1
|
Saucier MA, Kruse NA, Lewis TA, Hammer NI, Delcamp JH. Switch-on near infrared emission in albumin behind dark fabric: toward application in forensic latent bloodstain detection. RSC Adv 2024; 14:9254-9261. [PMID: 38505385 PMCID: PMC10949964 DOI: 10.1039/d4ra00756e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/17/2024] [Indexed: 03/21/2024] Open
Abstract
Latent bloodstain detection remains imperative for crime scene investigators. Widely used luminol offers high sensitivity to human blood, but can produce untrustworthy results from a bleach-cleaned crime scene or in a room not dark enough. Furthermore, dark pigments impede imaging bloodstains covered by dark materials with previously reported bloodstain detection agents. A novel on/off human albumin-sensing dye (SO3C7) is reported herein with a longer emission wavelength (942 nm) than previous materials that allows imaging behind ∼5 mm of black fabric. The switch-on emission of SO3C7 is selective and sensitive to human albumin and lasts longer than luminol (24-48 hours). Emission studies, transient absorption spectra (TAS), and near-infrared (NIR) photographs herein describe the albumin sensing properties of the dye.
Collapse
Affiliation(s)
- Matthew A Saucier
- Department of Chemistry and Biochemistry, University of Mississippi University MS 38677 USA
| | - Nicholas A Kruse
- Department of Chemistry and Biochemistry, University of Mississippi University MS 38677 USA
| | - Timothy A Lewis
- Department of Chemistry and Biochemistry, University of Mississippi University MS 38677 USA
| | - Nathan I Hammer
- Department of Chemistry and Biochemistry, University of Mississippi University MS 38677 USA
| | - Jared H Delcamp
- Department of Chemistry and Biochemistry, University of Mississippi University MS 38677 USA
| |
Collapse
|
2
|
Deng W, Xu Z, Li N, Lv T, Wang L, Li M, Chen X, Liu B. Rational design of a FA1-targeting anti-interference fluorescent probe for the point-of-care testing of albuminuria. Int J Biol Macromol 2024; 261:129723. [PMID: 38272419 DOI: 10.1016/j.ijbiomac.2024.129723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/14/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Albuminuria is a crucial urine biomarker of human unhealthy events such as kidney diseases, cardiovascular diseases, and diabetes. However, the accurate diagnosis of albuminuria poses a significant challenge owing to the severe interference from urine fluorescence and urine drugs. Here, we report a novel flavone-based fluorescent probe, DMC, by incorporating the FA1-targeting methylquinazoline group into a flavone skeleton with the extend π-conjugation. DMC exhibited a rapid response time, high sensitivity, and selectivity towards human serum albumin (HSA) in urine. Moreover, the red-shifted fluorescence and the FA1-targeted HSA-binding of DMC efficiently mitigated the interference from both urine fluorescence and urine drug metabolites. Furthermore, the establishment of a portable testing system highlighted the potential for point-of-care testing, offering a user-friendly and accurate approach to diagnose A2-level and A3-level albuminuria. We expect that the success of this DMC-based diagnostic platform in real urine samples can signify a significant advancement in early clinical diagnosis of albuminuria and its associated diseases.
Collapse
Affiliation(s)
- Weihua Deng
- College of Material Science and Engineering, Shenzhen University, 518060 Shenzhen, China
| | - Zhongyong Xu
- College of Material Science and Engineering, Shenzhen University, 518060 Shenzhen, China.
| | - Na Li
- College of Material Science and Engineering, Shenzhen University, 518060 Shenzhen, China
| | - Taoyuze Lv
- School of Physics, The University of Sydney, NSW 2006, Australia
| | - Lei Wang
- College of Material Science and Engineering, Shenzhen University, 518060 Shenzhen, China
| | - Mingle Li
- College of Material Science and Engineering, Shenzhen University, 518060 Shenzhen, China
| | - Xiaoqiang Chen
- College of Material Science and Engineering, Shenzhen University, 518060 Shenzhen, China
| | - Bin Liu
- College of Material Science and Engineering, Shenzhen University, 518060 Shenzhen, China.
| |
Collapse
|
3
|
Qu J, Meador W, Cheah P, Tanner EEL, Delcamp J, Zhao Y. Latent bloodstain detection using a selective turn-on NIR fluorescence dye responsive to serum albumin. RSC Adv 2023; 13:27549-27557. [PMID: 37720829 PMCID: PMC10502805 DOI: 10.1039/d3ra04320g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/31/2023] [Indexed: 09/19/2023] Open
Abstract
Bloodstain detection can provide crucial information and evidence at a crime scene; however, the ability to selectively detect bloodstains in a non-destructive manner with high sensitivity and low background is limited. This study reports a fluorescent dye (sulfonate indolizine squaraine, SO3SQ) for bloodstain visualization under near-infrared (NIR) irradiation. While the dye itself is minimally fluorescent in aqueous solution, it exhibits a "turn-on" mechanism upon binding with human serum albumin (HSA) as the fluorescence intensity increases over 160 times with strong absorption and emission at 693 nm and 758 nm, respectively. Bloodstains can be visualized on a surface even after being diluted 1000 times, and washed latent bloodstains can be detected with high sensitivity. Further, the turn-on fluorescent emission lasts for a minimum of seven days, allowing adequate time for detection. This study also indicates that the SO3SQ can sensitively detect bloodstain after the bloodstain aged for one week. Furthermore, the detection of latent blood fingerprint patterns from colorful backgrounds is demonstrated using this non-destructive method. The selective turn-on fluorescent dye with NIR excitation and emission is highly suitable in forensic science for bloodstain visualization.
Collapse
Affiliation(s)
- Jing Qu
- Department of Chemistry, Physics & Atmospheric Sciences, Jackson State University Jackson MS 39217 USA
| | - William Meador
- Department of Chemistry and Biochemistry, University of Mississippi, University MS 38677 USA
| | - Pohlee Cheah
- Department of Chemistry, Physics & Atmospheric Sciences, Jackson State University Jackson MS 39217 USA
| | - Eden E L Tanner
- Department of Chemistry and Biochemistry, University of Mississippi, University MS 38677 USA
| | - Jared Delcamp
- Department of Chemistry and Biochemistry, University of Mississippi, University MS 38677 USA
| | - Yongfeng Zhao
- Department of Chemistry, Physics & Atmospheric Sciences, Jackson State University Jackson MS 39217 USA
| |
Collapse
|
4
|
Fan Z, Chen X, Kong R, Lu Y, Ma R, Wu JW, Fan LJ. Strongly Fluorescent Conjugated Polymer Nanoparticles in Aqueous Colloidal Solution for Universal, Efficient and Effective Development of Sebaceous and Blood Fingerprints. J Colloid Interface Sci 2023; 642:658-668. [PMID: 37030202 DOI: 10.1016/j.jcis.2023.03.173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Taking the same developing strategy for different types of latent fingerprints is helpful in improving the efficiency of criminal investigation. Here we advanced a new strategy based on amino-functionalized poly(p-phenylenevinylene) nanoparticles (PPV-brPEI NPs) in aqueous colloidal solution as the developing reagent. The desirable amino functionality and strong emission of NPs were simultaneously realized by adding branched polyethyleneimine (brPEI) during the process of thermal elimination of the PPV polymer precursor. The NPs were demonstrated to have negligible effects on the extraction of biological information from DNA. Using the PPV-brPEI NPs-soaked cotton pad, both latent sebaceous fingerprints (LSFPs) and latent blood fingerprints (LBFPs) can be effectively developed on different nonporous substrates. This strategy was highly sensitive and effective for aged, contaminated and moldy fingerprints. Additionally, the developed fingerprints could tolerate humidity environment and the alcohol atmosphere. The mechanism investigation suggests that interaction between PPV-brPEI NPs and sebum ingredients contributes to the development of LSFPs and interaction between PPV-brPEI NPs and proteins in blood contributes to the development of LBFPs, but the former is not as stable as the latter. This work provides a simple, environment/operator-friendly strategy for efficient fingerprint development, which is very promising for practical criminal investigations.
Collapse
Affiliation(s)
- Zhinan Fan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Xiao Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Ranran Kong
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Yaoqi Lu
- Institute of Molecular Enzymology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, PR China
| | - Rongliang Ma
- Institute of Forensic Science, Ministry of Public Security, Beijing 10038, PR China
| | - Jia-Wei Wu
- Institute of Molecular Enzymology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, PR China
| | - Li-Juan Fan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
5
|
Li H, Shen C, Wang G, Sun Q, Yu K, Li Z, Liang X, Chen R, Wu H, Wang F, Wang Z, Lian C. BloodNet: An attention-based deep network for accurate, efficient, and costless bloodstain time since deposition inference. Brief Bioinform 2023; 24:6960974. [PMID: 36572655 DOI: 10.1093/bib/bbac557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/28/2022] [Indexed: 12/28/2022] Open
Abstract
The time since deposition (TSD) of a bloodstain, i.e., the time of a bloodstain formation is an essential piece of biological evidence in crime scene investigation. The practical usage of some existing microscopic methods (e.g., spectroscopy or RNA analysis technology) is limited, as their performance strongly relies on high-end instrumentation and/or rigorous laboratory conditions. This paper presents a practically applicable deep learning-based method (i.e., BloodNet) for efficient, accurate, and costless TSD inference from a macroscopic view, i.e., by using easily accessible bloodstain photos. To this end, we established a benchmark database containing around 50,000 photos of bloodstains with varying TSDs. Capitalizing on such a large-scale database, BloodNet adopted attention mechanisms to learn from relatively high-resolution input images the localized fine-grained feature representations that were highly discriminative between different TSD periods. Also, the visual analysis of the learned deep networks based on the Smooth Grad-CAM tool demonstrated that our BloodNet can stably capture the unique local patterns of bloodstains with specific TSDs, suggesting the efficacy of the utilized attention mechanism in learning fine-grained representations for TSD inference. As a paired study for BloodNet, we further conducted a microscopic analysis using Raman spectroscopic data and a machine learning method based on Bayesian optimization. Although the experimental results show that such a new microscopic-level approach outperformed the state-of-the-art by a large margin, its inference accuracy is significantly lower than BloodNet, which further justifies the efficacy of deep learning techniques in the challenging task of bloodstain TSD inference. Our code is publically accessible via https://github.com/shenxiaochenn/BloodNet. Our datasets and pre-trained models can be freely accessed via https://figshare.com/articles/dataset/21291825.
Collapse
Affiliation(s)
- Huiyu Li
- Key Laboratory of National Ministry of Health for Forensic Sciences, School of Medicine & Forensics, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Chen Shen
- Key Laboratory of National Ministry of Health for Forensic Sciences, School of Medicine & Forensics, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Gongji Wang
- Key Laboratory of National Ministry of Health for Forensic Sciences, School of Medicine & Forensics, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Qinru Sun
- Key Laboratory of National Ministry of Health for Forensic Sciences, School of Medicine & Forensics, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Kai Yu
- Key Laboratory of National Ministry of Health for Forensic Sciences, School of Medicine & Forensics, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Zefeng Li
- Key Laboratory of National Ministry of Health for Forensic Sciences, School of Medicine & Forensics, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - XingGong Liang
- Key Laboratory of National Ministry of Health for Forensic Sciences, School of Medicine & Forensics, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Run Chen
- Key Laboratory of National Ministry of Health for Forensic Sciences, School of Medicine & Forensics, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Hao Wu
- Key Laboratory of National Ministry of Health for Forensic Sciences, School of Medicine & Forensics, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Fan Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Zhenyuan Wang
- Key Laboratory of National Ministry of Health for Forensic Sciences, School of Medicine & Forensics, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Chunfeng Lian
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
6
|
Suleymanov AA, Kraus BM, Damiens T, Ruggi A, Solari E, Scopelliti R, Fadaei‐Tirani F, Severin K. Fluorinated Tetraarylethenes: Universal Tags for the Synthesis of Solid State Luminogens. Angew Chem Int Ed Engl 2022; 61:e202213429. [DOI: 10.1002/anie.202213429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Abdusalom A. Suleymanov
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Barbara M. Kraus
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Thibault Damiens
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Albert Ruggi
- Département de Chimie Université de Fribourg 1700 Fribourg Switzerland
| | - Euro Solari
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Farzaneh Fadaei‐Tirani
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
7
|
Suleymanov AA, Kraus BM, Damiens T, Ruggi A, Solari E, Scopelliti R, Fadaei‐Tirani F, Severin K. Fluorinated Tetraarylethenes: Universal Tags for the Synthesis of Solid State Luminogens. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202213429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Abdusalom A. Suleymanov
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Barbara M. Kraus
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Thibault Damiens
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Albert Ruggi
- Département de Chimie Université de Fribourg 1700 Fribourg Switzerland
| | - Euro Solari
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Farzaneh Fadaei‐Tirani
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
8
|
Abstract
The blood fingerprint enhancement is not so eye-catching as latent fingerprint development in forensic community, but it is indeed an important piece of evidence for personal identification, forensic analysis and even reconstruction of crime scenes. In over past ten years, novel reagents, advanced materials and emerging techniques have growingly participated in blood fingerprint enhancement, which not only leads to a higher level of developing sensitivity, selectivity and contrast, but also endows blood impressions with more forensic significance. This review summarizes recent advances in conventional chemical reagents targeting at heme, protein and amino acid as well as emerging enhancement techniques based on advanced materials, new equipment or methods. Some critical issues in forensic science are also discussed, including partial blood fingerprint enhancement, false positive of developing reagents, the compatibility of blood enhancement technique and DNA, fingerprint age determination, and so on. Finally, we have proposed several urgent problems to be solved and the prospects of some promising techniques were proposed in the field of blood fingerprint enhancement in future work.
Collapse
Affiliation(s)
- Zimin Zhang
- Chongqing Institutes of Higher Education Key Forensic Science Laboratory, Criminal Investigation School, Southwest University of Political Science and Law, Chongqing, China
| | - Di Peng
- Chongqing Institutes of Higher Education Key Forensic Science Laboratory, Criminal Investigation School, Southwest University of Political Science and Law, Chongqing, China
| |
Collapse
|
9
|
Liu B, Zeng C, Zheng D, Zhao X, Song C, Qin T, Xu Z. A near-infrared dicyanoisophorone-based fluorescent probe for discriminating HSA from BSA. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 274:121081. [PMID: 35248852 DOI: 10.1016/j.saa.2022.121081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Despite the rapid development of fluorescent probe techniques for the detection of human serum albumin (HSA), a probe that discriminates between HSA and bovine serum albumin (BSA) is still a challenging task, since their similar chemical structures. As a continuation of our work, herein, a dicyanoisophorone-based fluorescent probe DCO2 is systematically studied for discrimination of HSA from BSA. The photophysical and sensing performances of DCO2, including basic spectroscopic properties, sensing sensitivity, and selectivity, exhibits that DCO2 could selectively bind with HSA and display remarkable fluorescence enhancement (∼254-fold) at 685 nm. The gap of the fluorescent response of DCO2 between HSA and BSA is an obvious increase from 21% to 73% compared to the previous probe DCO1. The sensing mechanism was elucidated by Job's plot, displacement experiment, and molecular docking, suggesting that the specific response to HSA originated from the rigid donor structure and steric hindrance. DCO2 could be buried in the DS1 pocket of HSA, and only partly wedged into the DS1 pocket of BSA with exposing twisted N,N-diethylamino group outside. Application studies indicated that DCO2 has well detective behavior for HSA in the biological fluids. This work could provide a new approach to design HSA-specific near-infrared fluorescence probes.
Collapse
Affiliation(s)
- Bin Liu
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Conghui Zeng
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Danna Zheng
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Xiongfei Zhao
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Chao Song
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Tianyi Qin
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Zhongyong Xu
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
10
|
Liu B, Zhao X, Zhou M, Song C, Zeng C, Qin T, Zhang M, Xu Z. Modulating donor of dicyanoisophorone-based fluorophores to detect human serum albumin with NIR fluorescence. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 268:120666. [PMID: 34865978 DOI: 10.1016/j.saa.2021.120666] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
It is urgently needed to develop NIR-fluorescent probe for detection of human serum albumin (HSA) since the interference of short-wavelength-fluorescence from endogenous species in real serum and urine. However, most previous reports were located in the short-wavelength region (<600 nm). In this work, a series of dicyanoisophorone (DCO)-based fluorophores 1-4 with different donor groups have been designed and investigated. A systematic study of their photophysical properties has been carried out. Among these probes, 4 exhibited NIR emission with the highest fluorescence brightness and the most sensitive signal response to HSA. Further studies demonstrated that 4 could strongly bind into the DS1 pocket of HSA with a 1:1 ratio. Importantly, the method based on 4 has been proven to be capable of sensing HSA in real serum and urine samples.
Collapse
Affiliation(s)
- Bin Liu
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Xiongfei Zhao
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Mei Zhou
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Chao Song
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Conghui Zeng
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Tianyi Qin
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Mingyuan Zhang
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Zhongyong Xu
- Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
11
|
Liu B, Lv T, Zhao X, Zhou M, Song C, Zeng C, Qin T, Xu Z. Fluorescence discrimination of HSA from BSA: A close look at the albumin-induced restricted intramolecular rotation of flavonoid probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120306. [PMID: 34461524 DOI: 10.1016/j.saa.2021.120306] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Discrimination of human serum albumin (HSA) from bovine serum albumin (BSA) based on the fluorescence probe technique is still challenging due to similar chemical structures. In this work, a novel flavonoid-based fluorescent probe AF is reported for successful discrimination of HSA from BSA. The sensing performances of probe, including sensing dynamic, sensitivity and selectivity, have been carefully studied. Moreover, sensing mechanism was elucidated by Job's plot, displacement experiment, and molecular docking, suggesting that the specific response to HSA originated from the albumin-induced restricted intramolecular rotation (RIR) of probe. This work may provide a simple way for designing of novel probes for HSA with high selectivity.
Collapse
Affiliation(s)
- Bin Liu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Taoyuze Lv
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Xiongfei Zhao
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Mei Zhou
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Chao Song
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Conghui Zeng
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Tianyi Qin
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Zhongyong Xu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
12
|
Liang R, Das D, Bakhtiiari A. Protein confinement fine-tunes aggregation-induced emission in human serum albumin. Phys Chem Chem Phys 2021; 23:26263-26272. [PMID: 34787133 DOI: 10.1039/d1cp04577f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Luminogens exhibiting aggregation-induced-emission characteristics (AIEgens) have been designed as sensitive biosensors thanks to their "turn-on" fluorescence upon target binding. However, their AIE mechanism in biomolecules remains elusive except for the qualitative picture of restricted intramolecular motions. In this work, we employed ab initio simulations to investigate the AIE mechanism of two tetraphenylethylene derivatives recently developed for sensitive detection of human serum albumin (HSA) in biological fluids. For the first time, we quantified the ab initio free energy surfaces and kinetics of AIEgens to access the conical intersections on the excited state in the protein and aqueous solution, using a novel first-principles electronic structure method that incorporates both static and dynamic electron correlations. Our simulations accurately reproduce the experimental spectra and high-level correlated electronic structure calculations. We found that in HSA the internal conversion through the cyclization reaction is preferred over the isomerization around the central ethylenic double bond, whereas in the aqueous solution the reverse is true. Accordingly, the protein environment is able to moderately speed up certain non-radiative decay pathways, a new finding that is beyond the prediction of the existing model of restricted access to a conical intersection (RACI). As such, our findings highlight the complicated effects of the protein confinement on the competing non-radiative decay channels, which has been largely ignored so far, and extend the existing theories of AIE to biological systems. The new insights and the multiscale computational methods used in this work will aid the design of sensitive AIEgens for bioimaging and disease diagnosis.
Collapse
Affiliation(s)
- Ruibin Liang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Debojyoti Das
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Amirhossein Bakhtiiari
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
13
|
van Oorschot RAH, Meakin GE, Kokshoorn B, Goray M, Szkuta B. DNA Transfer in Forensic Science: Recent Progress towards Meeting Challenges. Genes (Basel) 2021; 12:genes12111766. [PMID: 34828372 PMCID: PMC8618004 DOI: 10.3390/genes12111766] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 01/16/2023] Open
Abstract
Understanding the factors that may impact the transfer, persistence, prevalence and recovery of DNA (DNA-TPPR), and the availability of data to assign probabilities to DNA quantities and profile types being obtained given particular scenarios and circumstances, is paramount when performing, and giving guidance on, evaluations of DNA findings given activity level propositions (activity level evaluations). In late 2018 and early 2019, three major reviews were published on aspects of DNA-TPPR, with each advocating the need for further research and other actions to support the conduct of DNA-related activity level evaluations. Here, we look at how challenges are being met, primarily by providing a synopsis of DNA-TPPR-related articles published since the conduct of these reviews and briefly exploring some of the actions taken by industry stakeholders towards addressing identified gaps. Much has been carried out in recent years, and efforts continue, to meet the challenges to continually improve the capacity of forensic experts to provide the guidance sought by the judiciary with respect to the transfer of DNA.
Collapse
Affiliation(s)
- Roland A. H. van Oorschot
- Office of the Chief Forensic Scientist, Victoria Police Forensic Services Department, Macleod, VIC 3085, Australia
- School of Molecular Sciences, La Trobe University, Bundoora, VIC 3086, Australia
- Correspondence:
| | - Georgina E. Meakin
- Centre for Forensic Science, University of Technology Sydney, Ultimo, NSW 2007, Australia;
- Centre for the Forensic Sciences, Department of Security and Crime Science, University College London, London WC1H 9EZ, UK
| | - Bas Kokshoorn
- Netherlands Forensic Institute, 2497 GB The Hague, The Netherlands;
- Faculty of Technology, Amsterdam University of Applied Sciences, 1097 DZ Amsterdam, The Netherlands
| | - Mariya Goray
- College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia;
| | - Bianca Szkuta
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3220, Australia;
| |
Collapse
|
14
|
Sijen T, Harbison S. On the Identification of Body Fluids and Tissues: A Crucial Link in the Investigation and Solution of Crime. Genes (Basel) 2021; 12:1728. [PMID: 34828334 PMCID: PMC8617621 DOI: 10.3390/genes12111728] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022] Open
Abstract
Body fluid and body tissue identification are important in forensic science as they can provide key evidence in a criminal investigation and may assist the court in reaching conclusions. Establishing a link between identifying the fluid or tissue and the DNA profile adds further weight to this evidence. Many forensic laboratories retain techniques for the identification of biological fluids that have been widely used for some time. More recently, many different biomarkers and technologies have been proposed for identification of body fluids and tissues of forensic relevance some of which are now used in forensic casework. Here, we summarize the role of body fluid/ tissue identification in the evaluation of forensic evidence, describe how such evidence is detected at the crime scene and in the laboratory, elaborate different technologies available to do this, and reflect real life experiences. We explain how, by including this information, crucial links can be made to aid in the investigation and solution of crime.
Collapse
Affiliation(s)
- Titia Sijen
- Division Human Biological Traces, Netherlands Forensic Institute, Laan van Ypenburg 6, 2497 GB The Hague, The Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - SallyAnn Harbison
- Institute of Environmental Science and Research Limited, Private Bag 92021, Auckland 1142, New Zealand;
- Department of Statistics, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
15
|
Zhang C, Chen J, Ma R, Lu Y, Wu JW, Fan LJ. Highly Stable, Nondestructive, and Simple Visualization of Latent Blood Fingerprints Based on Covalent Bonding Between the Fluorescent Conjugated Polymer and Proteins in Blood. ACS APPLIED MATERIALS & INTERFACES 2021; 13:15621-15632. [PMID: 33780233 DOI: 10.1021/acsami.1c00710] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Latent blood fingerprints (LBFPs) can provide critical information of foul play and help identify the suspects at violent crime scenes. The current methods for LBFP visualization are still not satisfactory because of the low sensitivity or complicated protocol. This study demonstrates a simple and effective LBFP visualization strategy by integrating a new amphiphilic fluorescent amino-functionalized conjugated polymer with the cotton-pad developing protocol. LBFPs on various substrates are visualized by simply covering them with the polymer solution-soaked cotton pads. The images display clear fingerprint patterns, ridge details, and sweat pores, even on very challenging substrates such as painted wood and multicolored can. The gray value analysis confirms semiquantitatively the enhancement of the contrast between ridges and furrows. Even LBFPs with various contaminations or aged for more than 600 days are effectively developed and visualized. The developed fingerprint images show superior stability over long storage time and against solvent washing. Moreover, the polymer causes no degradation of DNAs in the blood, suggesting the possibility of further DNA profiling and identification after development. The mechanistic investigation suggests that the formation of positive or inverted images can be attributed to the synergistic effects from the affinity between polymer and blood, and the affinity betwen polymer and substrate, as well as the slight quenching of polymer fluorescence by blood. Furthermore, the covalent bonding between the protonated primary amino group and proteins in blood endows the stability of the developed fingerprints. The result rationalizes the molecular design of the fluorescent polymer and sheds new light on the future strategies to effective LBFP visualization in practical applications.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Jiajun Chen
- Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Rongliang Ma
- Institute of Forensic Science, Ministry of Public Security, Beijing 10038, P. R. China
| | - Yaoqi Lu
- Institute of Molecular Enzymology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Jia-Wei Wu
- Institute of Molecular Enzymology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Li-Juan Fan
- Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
16
|
Yan Y, Zhang J, Yi S, Liu L, Huang C. Lighting up forensic science by aggregation-induced emission: A review. Anal Chim Acta 2020; 1155:238119. [PMID: 33766314 DOI: 10.1016/j.aca.2020.11.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/15/2020] [Accepted: 11/27/2020] [Indexed: 01/30/2023]
Abstract
Forensic science requires a fast, sensitive, and anti-interfering imaging tool for on-site investigation and bio-analysis. The aggregation-induced emission (AIE) phenomenon exhibits remarkable luminescence properties (large Stokes shift, diverse molecular structures, and high photo-stability), which can provide a viable solution for on-site analysis, while at the same time overcoming the problem of aggregation-caused quenching (ACQ). Based on the outstanding performance in chemical analysis and bio-sensing, AIE materials have great prospects in the field of forensic science. Therefore, the application of AIE in forensic science has been summarized for the first time in this article. After a brief introduction to the concept and development of AIE, its applications in the determination of toxic or hazardous substances, based on data on poisoning deaths, has been summarized. Subsequently, besides the bio-imaging function, other applications of AIE in analyzing markers related to forensic genetics, forensic pathology, (focusing on the corpse) and clinical forensics (focusing on the living) have been discussed. In addition, applications of AIE molecules in criminal investigations, including recognition of fingerprints and blood stains, detection of explosives and chemical warfare agents, and anti-counterfeiting have also been presented. It is hoped that this review will light up the future of forensic science by stimulating more research work on the suitability of AIE materials in advancing forensic science.
Collapse
Affiliation(s)
- Yibo Yan
- Department of Forensic Medicine, Tongji Medical School, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan, 430030, China
| | - Junchao Zhang
- Department of Forensic Medicine, Tongji Medical School, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan, 430030, China
| | - Shaohua Yi
- Department of Forensic Medicine, Tongji Medical School, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan, 430030, China
| | - Liang Liu
- Department of Forensic Medicine, Tongji Medical School, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan, 430030, China.
| | - Chuixiu Huang
- Department of Forensic Medicine, Tongji Medical School, Huazhong University of Science and Technology, Hangkong Road #13, Wuhan, 430030, China.
| |
Collapse
|
17
|
Ji J, Hu D, Yuan J, Wei Y. An Adaptable Cryptosystem Enabled by Synergies of Luminogens with Aggregation-Induced-Emission Character. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2004616. [PMID: 33108008 DOI: 10.1002/adma.202004616] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/01/2020] [Indexed: 06/11/2023]
Abstract
The strong emission in the solid state and the feasibility of introducing stimuli responsiveness make aggregation-induced-emission luminogens promising for optical information encryption. Yet, the vast majority of previous reports rely on subtle changes in the molecular conformation or intermolecular interactions, limiting the robustness, multiplicity, capacity, and security of the resulting cryptosystems. Herein, a versatile cryptographic system is presented based on three interconnected and orthogonal covalent transformations concerning a tetraphenylethylene-maleimide conjugate. The cryptosystem is adapted into four configurations with different functionalities by organizing the reactions and molecules in different ways. These variants either balance the accessibility and security of the encrypted information or improve the security and density in data encryption. Significantly, they allow variable decryption from a single encryption and reconstruction of the chemical nature hidden in the fluorescent pattern can only be accessed through given algorithms. These results highlight the importance of multi-component synergies in advancing information encryption systems, which is enabled by the robustness and diversity stemming from the covalent nature of these transformations.
Collapse
Affiliation(s)
- Jinzhao Ji
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Danning Hu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jinying Yuan
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
18
|
|
19
|
Dare EO, Vendrell‐Criado V, Consuelo Jiménez M, Pérez‐Ruiz R, Díaz Díaz D. Fluorescent-Labeled Octasilsesquioxane Nanohybrids as Potential Materials for Latent Fingerprinting Detection. Chemistry 2020; 26:13142-13146. [PMID: 32460420 PMCID: PMC7692944 DOI: 10.1002/chem.202001908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/22/2020] [Indexed: 11/10/2022]
Abstract
The recent demand for fluorescent-labeled materials (FLMs) in forensic security concepts such as latent fingerprints (LFs) that encode information for anti-counterfeiting and encryption of confidential data makes necessary the development of building new and innovative materials. Here, novel FLMs based on polyhedral oligomeric silsesquioxanes (POSS) functionalized with fluorophores via "click" reactions have been successfully synthesized and fully characterized. A comprehensive study of their photophysical properties has displayed large Stokes's shift together with good photostability in all cases, fulfilling the fundamental requisites for any legible LF detection on various surfaces. The excellent performance of the hetero-bifunctional FLM in the visualization of LF is emphasized by their legibility, selectivity, sensitivity and temporal photostability. In this study, development mechanisms have been proposed and the overall concept constitute a novel approach for vis-à-vis forensic investigations to trace an individual's identity.
Collapse
Affiliation(s)
- Enock O. Dare
- Institute of Organic ChemistryUniversity of RegensburgUniversitaetsstr. 3193040RegensburgGermany
- Department of ChemistryFederal University of AgricultureP.M. B2240AbeokutaNigeria
| | | | - M. Consuelo Jiménez
- Departamento de QuímicaUniversitat Politècnica de ValènciaCamino de Vera, s/n46022ValenciaSpain
| | - Raúl Pérez‐Ruiz
- Departamento de QuímicaUniversitat Politècnica de ValènciaCamino de Vera, s/n46022ValenciaSpain
| | - David Díaz Díaz
- Institute of Organic ChemistryUniversity of RegensburgUniversitaetsstr. 3193040RegensburgGermany
- Departamento de Química OrgánicaUniversidad de La LagunaAvda. Astrofísico Francisco Sánchez38206La LagunaTenerifeSpain
- Instituto Universitario de Bio-Orgánica Antonio GonzálezUniversidad de La LagunaAvda. Astrofísico Francisco Sánchez 238206La LagunaTenerifeSpain
| |
Collapse
|
20
|
Bécue A, Eldridge H, Champod C. Interpol review of fingermarks and other body impressions 2016-2019. Forensic Sci Int Synerg 2020; 2:442-480. [PMID: 33385142 PMCID: PMC7770454 DOI: 10.1016/j.fsisyn.2020.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/16/2020] [Indexed: 12/17/2022]
Abstract
This review paper covers the forensic-relevant literature in fingerprint and bodily impression sciences from 2016 to 2019 as a part of the 19th Interpol International Forensic Science Managers Symposium. The review papers are also available at the Interpol website at: https://www.interpol.int/content/download/14458/file/Interpol%20 Review%20 Papers%202019. pdf.
Collapse
Affiliation(s)
- Andy Bécue
- École des Sciences Criminelles, Faculté de Droit, des Sciences criminelles et d’Administration publique, Quartier Sorge, Building Batochime, University of Lausanne, CH-1015, Lausanne, Dorigny, Switzerland
| | - Heidi Eldridge
- École des Sciences Criminelles, Faculté de Droit, des Sciences criminelles et d’Administration publique, Quartier Sorge, Building Batochime, University of Lausanne, CH-1015, Lausanne, Dorigny, Switzerland
| | - Christophe Champod
- École des Sciences Criminelles, Faculté de Droit, des Sciences criminelles et d’Administration publique, Quartier Sorge, Building Batochime, University of Lausanne, CH-1015, Lausanne, Dorigny, Switzerland
| |
Collapse
|
21
|
|
22
|
Qin M, Xu Y, Gao H, Han G, Cao R, Guo P, Feng W, Chen L. Tetraphenylethylene@Graphene Oxide with Switchable Fluorescence Triggered by Mixed Solvents for the Application of Repeated Information Encryption and Decryption. ACS APPLIED MATERIALS & INTERFACES 2019; 11:35255-35263. [PMID: 31474104 DOI: 10.1021/acsami.9b12421] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Aggregation-induced emission (AIE) materials present unique solid-state fluorescence. However, there remains a challenge in the switching of fluorescence quenching/emitting of AIE materials, limiting the application in information encryption. Herein, we report a composite of tetraphenylethylene@graphene oxide (TPE@GO) with switchable microstructure and fluorescence. We choose GO as a fluorescence quencher to control the fluorescence of TPE by controlling the aggregation structure. First, TPE coating with an average thickness of about 31 nm was deposited at the GO layer surface, which is the critical thickness at which the fluorescence can be largely quenched because of the fluorescence resonance energy transfer. After spraying a mixed solvent (good and poor solvents of TPE) on TPE@GO, a blue fluorescence of TPE was emitted during the drying process. During the treatment of mixed solvents, the planar TPE coating was dissolved in THF first and then the TPE molecules aggregated into nanoparticles (an average diameter of 65 nm) in H2O during the volatilization of THF. We found that the fluorescence switching of the composite is closely related to the microstructural change of TPE between planar and granular structures, which can make the upper TPE molecules in and out of the effective quenching region of GO. This composite, along with the treatment method, was used as an invisible ink in repeated information encryption and decryption. Our work not only provides a simple strategy to switch the fluorescence of solid-state fluorescent materials but also demonstrates the potential for obtaining diverse material structures through compound solvent treatment.
Collapse
Affiliation(s)
- Mengmeng Qin
- School of Materials Science and Engineering , Tianjin University of Technology , Tianjin 300384 , P. R. China
- Tianjin Key Laboratory for Photoelectric Display Materials and Devices , Tianjin 300384 , China
- Key Laboratory of Photoelectric Display Materials and Devices , Ministry of Education , Tianjin 300384 , P. R. China
| | - Yuxiao Xu
- School of Materials Science and Engineering , Tianjin University of Technology , Tianjin 300384 , P. R. China
| | - H Gao
- School of Chemistry and Chemical Engineering , Tianjin University of Technology , Tianjin 300384 , P. R. China
| | - Guoying Han
- School of Materials Science and Engineering , Tianjin University of Technology , Tianjin 300384 , P. R. China
| | - Rong Cao
- School of Materials Science and Engineering , Tianjin University of Technology , Tianjin 300384 , P. R. China
| | - Peili Guo
- School of Materials Science and Engineering , Tianjin University of Technology , Tianjin 300384 , P. R. China
| | - Wei Feng
- School of Materials Science and Engineering , Tianjin University , Tianjin 300072 , P. R. China
| | - Li Chen
- School of Materials Science and Engineering , Tianjin University of Technology , Tianjin 300384 , P. R. China
- Tianjin Key Laboratory for Photoelectric Display Materials and Devices , Tianjin 300384 , China
- Key Laboratory of Photoelectric Display Materials and Devices , Ministry of Education , Tianjin 300384 , P. R. China
| |
Collapse
|