1
|
Singh A, Singh AK, Dixit R, Vanka K, Krishnamoorthy K, Nithyanandhan J. Effect of Position of Donor Units and Alkyl Groups on Dye-Sensitized Solar Cell Device Performance: Indoline-Aniline Donor-Based Visible Light Active Unsymmetrical Squaraine Dyes. ACS OMEGA 2024; 9:16429-16442. [PMID: 38617628 PMCID: PMC11007861 DOI: 10.1021/acsomega.4c00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 04/16/2024]
Abstract
Indoline (In) and aniline (An) donor-based visible light active unsymmetrical squaraine (SQ) dyes were synthesized for dye-sensitized solar cells (DSSCs), where the position of An and In units was changed with respect to the anchoring group (carboxylic acid) to have In-SQ-An-CO2H and An-SQ-In-CO2H sensitizers, AS1-AS5. Linear or branched alkyl groups were functionalized with the N atom of either In or An units to control the aggregation of the dyes on TiO2. AS1-AS5 exhibit an isomeric π-framework where the squaric acid unit is placed in the middle, where AS2 and AS5 dyes possess the anchoring group connected with the An donor, and AS1, AS3, and AS4 dyes having the anchoring group connected with the In donor. Hence, the conjugation between the middle squaric acid acceptor unit and the anchoring -CO2H group is short for AS2, AS5, and AK2 and longer for AS1, AS3, and AS4 dyes. AS dyes showed absorption between 501 and 535 nm with extinction coefficients of 1.46-1.61 × 105 M-1 cm-1. Further, the isomeric π-framework of An-SQ-In-CO2H and In-SQ-An-CO2H exhibited by means of changing the position of In and An units a bathochromic shift in the absorption properties of AS2 and AS5 compared to the AS1, AS3, and AS4 dyes. The DSSC device fabricated with the dyes contains short acceptor-anchoring group distance (AS2 and AS5) showed high photovoltaic performances compared to the dyes having longer distance (AS1, AS3, and AS4) with the iodolyte (I-/I3-) electrolyte. DSSC device efficiencies of 5.49, 6.34, 6.16, and 5.57% have been achieved for AS1, AS2, AS3, and AS4 dyes, respectively; without chenodeoxycholic acid (CDCA), small changes have been observed in the device performance of the AS dyes with CDCA. Significant changes have been noted in the DSSC parameters (open-circuit voltage VOC, short-circuit current JSC, fill factor ff, and efficiency η) for the AS5 dye while sensitized with CDCA and showed highest DSSC efficiency of 8.01% in the AS dye series. This study revealed the potential of shorter SQ acceptor-anchoring group distance over the longer one and the importance of alkyl groups on the overall DSSC device performance for the unsymmetrical squaraine dyes.
Collapse
Affiliation(s)
- Amrita Singh
- Physical
and Materials Chemistry Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ambarish Kumar Singh
- Physical
and Materials Chemistry Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ruchi Dixit
- Physical
and Materials Chemistry Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kumar Vanka
- Physical
and Materials Chemistry Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kothandam Krishnamoorthy
- Polymer
Science and Engineering Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jayaraj Nithyanandhan
- Physical
and Materials Chemistry Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Buguis FL, Hsu NSY, Sirohey SA, Adam MC, Goncharova LV, Gilroy JB. Dyads and Triads of Boron Difluoride Formazanate and Boron Difluoride Dipyrromethene Dyes. Chemistry 2023; 29:e202302548. [PMID: 37725661 DOI: 10.1002/chem.202302548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/21/2023]
Abstract
Dye-dye conjugates have attracted significant interest for their utility in applications such as bioimaging, theranostics, and light-harvesting. Many classes of organic dyes have been employed in this regard; however, building blocks don't typically extend beyond small chromophores. This can lead to minor changes to the optoelectronic properties of the original dye. The exploration of dye-dye structures is impeded by long synthetic routes, incompatible synthetic conditions, or a mismatch of the desired properties. Here, we present the first-of-their-kind dye-dye conjugates of boron difluoride complexes of formazanate and dipyrromethene ligands. These conjugates exhibit dual photoluminescence bands that reach the near-infrared spectral region and implicate anti-Kasha processes. Cyclic voltammetry experiments revealed the generation of polyanionic species that can reversibly tolerate the uptake of up to 6 electrons. Ultimately, we demonstrate that BF2 formazanates can serve as a synthetically accessible platform to build upon new classes of dye-dye conjugates.
Collapse
Affiliation(s)
- Francis L Buguis
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street North, London., Ontario, N6A 5B7, Canada
| | - Nathan Sung Y Hsu
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street North, London., Ontario, N6A 5B7, Canada
| | - Sofia A Sirohey
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street North, London., Ontario, N6A 5B7, Canada
| | - Matheus C Adam
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street North, London., Ontario, N6A 3K7, Canada
| | - Lyudmila V Goncharova
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street North, London., Ontario, N6A 3K7, Canada
| | - Joe B Gilroy
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street North, London., Ontario, N6A 5B7, Canada
| |
Collapse
|
3
|
Luo J, Lu Q, Li Q, Li Z, Wang Y, Wu X, Li C, Xie Y. Efficient Solar Cells Based on Porphyrin and Concerted Companion Dyes Featuring Benzo 12-Crown-4 for Suppressing Charge Recombination and Enhancing Dye Loading. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41569-41579. [PMID: 37608739 DOI: 10.1021/acsami.3c09187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
In recent years, various porphyrin dyes have been designed to develop efficient dye-sensitized solar cells (DSSCs). Based on our previously reported porphyrin dye XW43, which contains a phenothiazine donor with two diethylene glycol (DEG)-derived substituents, we herein report a porphyrin dye XW89 by introducing a benzo 12-crown-4 (BCE) unit onto the N atom of the phenothiazine donor. On this basis, XW90 and XW91 have been synthesized by replacing a DEG chain in XW89 with two DEG chains and a 12-crown-4 unit, respectively. For iodine electrolyte-based DSSCs, dyes XW89-XW91 exhibit VOC values of 765-779 mV, higher than that of XW43 (755 mV), which may be related to the strong capability of the BCE group in binding Li+ and thus suppressing the downward shift of the TiO2 conduction band and interfacial charge recombination. Moreover, the smaller size of 12-crown-4 than the DEG unit enables higher adsorption amounts of the dyes than XW43, contributing to an enhanced JSC value. Due to the presence of two BCE units, dye XW91 exhibits the highest dye loading amount and JSC of 1.86 × 10-7 mol cm-2 and 19.79 mA cm-2, respectively, affording a high PCE of 11.1%. To further enhance the light-harvesting ability, a concerted companion (CC) dye XW92 has been constructed by linking the two subdye units corresponding to the porphyrin dye XW91 and an organic dye. As a result, XW92 affords an enhanced JSC and efficiency. Further coadsorption of XW92 with chenodeoxycholic acid achieved the highest efficiency of 12.1%. This work provides an effective approach for fabricating efficient DSSCs sensitized by porphyrin and CC dyes based on the introduction of crown ether units with smaller sizes and stronger Li+ affinities.
Collapse
Affiliation(s)
- Jiaxin Luo
- Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Qingjun Lu
- Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Qizhao Li
- Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Zhemin Li
- Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Yuqing Wang
- Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Xinyan Wu
- Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Chengjie Li
- Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Yongshu Xie
- Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| |
Collapse
|
4
|
Comí M, Moncho S, Attar S, Barłóg M, Brothers E, Bazzi HS, Al-Hashimi M. Structural-Functional Properties of Asymmetric Fluoro-Alkoxy Substituted Benzothiadiazole Homopolymers with Flanked Chalcogen-Based Heterocycles. Macromol Rapid Commun 2023; 44:e2200731. [PMID: 36285613 DOI: 10.1002/marc.202200731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/06/2022] [Indexed: 11/08/2022]
Abstract
The synthesis and characterization of asymmetric alkoxy- are reported, fluoro-benzothiadiazole (BT) acceptor core derivatized with a series of six different heterocycles (selenophene, thiophene, furan, 5-thiazole, 2-thiazole and 2-oxazole). The effect of the flanked-heterocycles containing different chalcogen atoms of the six homopolymers (HPX) is studied using optical, thermal, electrochemical, and computational analysis. Computational calculations indicate a strong relationship between the most stable conformation for each homopolymer and their bearing heterocycle, thus homopolymers HPSe', HPTp', HPFu', and HPTzC5, adopted the syn-syn and syn-anti conformations due to their noncovalent interactions with shorter distances, while HPTzC2' and HPOx' demonstrate preference for the anti-anti conformation. Optical property studies of the homopolymers reveal a strong red-shift in solution and film upon exchanging the chalcogen atom from Oxygen < Sulfur < Selenium in HPFu, HPTp, and HPSe, respectively. In addition, deeper highest occupied molecular orbital (HOMO) energy levels are observed when the donor-acceptor moieties (HPSe, HPTp, and HPFu) are substituted for the acceptor-acceptor systems such as HPTzC5, HPTzC2, and HPOx. Improved packing and morphology are exhibited for the donor-acceptor homopolymers. Thus, having a flanked heterocycle containing different chalcogen-atoms in polymeric systems is one way of tuning the physicochemical properties of conjugated materials for optoelectronic applications.
Collapse
Affiliation(s)
- Marc Comí
- Department of Chemistry, Texas A&M University at Qatar, Education City, Doha, P.O. Box 23874, Qatar
| | - Salvador Moncho
- Department of Chemistry, Texas A&M University at Qatar, Education City, Doha, P.O. Box 23874, Qatar
| | - Salahuddin Attar
- Department of Chemistry, Texas A&M University at Qatar, Education City, Doha, P.O. Box 23874, Qatar
| | - Maciej Barłóg
- Department of Chemistry, Texas A&M University at Qatar, Education City, Doha, P.O. Box 23874, Qatar
| | - Edward Brothers
- Department of Chemistry, Texas A&M University at Qatar, Education City, Doha, P.O. Box 23874, Qatar
| | - Hassan S Bazzi
- Department of Chemistry, Texas A&M University at Qatar, Education City, Doha, P.O. Box 23874, Qatar.,Department of Materials Science & Engineering, Texas A&M University, 209 Reed MacDonald Building, College Station, TX, 77843-3003, USA
| | - Mohammed Al-Hashimi
- Department of Chemistry, Texas A&M University at Qatar, Education City, Doha, P.O. Box 23874, Qatar
| |
Collapse
|
5
|
Wang X, Wang Y, Zou J, Luo J, Li C, Xie Y. Efficient Solar Cells Sensitized by Organic Concerted Companion Dyes Suitable for Indoor Lamps. CHEMSUSCHEM 2022; 15:e202201116. [PMID: 35702052 DOI: 10.1002/cssc.202201116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Indexed: 06/15/2023]
Abstract
In this work, organic concerted companion (CC) dyes CCOD-1 and CCOD-2 were constructed by covalently linking two organic dye units with complementary absorption spectra. Both CC dyes exhibited intense absorption from 300 to 650 nm with the band edges extended to 700 nm. These CC dyes were used to fabricate dye-sensitized solar cells (DSSCs), and the photovoltaic performance was investigated using different light sources. CCOD-2 possessed bulkier outer shelter than CCOD-1 owing to the longer carbon chains (C12 ) at the donor moiety, and thus it had stronger anti-aggregation and anti-charge-recombination ability. Under simulated sunlight (AM1.5G), CCOD-2 exhibited enhanced photovoltaic behavior with an open-circuit voltage (VOC ) of 759 mV, short-circuit current density (JSC ) of 19.23 mA ⋅ cm-2 , and power conversion efficiency (PCE) of 10.4 %, respectively. Notably, under the illumination of the indoor T5 fluorescent lamp (2500 lux), CCOD-2 afforded an enhanced PCE of 28.0 % with remarkable VOC and JSC of 692 mV and 0.424 mA cm-2 , respectively. Notably, the PCE achieved for CCOD-2 outperformed those of the reference sensitizer N719 and our previously reported CC dyes XW61 and XW70-C8 under the same indoor lamp conditions. In summary, the novel organic CC dyes developed in this work were demonstrated to be promising for fabricating DSSCs to efficiently harvest the energy of indoor lamps.
Collapse
Affiliation(s)
- Xueyan Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Yuqing Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Jiazhi Zou
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Jiaxin Luo
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Chengjie Li
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Yongshu Xie
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| |
Collapse
|
6
|
Zou J, Wang Y, Baryshnikov G, Luo J, Wang X, Ågren H, Li C, Xie Y. Efficient Dye-Sensitized Solar Cells Based on a New Class of Doubly Concerted Companion Dyes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33274-33284. [PMID: 35834394 DOI: 10.1021/acsami.2c07950] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To develop efficient dye-sensitized solar cells (DSSCs), concerted companion (CC) dyes XW60-XW63 constructed from the covalent linkage of a strapped porphyrin dye unit and an organic dye unit have been reported to exhibit panchromatic absorption and excellent photovoltaic performance. However, these CC dyes only afforded moderate VOC values of ca. 763 mV, demonstrating relatively weak antiaggregation ability, which remains an obstacle for further enhancing the photovoltaic behavior. To address this problem, we herein develop porphyrin dyes XW77-XW80 with the macrocycles wrapped with alkoxy chains of various lengths (OC6H13-OC22H45) and the corresponding CC dyes XW81-XW84 containing these porphyrin dye units. Interestingly, the new CC dyes XW81-XW83 exhibit increasing VOC from 745 to 784 mV with the chain lengths extended from C6 to C18, and a lowered VOC of 762 mV was obtained for XW84 when the chain length was further extended to C22. As a result, XW83 afforded the highest PCE of 12.2%, which is, to the best of our knowledge, the record efficiency for the iodine electrolyte-based solar cells sensitized with a single dye. These results can be rationalized by the so-called doubly concerted companion (DCC) effects, that is, the two subdye units exhibit not only complementary absorption but also concerted antiaggregation with the long wrapping chains on the porphyrins unit simultaneously protecting the porphyrin macrocycle and the neighboring organic subdye unit, thus affording panchromatic absorption and strong antiaggregation and anticharge-recombination ability. These results provide a new approach for constructing a class of DCC dyes to achieve high-performance DSSCs without using any antiaggregating coadsorbent or absorption-enhancing cosensitizer.
Collapse
Affiliation(s)
- Jiazhi Zou
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, P. R. China
| | - Yuqing Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, P. R. China
| | - Glib Baryshnikov
- Department of Science and Technology, Laboratory of Organic Electronics, Linköping University, Norrköping 60174, Sweden
| | - Jiaxin Luo
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, P. R. China
| | - Xueyan Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, P. R. China
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, Uppsala 751 20, Sweden
| | - Chengjie Li
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, P. R. China
| | - Yongshu Xie
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, P. R. China
| |
Collapse
|
7
|
Luo J, Xie Z, Zou J, Wu X, Gong X, Li C, Xie Y. Efficient dye-sensitized solar cells based on concerted companion dyes: systematic optimization of thiophene units in the organic dye components. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.01.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
8
|
Wagalgave SM, Mendhe AC, Nadimetla DN, Al Kobaisi M, Sankapal BR, Bhosale SV, Bhosale SV. Aggregation induced emission (AIE) materials based on diketopyrrolopyrrole chromophore for CdS nanowire solar cell applications. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Chen L, Chen M, Zhou Y, Ye C, Liu R. NIR Photosensitizer for Two-Photon Fluorescent Imaging and Photodynamic Therapy of Tumor. Front Chem 2021; 9:629062. [PMID: 33708758 PMCID: PMC7940671 DOI: 10.3389/fchem.2021.629062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/19/2021] [Indexed: 01/10/2023] Open
Abstract
Preparation of near-infrared (NIR) emissive fluorophore for imaging-guided PDT (photodynamic therapy) has attracted enormous attention. Hence, NIR photosensitizers of two-photon (TP) fluorescent imaging and photodynamic therapy are highly desirable. In this contribution, a novel D-π-A structured NIR photosensitizer (TTRE) is synthesized. TTRE demonstrates near-infrared (NIR) emission, good biocompatibility, and superior photostability, which can act as TP fluorescent agent for clear visualization of cells and vascular in tissue with deep-tissue penetration. The PDT efficacy of TTRE as photosensitizer is exploited in vitro and in vivo. All these results confirm that TTRE would serve as potential platform for TP fluorescence imaging and imaging-guided photodynamic therapy.
Collapse
Affiliation(s)
- Lujia Chen
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Meijuan Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuping Zhou
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Changsheng Ye
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruiyuan Liu
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| |
Collapse
|