Petroleum Chemistry Heilongjiang Academy of Sciences, China
| | - Yuxin Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China.
| | - Jinlong Zou
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China.
| | - Baojiang Jiang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China.
| |
Collapse
|
10
|
Pt-Based Intermetallic Nanocrystals in Cathode Catalysts for Proton Exchange Membrane Fuel Cells: From Precise Synthesis to Oxygen Reduction Reaction Strategy. Catalysts 2021. [DOI: 10.3390/catal11091050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Although oxygen reduction reaction (ORR) catalysts have been extensively investigated and developed, there is a lack of clarity on catalysts that can balance high performance and low cost. Pt-based intermetallic nanocrystals are of special interest in the commercialization of proton exchange membrane fuel cells (PEMFCs) due to their excellent ORR activity and stability. This review summarizes the wide range of applications of Pt-based intermetallic nanocrystals in cathode catalysts for PEMFCs and their unique advantages in the field of ORR. Firstly, we introduce the fundamental understanding of Pt-based intermetallic nanocrystals, and highlight the difficulties and countermeasures in their synthesis. Then, the progress of theoretical and experimental studies related to the ORR activity and stability of Pt-based intermetallic nanocrystals in recent years are reviewed, especially the integrated strategies for enhancing the stability of ORR. Finally, the challenges faced by Pt-based intermetallic nanocrystals are summarized and future research directions are proposed. In addition, numerous design ideas of Pt-based intermetallic nanocrystals as ORR catalysts are summarized, aiming to promote further development of commercialization of PEMFC catalysts while fully understanding Pt-based intermetallic nanocrystals.
Collapse
|
11
|
He S, Liu Y, Zhan H, Guan L. Direct Thermal Annealing Synthesis of Ordered Pt Alloy Nanoparticles Coated with a Thin N-Doped Carbon Shell for the Oxygen Reduction Reaction. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02434] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Suqiong He
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 Fujian, China
- College of Material Science and Engineering, Fuzhou University, Fuzhou 350108 Fujian, China
| | - Yang Liu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 Fujian, China
| | - Hongbing Zhan
- College of Material Science and Engineering, Fuzhou University, Fuzhou 350108 Fujian, China
| | - Lunhui Guan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 Fujian, China
| |
Collapse
|
12
|
Biz C, Fianchini M, Polo V, Gracia J. Magnetism and Heterogeneous Catalysis: In Depth on the Quantum Spin-Exchange Interactions in Pt 3M (M = V, Cr, Mn, Fe, Co, Ni, and Y)(111) Alloys. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50484-50494. [PMID: 33124822 DOI: 10.1021/acsami.0c15353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bimetallic Pt-based alloys have drawn considerable attention in the last decades as catalysts in proton-exchange membrane fuel cells (PEMFCs) because they closely fulfill the two major requirements of high performance and good stability under operating conditions. Pt3Fe, Pt3Co, and Pt3Ni stand out as major candidates, given their good activity toward the challenging oxygen reduction reaction (ORR). The common feature across catalysts based on 3d-transition metals and their alloys is magnetism. Ferromagnetic spin-electron interactions, quantum spin-exchange interactions (QSEIs), are one of the most important energetic contributions in allowing milder chemisorption of reactants onto magnetic catalysts, in addition to spin-selective electron transport. The understanding of the role played by QSEIs in the properties of magnetic 3d-metal-based alloys is important to design and develop novel and effective electrocatalysts based on abundant and cheap metals. We present a detailed theoretical study (via density functional theory) on the most experimentally explored bimetallic alloys Pt3M (M = V, Cr, Mn, Fe, Co, Ni, and Y)(111). The investigation starts with a thorough structural study on the composition of the layers, followed by a comprehensive physicochemical description of their resistance toward segregation and their chemisorption capabilities toward hydrogen and oxygen atoms. Our study demonstrates that Pt3Fe(111), Pt3Co(111), and Pt3Ni(111) possess the same preferential multilayered structural organization, known for exhibiting specific magnetic properties. The specific role of QSEIs in their catalytic behavior is justified via comparison between spin-polarized and non-spin-polarized calculations.
Collapse
Affiliation(s)
- Chiara Biz
- Universitat Jaume I, Av. Vicente Sos Baynat s/n, E-12071 Castellón de la Plana, Spain
| | - Mauro Fianchini
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Technology, Avgda Països Catalans 16, 43007 Tarragona, Spain
| | - Victor Polo
- Departamento de Química Física and Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Jose Gracia
- MagnetoCat SL, General Polavieja 9 3I, 03012 Alicante, Spain
| |
Collapse
|
13
|
Peng L, Zhou L, Kang W, Li R, Qu K, Wang L, Li H. Electrospinning Synthesis of Carbon-Supported Pt 3Mn Intermetallic Nanocrystals and Electrocatalytic Performance towards Oxygen Reduction Reaction. NANOMATERIALS 2020; 10:nano10091893. [PMID: 32971762 PMCID: PMC7559926 DOI: 10.3390/nano10091893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 11/29/2022]
Abstract
To realize the large-scale application of fuel cells, it is still a great challenge to improve the performance and reduce the cost of cathode catalysts towards oxygen reduction reaction (ORR). In this work, carbon-supported ordered Pt3Mn intermetallic catalysts were prepared by thermal annealing electrospun polyacrylonitrile nanofibers containing Platinum(II) acetylacetonate/ Manganese(III) acetylacetonate. Compared with its counterparts, the ordered Pt3Mn intermetallic obtained at 950 °C exhibits a more positive half-potential and higher kinetic current density during the ORR process. Benefiting from their defined stoichiometry and crystal structure, the Mn atoms in Pt3Mn intermetallic can modulate well the geometric and electronic structure of surface Pt atoms, endowing Pt3Mn catalyst with an enhanced ORR catalytic activity. Moreover, it also has a better catalytic stability and methanol tolerance than commercial Pt/C catalyst. Our study provides a new strategy to fabricate a highly active and durable Pt3Mn intermetallic electrocatalyst towards ORR.
Collapse
|
14
|
Trindell JA, Duan Z, Henkelman G, Crooks RM. Well-Defined Nanoparticle Electrocatalysts for the Refinement of Theory. Chem Rev 2019; 120:814-850. [DOI: 10.1021/acs.chemrev.9b00246] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jamie A. Trindell
- Department of Chemistry and Texas Materials Institute, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Zhiyao Duan
- Department of Chemistry and Texas Materials Institute, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Graeme Henkelman
- Department of Chemistry and Texas Materials Institute, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Richard M. Crooks
- Department of Chemistry and Texas Materials Institute, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| |
Collapse
|
15
|
Effective surface termination with Au on PtCo@Pt core-shell nanoparticle: Microstructural investigations and oxygen reduction reaction properties. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.04.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|