1
|
Song W, Xu Y, Xie X, Li C, Zhu W, Xiang Q, Chen W, Tang N, Wang L. CoFe-Layered Double Hydroxide Coupled with Pd Particles for Electrocatalytic Ethanol Oxidation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37216444 DOI: 10.1021/acsami.3c01541] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Electrocatalytic efficiency and stability have emerged as critical issues in the ethanol oxidation reaction (EOR) of direct ethanol fuel cells. In this paper, Pd/Co1Fe3-LDH/NF as an electrocatalyst for EOR was prepared by a two-step synthetic strategy. Metal-oxygen bonds formed between Pd nanoparticles and Co1Fe3-LDH/NF guaranteed structural stability and adequate surface-active site exposure. More importantly, the charge transfer of the formed Pd-O-Co(Fe) bridge could effectively modulate the electrical structure of hybrids, improving the facilitated absorption of OH- radicals and oxidation of COads. Benefiting from the interfacial interaction, exposed active sites, and structural stability, the observed specific activity for Pd/Co1Fe3-LDH/NF (17.46 mA cm-2) was 97 and 73 times higher than those of commercial Pd/C (20%) (0.18 mA cm-2) and Pt/C (20%) (0.24 mA cm-2), respectively. Besides, the jf/jr ratio representing the resistance to catalyst poisoning was 1.92 in the Pd/Co1Fe3-LDH/NF catalytic system. These results provide insights into optimizing the electronic interaction between metals and the support of electrocatalysts for EOR.
Collapse
Affiliation(s)
- Wenwen Song
- College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Yanqi Xu
- College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Key Laboratory of New Technology for Processing Nonferrous Metals and Materials, Ministry of Education; Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources in Guangxi, Guilin University of Technology, Guilin 541004, China
| | - Xiangli Xie
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Cunjun Li
- College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Key Laboratory of New Technology for Processing Nonferrous Metals and Materials, Ministry of Education; Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources in Guangxi, Guilin University of Technology, Guilin 541004, China
| | - Wenfeng Zhu
- College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Key Laboratory of New Technology for Processing Nonferrous Metals and Materials, Ministry of Education; Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources in Guangxi, Guilin University of Technology, Guilin 541004, China
| | - Qiankun Xiang
- Shenzhen Shenai Semiconductor Co., Ltd., Shenzhen 518116, China
| | - Wei Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ningli Tang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Linjiang Wang
- College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Key Laboratory of New Technology for Processing Nonferrous Metals and Materials, Ministry of Education; Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources in Guangxi, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
2
|
Xu J, Xu H, Xu L, Ruan Q, Zhu X, Kan C, Shi D. Plasmonic and catalytic Au NBP@AgPd nanoframes for highly efficient photocatalytic reactions. Phys Chem Chem Phys 2023; 25:13189-13197. [PMID: 37129667 DOI: 10.1039/d3cp01153d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Heterogeneous metal nanostructures with excellent plasmonic performance and catalytic activity are urgently needed to realize efficient light-driven catalysis. Herein, we demonstrate the preparation of hollow Au nanobipyramid (NBP)@AgPd nanostructures by employing Au NBP@Ag nanorods as templates. The products could transform from Au NBP@AgPd nanoframes to nanocages, along with the redshift and broadening of the plasmon wavelength. Particularly, the plasmon intensity of these nanostructures remained considerable among the shape evolution process. Based on the selective absorption of CTAB, the Ag atoms on the side surfaces of the Au NBP@Ag nanorods were employed as the sacrificial templates to reduce Pd atoms through galvanic replacement. The reduced Pd and Ag atoms produced through the reduction reaction were preferably co-deposited on the corners and edges at the early stage and later deposited directly on the defect sites of the side facets, as more Ag atoms were released. The discontinued distribution of the Pd atoms gives an opportunity to etch away the Ag atoms in the cores, leading to the formation of hollow Au NBP@AgPd nanostructures after the etching process. It is worth noting that the deposition of the ultrathin AgPd nanoframe had little influence on the plasmonic properties of Au NBPs, as verified by electrodynamic simulations. The Au NBP@AgPd nanoframe showed great photocatalytic activity toward Suzuki coupling reactions under laser irradiation. Taken together, these results suggest that the hot electrons successfully transfer from Au NBP to the AgPd nanoframes to participate in the photocatalytic reactions. This study affords a promising route for the synthesis of anisotropic bimetallic nanostructures with excellent plasmonic performances.
Collapse
Affiliation(s)
- Juan Xu
- College of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
| | - Haiying Xu
- College of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
- College of Mathematics and Physics, Nanjing Institute of Technology, Nanjing, 211167, China
| | - Lihui Xu
- College of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
| | - Qifeng Ruan
- Engineering Product Development, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Xingzhong Zhu
- College of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
- MIIT Key Laboratory of Aerospace Information Materials and Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Caixia Kan
- College of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
- MIIT Key Laboratory of Aerospace Information Materials and Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Daning Shi
- College of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
- MIIT Key Laboratory of Aerospace Information Materials and Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| |
Collapse
|
3
|
Luo W, Jiang Y, Wang M, Lu D, Sun X, Zhang H. Design strategies of Pt-based electrocatalysts and tolerance strategies in fuel cells: a review. RSC Adv 2023; 13:4803-4822. [PMID: 36760269 PMCID: PMC9903923 DOI: 10.1039/d2ra07644f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/29/2023] [Indexed: 02/10/2023] Open
Abstract
As highly efficient conversion devices, proton-exchange-membrane fuel cells (PEMFCs) can directly convert chemical energy to electrical energy with high efficiencies and lower or even zero emissions compared to combustion engines. However, the practical applications of PEMFCs have been seriously hindered by the intermediates (especially CO) poisoning of anodic Pt catalysts. Hence, how to improve the CO tolerance of the needed Pt catalysts and reveal their anti-CO poisoning mechanism are the key points to developing novel anti-toxic Pt-based electrocatalysts. To date, two main strategies have received increasing attention in improving the CO tolerance of Pt-based electrocatalysts, including alloying Pt with a second element and fabricating composites with geometry and interface engineering. Herein, we will first discuss the latest developments of Pt-based alloys and their anti-CO poisoning mechanism. Subsequently, a detailed description of Pt-based composites with enhanced CO tolerance by utilizing the synergistic effect between Pt and carriers is introduced. Finally, a brief perspective and new insights on the design of Pt-based electrocatalysts to inhibit CO poisoning in PEMFCs are also presented.
Collapse
Affiliation(s)
- Wenlei Luo
- National Innovation Institute of Defense Technology, Academy of Military Science Beijing 100071 China
| | - Yitian Jiang
- State Key Laboratory of Space Power-sources Technology, Shanghai Institute of Space Power-Sources 2965 Dongchuan Road Shanghai 200245 China
| | - Mengwei Wang
- State Key Laboratory of Space Power-sources Technology, Shanghai Institute of Space Power-Sources 2965 Dongchuan Road Shanghai 200245 China
| | - Dan Lu
- State Key Laboratory of Space Power-sources Technology, Shanghai Institute of Space Power-Sources 2965 Dongchuan Road Shanghai 200245 China
| | - Xiaohui Sun
- State Key Laboratory of Space Power-sources Technology, Shanghai Institute of Space Power-Sources 2965 Dongchuan Road Shanghai 200245 China
| | - Huahui Zhang
- State Key Laboratory of Space Power-sources Technology, Shanghai Institute of Space Power-Sources 2965 Dongchuan Road Shanghai 200245 China
| |
Collapse
|
4
|
Matsuyama T, Yatabe T, Yabe T, Yamaguchi K. Decarbonylation of 1,2-Diketones to Diaryl Ketones via Oxidative Addition Enabled by an Electron-Deficient Au–Pd Nanoparticle Catalyst. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takehiro Matsuyama
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takafumi Yatabe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tomohiro Yabe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
5
|
Yang H, Zhang A, Bai Y, Chu M, Li H, Liu Y, Zhu P, Chen X, Deng C, Yuan X. One Stone Two Birds: Unlocking the Synergy between Amorphous Ni(OH) 2 and Pd Nanocrystals toward Ethanol and Formic Acid Oxidation. Inorg Chem 2022; 61:14419-14427. [PMID: 36037068 DOI: 10.1021/acs.inorgchem.2c02307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Even though extensive efforts have been devoted to mixing Pd nanocrystals with Ni(OH)2 for the enhanced synergy, it remains a great challenge to incorporate nanosized Ni(OH)2 species on the Pd electrode and reveal their synergy. Herein, we present spongelike Pd nanocrystals with the modification of amorphous Ni(OH)2 species. The catalyst configuration is first considered by compositing Pd with Ni(OH)2 species to optimize the Pd-Pd interatomic distance and then constructing a strongly coupled interface between Pd nanostructures and Ni(OH)2 species. For the ethanol oxidation reaction (EOR) and the formic acid oxidation reaction (FAOR), Pd-Ni(OH)2 composites exhibit an impressive mass activity of 4.98 and 2.65 A mgPd-1, respectively. Most impressively, there is no significant decrease in the EOR activity during five consecutive cycles (50 000 s). A series of CO-poisoning tests have proved that the enhanced EOR and FAOR performances involve synergy between Pd nanostructures and Ni(OH)2 species.
Collapse
Affiliation(s)
- Hu Yang
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong 226019, China
| | - Aichuang Zhang
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong 226019, China
| | - Yunfei Bai
- Space Power Technology State Key Laboratory, Shanghai Institute of Space Power-Sources, 2965 Dongchuan Road, Shanghai 200245, China
| | - Mingyu Chu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Han Li
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong 226019, China
| | - Yuan Liu
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong 226019, China
| | - Peng Zhu
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong 226019, China
| | - Xiaolei Chen
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong 226019, China
| | - Chengwei Deng
- Space Power Technology State Key Laboratory, Shanghai Institute of Space Power-Sources, 2965 Dongchuan Road, Shanghai 200245, China
| | - Xiaolei Yuan
- School of Chemistry and Chemical Engineering, Nantong University, 9 Seyuan Road, Nantong 226019, China
| |
Collapse
|
6
|
Hu J, Fang C, Jiang X, Zhang D, Cui Z. Ultrathin and Porous 2D PtPdCu Nanoalloys as High-Performance Multifunctional Electrocatalysts for Various Alcohol Oxidation Reactions. Inorg Chem 2022; 61:9352-9363. [PMID: 35674700 DOI: 10.1021/acs.inorgchem.2c01257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We precisely synthesized two-dimensional (2D) PtPdCu nanostructures with the morphology varying from porous circular nanodisks (CNDs) and triangular nanoplates (TNPs) to triangular nanoboomerangs (TNBs) by tuning the molar ratios of metal precursors. The PtPdCu trimetallic nanoalloys exhibit superior electrocatalytic performances to alcohol oxidation reactions due to their unique structural features and the synergistic effect. Impressively, PtPdCu TNBs exhibit a high mass activity of 3.42 mgPt+Pd-1 and 1.06 A·mgPt-1 for ethanol and methanol oxidation compared to PtPd, PtCu, and pure Pt, which is 3.93 and 4.07 times that of commercial Pt/C catalysts, respectively. Moreover, 2D PtPdCu TNPs and PtPdCu CNDs also show a highly improved electrocatalytic activity. Furthermore, as all-in-one electrocatalysts, PtPdCu nanoalloys display excellent electrocatalytic activity and stability toward the oxidation of other alcohol molecules, such as isopropyl alcohol, glycerol, and ethylene glycol. The enhanced mechanism was well proposed to be the abundant active sites and upshifted d-band center based on density functional theory calculations.
Collapse
Affiliation(s)
- Jinwu Hu
- College of Chemistry and Materials Science, the Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Normal University, Wuhu 241000, China
| | - Caihong Fang
- College of Chemistry and Materials Science, the Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Normal University, Wuhu 241000, China
| | - Xiaomin Jiang
- College of Chemistry and Materials Science, the Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Normal University, Wuhu 241000, China
| | - Deliang Zhang
- College of Chemistry and Materials Science, the Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Normal University, Wuhu 241000, China
| | - Zhiqing Cui
- College of Chemistry and Materials Science, the Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
7
|
Hanqi B, Xu J, Zhu X, Kan C. Gold nanobipyramids doped with Au/Pd alloyed nanoclusters for high efficiency ethanol electrooxidation. NANOSCALE ADVANCES 2022; 4:1827-1834. [PMID: 36132164 PMCID: PMC9417086 DOI: 10.1039/d1na00878a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/03/2022] [Indexed: 06/15/2023]
Abstract
Plasmonic metal nanostructures are of great interest due to their excellent physicochemical properties and promising applications in a wide range of technical fields. Among metal nanostructures, bimetallic nanostructures with desired morphologies, such as core-shell, uniform alloy and surface decoration, are of great interest due to their improved properties and superior synergetic effects. In this paper, Au/Pd nanoclusters were deposited on the surface of gold nanobipyramids (AuBPs) into a core-shell nanostructure (AuBP@Au x Pd1-x ) through a reductive co-precipitation method. The AuBP@Au x Pd1-x nanostructure integrates effectively the advantages of plasmonic AuBPs and catalytic Pd ultrafine nanoclusters, as well as the stable Au/Pd alloy shell. The AuBP@Au x Pd1-x nanostructure exhibits superior electrocatalytic activity and durability for oxygen reduction in alkaline media owing to the synergistic effect between the AuBP core and Au/Pd shell. Furthermore, the shell thickness of AuBP@Au x Pd1-x nanostructures can be adjusted by varying the amount of precursor. Overall, the catalytic activity of bimetallic Au/Pd catalysts is likely to be governed by a complex interplay of contributions from the particle size and shape.
Collapse
Affiliation(s)
- Baihe Hanqi
- College of Science, Nanjing University of Aeronautics and Astronautics Nanjing 211106 China
| | - Juan Xu
- College of Science, Nanjing University of Aeronautics and Astronautics Nanjing 211106 China
| | - Xingzhong Zhu
- College of Science, Nanjing University of Aeronautics and Astronautics Nanjing 211106 China
- MIIT Key Laboratory of Aerospace Information Materials and Physics, Nanjing University of Aeronautics and Astronautics Nanjing 211106 China
| | - Caixia Kan
- College of Science, Nanjing University of Aeronautics and Astronautics Nanjing 211106 China
- MIIT Key Laboratory of Aerospace Information Materials and Physics, Nanjing University of Aeronautics and Astronautics Nanjing 211106 China
| |
Collapse
|
8
|
Yun Q, Xu J, Wei T, Ruan Q, Zhu X, Kan C. Synthesis of Pd nanorod arrays on Au nanoframes for excellent ethanol electrooxidation. NANOSCALE 2022; 14:736-743. [PMID: 34939638 DOI: 10.1039/d1nr05987d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Au-Pd hollow nanostructures have attracted a lot of attention because of their excellent ethanol electrooxidation performance. Herein, we report a facile preparation of Au nanoframe@Pd array electrocatalysts in the presence of cetylpyridinium chloride. The reduced Pd atoms were directed to mainly deposit on the surface of the Au nanoframes in the form of rods, leading to the formation of Au nanoframe@Pd arrays with a super-large specific surface area. The red shift and damping of the plasmon peak were ascribed to the deposition of the Pd arrays on the surface of the Au nanoframes and nanobipyramids, which was verified by electrodynamic simulations. Surfactants, temperature and reaction time determine the growth process and thereby the architecture of the obtained Au-Pd hollow nanostructures. Compared with the Au nanoframe@Pd nanostructures and Au nanobipyramid@Pd arrays, the Au nanoframe@Pd arrays exhibit an enhanced electrocatalytic performance towards ethanol electrooxidation due to an abundance of catalytic active sites. The Au NF@Pd arrays display 4.1 times higher specific activity and 13.7 times higher mass activity than the commercial Pd/C electrocatalyst. Moreover, the nanostructure shows improved stability towards the ethanol oxidation reaction. This study enriches the manufacturing technology to increase the active sites of noble metal nanocatalysts and promotes the development of direct ethanol fuel cells.
Collapse
Affiliation(s)
- Qinru Yun
- College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
| | - Juan Xu
- College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
| | - Tingcha Wei
- College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
- Key Laboratory of Aerospace Information Materials and Physics (NUAA), MIIT, Nanjing 211106, China
| | - Qifeng Ruan
- Engineering Product Development, Singapore University of Technology and Design, Singapore 487372
| | - Xingzhong Zhu
- College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
- Key Laboratory of Aerospace Information Materials and Physics (NUAA), MIIT, Nanjing 211106, China
| | - Caixia Kan
- College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.
- Key Laboratory of Aerospace Information Materials and Physics (NUAA), MIIT, Nanjing 211106, China
| |
Collapse
|
9
|
He Z, Wang H, Yu T, Zuo L, Yan S, Bian T, Su S. Trimetallic Au@RhCu Core‐Shell Nanodendrites as Efficient Bifunctional Electrocatalysts toward Hydrogen and Oxygen Evolution Reactions. ChemistrySelect 2022. [DOI: 10.1002/slct.202103472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zeyang He
- School of Energy and Power Jiangsu University of Science and Technology Zhenjiang 212003 People's Republic of China
| | - Haoquan Wang
- School of Energy and Power Jiangsu University of Science and Technology Zhenjiang 212003 People's Republic of China
| | - Tao Yu
- School of Energy and Power Jiangsu University of Science and Technology Zhenjiang 212003 People's Republic of China
| | - Linzhi Zuo
- School of Energy and Power Jiangsu University of Science and Technology Zhenjiang 212003 People's Republic of China
| | - Shitan Yan
- CEPREI (Nanjing) Institute of Industry and Technology Nanjing 211800 People's Republic of China
| | - Ting Bian
- School of Energy and Power Jiangsu University of Science and Technology Zhenjiang 212003 People's Republic of China
| | - Shichuan Su
- School of Energy and Power Jiangsu University of Science and Technology Zhenjiang 212003 People's Republic of China
| |
Collapse
|
10
|
Sun J, Lao X, Yang M, Fu A, Chen J, Pang M, Gao F, Guo P. Alloyed Palladium-Lead Nanosheet Assemblies for Electrocatalytic Ethanol Oxidation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14930-14940. [PMID: 34910478 DOI: 10.1021/acs.langmuir.1c02816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Synthesizing alloyed bimetallic electrocatalysts with a three-dimensional (3D) structure assembly have arouse great interests in electrocatalysis. We synthesized a class of alloyed Pd3Pb/Pd nanosheet assemblies (NSAs) composed of a two-dimensional (2D) sheet structure with adjustable compositions via an oil bath approach at a low temperature. Both the scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images reveal the successful formation of the nanosheet structure, where the morphology of Pd3Pb/Pd NSAs can be regulated by adjusting the atomic mole ratio of Pb and Pb metal precursors. The power X-ray diffraction (XRD) pattern shows that Pd3Pb/Pd NSA catalysts are homogeneously alloyed. Electrochemical analysis and the density functional theory (DFT) method demonstrate that the electrocatalytic activity of the alloyed Pd3Pb/Pd NSAs can be improved by the doping of the Pb element. As a result of the addition of element Pb and change of the electron structure, the electrocatalytic activity toward ethanol oxidation of alloyed Pd3Pb/Pd-15 NSA can reach up to 2886 mA mg-1, which is approximately 2.8 times that of the pure Pd NSA counterpart (1020 mA mg-1). The Pd3Pb/Pd NSAs are favorable in a high catalytic temperature, high KOH concentration, and high ethanol concentration.
Collapse
Affiliation(s)
- Jing Sun
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Xianzhuo Lao
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Min Yang
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Aiping Fu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Jianyu Chen
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Mingyuan Pang
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Fahui Gao
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Peizhi Guo
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| |
Collapse
|
11
|
Kwon T, Mun HY, Seo S, Yu A, Lee C, Lee Y. Amperometric Sensing of Carbon Monoxide: Improved Sensitivity and Selectivity via Nanostructure-Controlled Electrodeposition of Gold. BIOSENSORS 2021; 11:334. [PMID: 34562925 PMCID: PMC8468895 DOI: 10.3390/bios11090334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 01/04/2023]
Abstract
A series of gold (Au) nanostructures, having different morphologies, were fabricated for amperometric selective detection of carbon monoxide (CO), a biologically important signaling molecule. Au layers were electrodeposited from a precursor solution of 7 mM HAuCl4 with a constant deposition charge (0.04 C) at various deposition potentials. The obtained Au nanostructures became rougher and spikier as the deposition potential lowered from 0.45 V to 0.05 V (vs. Ag/AgCl). As prepared Au layers showed different hydrophobicity: The sharper morphology, the greater hydrophobicity. The Au deposit formed at 0.05 V had the sharpest shape and the greatest surface hydrophobicity. The sensitivity of an Au deposit for amperometric CO sensing was enhanced as the Au surface exhibits higher hydrophobicity. In fact, CO selectivity over common electroactive biological interferents (L-ascorbic acid, 4-acetamidophenol, 4-aminobutyric acid and nitrite) was improved eminently once the Au deposit became more hydrophobic. The most hydrophobic Au was also confirmed to sense CO exclusively without responding to nitric oxide, another similar gas signaling molecule, in contrast to a hydrophobic platinum (Pt) counterpart. This study presents a feasible strategy to enhance the sensitivity and selectivity for amperometric CO sensing via the fine control of Au electrode nanostructures.
Collapse
Affiliation(s)
| | | | | | | | | | - Youngmi Lee
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul 03760, Korea; (T.K.); (H.Y.M.); (S.S.); (A.Y.); (C.L.)
| |
Collapse
|
12
|
Gao F, Zhang Y, You H, Li Z, Zou B, Du Y. Solvent-Mediated Shell Dimension Reconstruction of Core@Shell PdAu@Pd Nanocrystals for Robust C1 and C2 Alcohol Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101428. [PMID: 34213824 DOI: 10.1002/smll.202101428] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/18/2021] [Indexed: 06/13/2023]
Abstract
The core@shell structure dimension of the Pd-based nanocrystals deeply impacts their catalytic properties for C1 and C2 alcohol oxidation reactions. However, the precise simultaneous control on the synthesis of core@shell nanocrystals with different shell dimensions is difficult, and most synthesis on Pd-based core@shell nanocatalysts involves the surfactants participation by multiple steps, thus leads to limited catalytic properties. Herein, for the first time, a facile one-step surfactant-free strategy is developed for shell dimension reconstruction of PdAu@Pd core@shell nanocrystals by altering volume ratios of mixed solvents. The Pd-based sunflower-like (SL) and coral grass-like (CGL) nanocrystals are obtained with different 2D hexagonal nanosheet assembles and 3D network shells, respectively. Benefitting from the clean surface shell of 2D ultrathin nanosheets structure, high atom utilization efficiency, and robust electronic effect. The PdAu@Pd SL achieves the ascendant methanol/ethanol/ethylene glycol oxidation reaction (MOR/EOR/EGOR) activities, much higher than Pd/C catalysts, as well as the improved antipoisoning ability. Notably, this one-step construction shell dimension of PdAu@Pd core@shell catalysts not only provide a significant reference for the improvement of surfactant-free synthetic routes, but also shed light on the advanced engineering on shell dimensions in core@shell nanostructures for electrocatalysis and so forth.
Collapse
Affiliation(s)
- Fei Gao
- College of Chemistry Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, China
| | - Yangping Zhang
- College of Chemistry Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, China
| | - Huaming You
- College of Chemistry Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, China
| | - Zhuolin Li
- College of Chemistry Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, China
| | - Bin Zou
- College of Chemistry Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, China
| | - Yukou Du
- College of Chemistry Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, China
| |
Collapse
|
13
|
LIANG YY, WU Q, LIANG F. Analysis of Catalytic Activity of Au@Pd Core-shell Nanodendrites for Highly Efficient Ethanol Electrooxidation. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/s1872-2040(21)60103-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Yang M, Pang M, Chen J, Gao F, Li H, Guo P. Surfactant-Assisted Synthesis of Palladium Nanosheets and Nanochains for the Electrooxidation of Ethanol. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9830-9837. [PMID: 33605715 DOI: 10.1021/acsami.0c20146] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The synthesis of metal nanometer electrocatalysts with a two-dimensional (2D) structure or rich active sites has become a research hotspot in electrocatalysis. In this work, surfactant hexadecyltrimethylammonium bromide (CTAB) was used to assist the synthesis and assembly of Pd ultrathin nanosheet with the help of Mo(CO)6 in the start system. Pd nanochain composed of nanoparticles is obtained under the same condition, replacing CTAB with carrageenan only. Electrochemical measurements showed that the catalytic peak current density for the electrooxidation of ethanol can reach 2145 mA mg-1 for the Pd nanosheet assembly (NSA) and 1696 mA mg-1 for Pd nanochains. Pd nanosheet assembly also has a lower electron-transfer barrier, better catalytic stability, and antipoisoning performance than that of Pd nanochains. The mechanism of Pd nanosheets and nanochains catalysts the enhanced electrocatalytic activity toward ethanol oxidation has been discussed based on the experimental data.
Collapse
Affiliation(s)
- Min Yang
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Mingyuan Pang
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Jianyu Chen
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Fahui Gao
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Hongliang Li
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Peizhi Guo
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| |
Collapse
|
15
|
Liu Y, Li W, Zhao G, Qin G, Li Y, Liu Y. Self-driven microstructural evolution of Au@Pd core-shell nanoparticles for greatly enhanced catalytic performance during methanol electrooxidation. NANOSCALE 2021; 13:3528-3542. [PMID: 33491724 DOI: 10.1039/d0nr07135h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The lack of direct insight into the microstructural evolution of catalytic materials under electrochemical polarization has inhibited the development of heterogeneous catalysts. By investigating a typical Au@Pd core-shell nanostructure, the present study discloses the microstructural evolution of heterogeneous catalytic materials during the methanol electrooxidation reaction (MOR). The electrocatalytic activity of the as-prepared Au@Pd_core-shell nanoparticles continuously increased during the first 100 successive voltammetry cycles of the MOR. Microstructural characterization studies revealed that during the MOR, an Au/Pd mixed bimetallic shell was formed by the self-driven microstructural evolution of the Au@Pd_core-shell nanoparticles. Both the experimental and calculation results indicated that the Au/Pd mixed bimetallic shell reduced the binding strength of OH- and CO on the catalyst surface. The exposed Au atoms in the shell region also produced large-scale reactive ˙OH radicals that facilitated the oxidative removal of the adsorbed carbonaceous species from the adjacent Pd active sites.
Collapse
Affiliation(s)
- Yaxing Liu
- Shanxi Key Laboratory of Nano Functional Composite Materials, North University of China, Taiyuan, 030051, P. R. China.
| | | | | | | | | | | |
Collapse
|
16
|
Cui Z, Bai X. Ultrasonic-assisted synthesis of two dimensional coral-like Pd nanosheets supported on reduced graphene oxide for enhanced electrocatalytic performance. ULTRASONICS SONOCHEMISTRY 2021; 70:105309. [PMID: 32805529 PMCID: PMC7786531 DOI: 10.1016/j.ultsonch.2020.105309] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 05/30/2023]
Abstract
Two dimensional (2D) Pd nanosheets supported on reduced graphene oxide (Pd/rGO) were prepared through a sonochemical routine induced by cetyltrimethylammonium bromide (CTAB). Coral-like porous Pd nanosheets (Pd/rGO-u) were obtained under the sonication condition (25 kHz, 600 W, ultrasonic transducer), while square Pd nanosheets (Pd/rGO-c) were produced via traditional chemical reduction. The size of Pd nanosheets of Pd/rGO-u and Pd/rGO-c are 69.7 nm and 59.7 nm, and the thickness are 4.6 nm and 4.4 nm, respectively. The carrier GO was proved to be partially reduced to rGO with good electrical conductivity and oxygen-containing groups facilitated a good dispersion of Pd nanosheets. The interaction between GO and CTAB made the alkyl chain assembles to a 2D lamella micelles which limit the growth of Pd atoms resulting in the formation of 2D nanosheets. A high ultrasonic power promotes the reduction and the formation of porous structure. Additionally, Pd/rGO-u exhibited a favorable electrocatalytic performance toward oxygen reduction reaction (ORR) in alkaline condition, which provided a potential synthetic strategy assisted by sonication for high-performance 2D materials.
Collapse
Affiliation(s)
- Zelin Cui
- College of Chemistry and Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Xuefeng Bai
- College of Chemistry and Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; College of Chemistry and Material Sciences, Heilongjiang University, Harbin 150080, China; Institute of Petrochemistry, Heilongjiang Academy of Sciences, Harbin 150040, China.
| |
Collapse
|
17
|
Luo L, Fu C, Yan X, Shen S, Yang F, Guo Y, Zhu F, Yang L, Zhang J. Promoting Effects of Au Submonolayer Shells on Structure-Designed Cu-Pd/Ir Nanospheres: Greatly Enhanced Activity and Durability for Alkaline Ethanol Electro-Oxidation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:25961-25971. [PMID: 32395980 DOI: 10.1021/acsami.0c05605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rationally engineering the surface physicochemical properties of nanomaterials can improve their activity and durability for various electrocatalytic and energy conversion applications. Cu-Pd/Ir (CPI) nanospheres (NSs) anchored on N-doped porous graphene (NPG) [(CPI NSs/NPG)] have been recently demonstrated as a promising electrocatalyst for the alkaline ethanol oxidation reaction (EOR); to further enhance their electrocatalytic performance, the NPG-supported CPI NSs are coated with Au submonolayer (SML) shells (SMSs), through which their surface physicochemical properties can be tuned. CPI NSs/NPG is prepared by our previously developed method and possesses the special structures of composition-graded Cu1Pd1 and surface-doped Ir0.03. The Au SMSs with designed surface coverages are formed via an electrochemical technology involving incomplete Cu underpotential deposition (UPD) and Au3+ galvanic replacement. A distinctive volcano-type relation between the EOR electrocatalytic activity and the Au-SMS surface coverage for CPI@AuSML NSs/NPG is revealed, and the optimal CPI@Au1/6ML NSs/NPG greatly surpasses commercial Pd/C and CPI NSs/NPG in electrocatalytic activity and noble metal utilization. More importantly, its electrocatalytic durability in 1 h chronoamperometric and 500-cycle potential cycling degradation tests is also significantly improved. According to detailed physicochemical characterizations, electrochemical analyses, and density functional theory calculations, the promoting effects of the Au SMS for enhancing the EOR electrocatalytic activity and durability of CPI NSs/NPG can be mainly attributed to the greatly weakened carbonaceous intermediate bonding and properly increased surface oxidation potential. This work also proposes a versatile and effective strategy to tune the surface physicochemical properties of metal-based nanomaterials via incomplete UPD and metal-cation galvanic replacement for advancing their electrocatalytic and energy conversion performance.
Collapse
Affiliation(s)
- Liuxuan Luo
- Institute of Fuel Cells, Key Laboratory for Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cehuang Fu
- Institute of Fuel Cells, Key Laboratory for Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaohui Yan
- Institute of Fuel Cells, Key Laboratory for Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuiyun Shen
- Institute of Fuel Cells, Key Laboratory for Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fan Yang
- Institute of Fuel Cells, Key Laboratory for Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yangge Guo
- Institute of Fuel Cells, Key Laboratory for Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fengjuan Zhu
- Institute of Fuel Cells, Key Laboratory for Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lijun Yang
- Key Laboratory for Mesoscopic Chemistry of MOE, Jiangsu Provincial Lab for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Junliang Zhang
- Institute of Fuel Cells, Key Laboratory for Power Machinery and Engineering of MOE, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
18
|
Yao K, Zhao C, Wang N, Li T, Lu W, Wang J. An aqueous synthesis of porous PtPd nanoparticles with reversed bimetallic structures for highly efficient hydrogen generation from ammonia borane hydrolysis. NANOSCALE 2020; 12:638-647. [PMID: 31829363 DOI: 10.1039/c9nr07144j] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Fine construction of porous bimetallic nanomaterials with tunable components and structures is of great importance for their catalytic performance and durability. Herein, we present a facile and mild one-pot route for the preparation of porous PtPd bimetallic nanoparticles (NPs) with reversed structures in aqueous solution for the first time. To this end, a common ionic liquid (IL) 1-hexadecyl-3-methylimidazolium chloride ([C16mim]Cl) is utilized to direct the growth and assembly of porous structures of PtPd NPs. It is shown that the as-prepared porous Pt25Pd75 NPs have obvious hierarchical structures with nanoflowers as subunits and nanorods as basic units. The elemental components and structures of the porous PtPd NPs can be tuned by the precursor ratio and the [C16mim]Cl concentration. Furthermore, various porous PtPd bimetallic structures from Pd-on-Pt to Pt-on-Pd may be efficiently switched by controlling the concentration of glycine. Owing to their high specific surface area, porous hierarchical structures (including mesopores and micropores), and probable electronic effects between Pt and Pd, the porous Pt25Pd75 NPs (Pd-on-Pt structure) are found to exhibit prominent catalytic activity and high stability for hydrogen production from hydrolysis of ammonia borane.
Collapse
Affiliation(s)
- Kaisheng Yao
- School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang, Henan 471023, P. R. China.
| | | | | | | | | | | |
Collapse
|
19
|
Zhu X, Xu J, Yun Q, Wang C, Ruan Q, Kan C. Realization of red plasmon shifts by the selective etching of Ag nanorods. CrystEngComm 2020. [DOI: 10.1039/d0ce01362e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The red plasmon shifts is realized through selective deposition of Au atoms and etching of Ag atoms on the Ag nanorods.
Collapse
Affiliation(s)
- Xingzhong Zhu
- College of Science
- Nanjing University of Aeronautics and Astronautics
- Nanjing 210016
- China
| | - Juan Xu
- College of Science
- Nanjing University of Aeronautics and Astronautics
- Nanjing 210016
- China
| | - Qinru Yun
- College of Science
- Nanjing University of Aeronautics and Astronautics
- Nanjing 210016
- China
| | - Changshun Wang
- College of Science
- Nanjing University of Aeronautics and Astronautics
- Nanjing 210016
- China
| | - Qifeng Ruan
- Engineering Product Development
- Singapore University of Technology and Design
- Singapore 487372
- Singapore
| | - Caixia Kan
- College of Science
- Nanjing University of Aeronautics and Astronautics
- Nanjing 210016
- China
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education
| |
Collapse
|