1
|
Chen Q, Zhou L, Zhang J, Chen D, Zhu W, Xi H, Zhang J, Zhang C, Hao Y. Recent Progress of Wide Bandgap Perovskites towards Two-Terminal Perovskite/Silicon Tandem Solar Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:202. [PMID: 38251165 PMCID: PMC10820607 DOI: 10.3390/nano14020202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
Perovskite/silicon tandem solar cells have garnered considerable interest due to their potential to surpass the Shockley-Queisser limit of single-junction Si solar cells. The rapidly advanced efficiencies of perovskite/silicon tandem solar cells benefit from the significant improvements in perovskite technology. Beginning with the evolution of wide bandgap perovskite cells towards two-terminal (2T) perovskite/silicon tandem solar cells, this work concentrates on component engineering, additives, and interface modification of wide bandgap perovskite cells. Furthermore, the advancements in 2T perovskite/silicon tandem solar cells are presented, and the influence of the central interconnect layer and the Si cell on the progression of the tandem solar cells is emphasized. Finally, we discuss the challenges and obstacles associated with 2T perovskite/silicon tandem solar cells, conducting a thorough analysis and providing a prospect for their future.
Collapse
Affiliation(s)
- Qianyu Chen
- National Key Laboratory of Wide Bandgap Semiconductor Devices and Integrated Technology and Shaanxi Joint Key Laboratory of Graphene, School of Microelectronics, Xidian University, Xi’an 710071, China
| | - Long Zhou
- National Key Laboratory of Wide Bandgap Semiconductor Devices and Integrated Technology and Shaanxi Joint Key Laboratory of Graphene, School of Microelectronics, Xidian University, Xi’an 710071, China
- Xi’an Baoxin Solar Technology Co., Ltd., Xi’an 710071, China
| | - Jiaojiao Zhang
- National Key Laboratory of Wide Bandgap Semiconductor Devices and Integrated Technology and Shaanxi Joint Key Laboratory of Graphene, School of Microelectronics, Xidian University, Xi’an 710071, China
| | - Dazheng Chen
- National Key Laboratory of Wide Bandgap Semiconductor Devices and Integrated Technology and Shaanxi Joint Key Laboratory of Graphene, School of Microelectronics, Xidian University, Xi’an 710071, China
- Xi’an Baoxin Solar Technology Co., Ltd., Xi’an 710071, China
| | - Weidong Zhu
- National Key Laboratory of Wide Bandgap Semiconductor Devices and Integrated Technology and Shaanxi Joint Key Laboratory of Graphene, School of Microelectronics, Xidian University, Xi’an 710071, China
- Xi’an Baoxin Solar Technology Co., Ltd., Xi’an 710071, China
| | - He Xi
- National Key Laboratory of Wide Bandgap Semiconductor Devices and Integrated Technology and Shaanxi Joint Key Laboratory of Graphene, School of Microelectronics, Xidian University, Xi’an 710071, China
- Xi’an Baoxin Solar Technology Co., Ltd., Xi’an 710071, China
| | - Jincheng Zhang
- National Key Laboratory of Wide Bandgap Semiconductor Devices and Integrated Technology and Shaanxi Joint Key Laboratory of Graphene, School of Microelectronics, Xidian University, Xi’an 710071, China
| | - Chunfu Zhang
- National Key Laboratory of Wide Bandgap Semiconductor Devices and Integrated Technology and Shaanxi Joint Key Laboratory of Graphene, School of Microelectronics, Xidian University, Xi’an 710071, China
- Xi’an Baoxin Solar Technology Co., Ltd., Xi’an 710071, China
| | - Yue Hao
- National Key Laboratory of Wide Bandgap Semiconductor Devices and Integrated Technology and Shaanxi Joint Key Laboratory of Graphene, School of Microelectronics, Xidian University, Xi’an 710071, China
| |
Collapse
|
2
|
Zeng Z, Wang Y, Xie YM, Zhu Z, Yang Y, Ma Y, Hao X, Lee CS, Cheng Y, Tsang SW. On the Ion Coordination and Crystallization of Metal Halide Perovskites by In Situ Dynamic Optical Probing. SMALL METHODS 2023:e2300899. [PMID: 37749953 DOI: 10.1002/smtd.202300899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/29/2023] [Indexed: 09/27/2023]
Abstract
Controlling the crystallization to achieve high-quality homogeneous perovskite film is the key strategy in developing perovskite electronic devices. Here, an in situ dynamic optical probing technique is demonstrated that can monitor the fast crystallization of perovskites and effectively minimize the influence of laser excitation during the measurement. This study finds that the typical static probing technique would damage and induce phase segregation in the perovskite films during the excitation. These issues can be effectively resolved with the dynamic probing approach. It also found that the crystallization between MAPbI3 and MAPbI2 Br is strikingly different. In particular, MAPbI2 Br suffers from inefficient nucleation during the spin-coating that strongly affects the uniform crystal growth in the annealing process. The commonly used pre-heating process is found at a lower temperature not only can further promote the nucleation but also to complete the crystallization of MAPbI2 Br. The role of further annealing at a higher temperature is to facilitate ion-dissociation on the crystal surface to form a passivation layer to stabilize the MAPbI2 Br lattices. The device performance is strongly correlated with the film formation mechanism derived from the in situ results. This work demonstrates that the in situ technique can provide deep insight into the crystallization mechanism, and help to understand the growth mechanism of perovskites with different compositions and dimensionalities.
Collapse
Affiliation(s)
- Zixin Zeng
- Department of Materials Science and Engineering, Center of Super-Diamond and Advance Films (COSDAF), Hong Kong Institute for Clean Energy, City University of Hong Kong, Hong Kong SAR, China
| | - Yunfan Wang
- Department of Materials Science and Engineering, Center of Super-Diamond and Advance Films (COSDAF), Hong Kong Institute for Clean Energy, City University of Hong Kong, Hong Kong SAR, China
| | - Yue-Min Xie
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhaohua Zhu
- Department of Chemistry, Center of Super-Diamond and Advance Films (COSDAF), City University of Hong Kong, Hong Kong SAR, China
| | - Yajie Yang
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, 610065, China
| | - Yuhui Ma
- Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xia Hao
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, 610065, China
| | - Chun-Sing Lee
- Department of Chemistry, Center of Super-Diamond and Advance Films (COSDAF), City University of Hong Kong, Hong Kong SAR, China
| | - Yuanhang Cheng
- School of New Energy, Nanjing University of Science and Technology, Jiangyin, Jiangsu, 21443, China
| | - Sai-Wing Tsang
- Department of Materials Science and Engineering, Center of Super-Diamond and Advance Films (COSDAF), Hong Kong Institute for Clean Energy, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
3
|
Xie YM, Yao Q, Yip HL, Cao Y. Influence of Component Properties on the Photovoltaic Performance of Monolithic Perovskite/Organic Tandem Solar Cells: Sub-Cell, Interconnecting Layer, and Photovoltaic Parameters. SMALL METHODS 2023; 7:e2201255. [PMID: 36782077 DOI: 10.1002/smtd.202201255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Wide-bandgap perovskite sub-cells (WPSCs)-based tandem solar cells attract considerable interest because of their capability to surpass the Shockley-Queisser limit. Monolithic perovskite/organic tandem solar cells (POTSCs) integrating WPSCs and small-bandgap organic sub-cells (SOSCs) are famous compositions owing to their simple fabrication method and compatibility with flexible devices. Most studies on POTSCs focus on enhancing device efficiency by modifying one or two of the device components (WPSCs, SOSCs, and interconnecting layers). The characteristics of POTSCs are not extensively investigated so far, especially in terms of the influence of the device structure and component properties on the tandem device photovoltaic performance. In this study, the existing p-i-n type WPSC-based p-i-n POTSCs and n-i-p type WPSC-based n-i-p POTSCs are reviewed and their advantages and limitations are highlighted. Furthermore, the influence of the tandem device component properties (optical, electrical, and photovoltaic properties) on the photovoltaic parameters (open-circuit voltage, short-circuit current density, fill factor, and power conversion efficiency) and the existing device modification methods are discussed to provide comprehensive guidance for the development of POTSCs.
Collapse
Affiliation(s)
- Yue-Min Xie
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, P. R. China
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Qin Yao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Hin-Lap Yip
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
- School of Energy and Environmental Science, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Yong Cao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
4
|
Nie T, Fang Z, Ren X, Duan Y, Liu SF. Recent Advances in Wide-Bandgap Organic-Inorganic Halide Perovskite Solar Cells and Tandem Application. NANO-MICRO LETTERS 2023; 15:70. [PMID: 36943501 PMCID: PMC10030759 DOI: 10.1007/s40820-023-01040-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Perovskite-based tandem solar cells have attracted increasing interest because of its great potential to surpass the Shockley-Queisser limit set for single-junction solar cells. In the tandem architectures, the wide-bandgap (WBG) perovskites act as the front absorber to offer higher open-circuit voltage (VOC) for reduced thermalization losses. Taking advantage of tunable bandgap of the perovskite materials, the WBG perovskites can be easily obtained by substituting halide iodine with bromine, and substituting organic ions FA and MA with Cs. To date, the most concerned issues for the WBG perovskite solar cells (PSCs) are huge VOC deficit and severe photo-induced phase separation. Reducing VOC loss and improving photostability of the WBG PSCs are crucial for further efficiency breakthrough. Recently, scientists have made great efforts to overcome these key issues with tremendous progresses. In this review, we first summarize the recent progress of WBG perovskites from the aspects of compositions, additives, charge transport layers, interfaces and preparation methods. The key factors affecting efficiency and stability are then carefully discussed, which would provide decent guidance to develop highly efficient and stable WBG PSCs for tandem application.
Collapse
Affiliation(s)
- Ting Nie
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhimin Fang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China.
| | - Xiaodong Ren
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yuwei Duan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Shengzhong Frank Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China.
- Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
5
|
Xie Y, Xue Q, Yao Q, Xie S, Niu T, Yip H. Monolithic perovskite/organic tandem solar cells: Developments, prospects, and challenges. NANO SELECT 2021. [DOI: 10.1002/nano.202000287] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Yue‐Min Xie
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou P.R. China
| | - Qifan Xue
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou P.R. China
- Innovation Center for Printed Photovoltaics South China Institute of Collaborative Innovation Dongguan P.R. China
| | - Qin Yao
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou P.R. China
| | - Shenkun Xie
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou P.R. China
| | - Tianqi Niu
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou P.R. China
| | - Hin‐Lap Yip
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou P.R. China
- Innovation Center for Printed Photovoltaics South China Institute of Collaborative Innovation Dongguan P.R. China
- Department of Materials Science and Engineering City University of Hong Kong Kowloon Hong Kong
- School of Energy and Environmental Science City University of Hong Kong Kowloon Hong Kong
| |
Collapse
|
6
|
Wang D, Li W, Du Z, Li G, Sun W, Wu J, Lan Z. Highly Efficient CsPbBr 3 Planar Perovskite Solar Cells via Additive Engineering with NH 4SCN. ACS APPLIED MATERIALS & INTERFACES 2020; 12:10579-10587. [PMID: 32048823 DOI: 10.1021/acsami.9b23384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Improving stability is a major aspect for commercial application of perovskite solar cells (PSCs). The all-inorganic CsPbBr3 perovskite material has been proven to have excellent stability. However, the CsPbBr3 film has a small range of light absorption and serious charge recombination at the interface or inside the device, so the power conversion efficiency is still lower than that of the organic-inorganic hybrid one. Here, we successfully fabricate high-quality CsPbBr3 films via additive engineering with NH4SCN. By incorporating NH4+ and pseudo-halide ion SCN- into the precursor solution, a smooth and dense CsPbBr3 film with good crystallinity and low trap state density can be obtained. At the same time, the results of a series of photoluminescence and electrochemical analyses including electrical impedance spectroscopy, space-charge limited current method, Mott-Schottky data, and so on reveal that the NH4SCN additive can greatly reduce the trap state density of the CsPbBr3 film and also effectively inhibit interface recombination and promote charge transport in the CsPbBr3 planar PSC. Finally, the CsPbBr3 planar PSC prepared with a molar ratio of 1.5% NH4SCN achieves a champion efficiency of 8.47%, higher than that of the pure one (7.12%).
Collapse
Affiliation(s)
- Deng Wang
- Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education; Fujian Key Laboratory of Photoelectric Functional Materials; Fujian Engineering Research Center of Green Functional Materials; Institute of Materials Physical Chemistry, Huaqiao University, Xiamen 361021, P. R. China
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, P. R. China
| | - Wenjing Li
- Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education; Fujian Key Laboratory of Photoelectric Functional Materials; Fujian Engineering Research Center of Green Functional Materials; Institute of Materials Physical Chemistry, Huaqiao University, Xiamen 361021, P. R. China
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, P. R. China
| | - Zhenbo Du
- Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education; Fujian Key Laboratory of Photoelectric Functional Materials; Fujian Engineering Research Center of Green Functional Materials; Institute of Materials Physical Chemistry, Huaqiao University, Xiamen 361021, P. R. China
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, P. R. China
| | - Guodong Li
- Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education; Fujian Key Laboratory of Photoelectric Functional Materials; Fujian Engineering Research Center of Green Functional Materials; Institute of Materials Physical Chemistry, Huaqiao University, Xiamen 361021, P. R. China
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, P. R. China
| | - Weihai Sun
- Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education; Fujian Key Laboratory of Photoelectric Functional Materials; Fujian Engineering Research Center of Green Functional Materials; Institute of Materials Physical Chemistry, Huaqiao University, Xiamen 361021, P. R. China
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, P. R. China
| | - Jihuai Wu
- Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education; Fujian Key Laboratory of Photoelectric Functional Materials; Fujian Engineering Research Center of Green Functional Materials; Institute of Materials Physical Chemistry, Huaqiao University, Xiamen 361021, P. R. China
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, P. R. China
| | - Zhang Lan
- Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education; Fujian Key Laboratory of Photoelectric Functional Materials; Fujian Engineering Research Center of Green Functional Materials; Institute of Materials Physical Chemistry, Huaqiao University, Xiamen 361021, P. R. China
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, P. R. China
| |
Collapse
|
7
|
Xie YM, Zeng Z, Xu X, Ma C, Ma Y, Li M, Lee CS, Tsang SW. FA-Assistant Iodide Coordination in Organic-Inorganic Wide-Bandgap Perovskite with Mixed Halides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907226. [PMID: 32049427 DOI: 10.1002/smll.201907226] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/15/2020] [Indexed: 05/24/2023]
Abstract
Mixed-halide wide-bandgap perovskites are key components for the development of high-efficiency tandem structured devices. However, mixed-halide perovskites usually suffer from phase-impurity and high defect density issues, where the causes are still unclear. By using in situ photoluminescence (PL) spectroscopy, it is found that in methylammonium (MA+ )-based mixed-halide perovskites, MAPb(I0.6 Br0.4 )3 , the halide composition of the spin-coated perovskite films is preferentially dominated by the bromide ions (Br- ). Additional thermal energy is required to initiate the insertion of iodide ions (I- ) to achieve the stoichiometric balance. Notably, by incorporating a small amount of formamidinium ions (FA+ ) in the precursor solution, it can effectively facilitate the I- coordination in the perovskite framework during the spin-coating and improve the composition homogeneity of the initial small particles. The aggregation of these homogenous small particles is found to be essential to achieve uniform and high-crystallinity perovskite film with high Br- content. As a result, high-quality MA0.9 FA0.1 Pb(I0.6 Br0.4 )3 perovskite film with a bandgap (Eg ) of 1.81 eV is achieved, along with an encouraging power-conversion-efficiency of 17.1% and open-circuit voltage (Voc ) of 1.21 V. This work also demonstrates the in situ PL can provide a direct observation of the dynamic of ion coordination during the perovskite crystallization.
Collapse
Affiliation(s)
- Yue-Min Xie
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Zixin Zeng
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Xiuwen Xu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Chunqing Ma
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Yuhui Ma
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Menglin Li
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Chun-Sing Lee
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Sai-Wing Tsang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| |
Collapse
|