1
|
Wojciechowska O, Costabile A, Kujawska M. The gut microbiome meets nanomaterials: exposure and interplay with graphene nanoparticles. NANOSCALE ADVANCES 2023; 5:6349-6364. [PMID: 38024319 PMCID: PMC10662184 DOI: 10.1039/d3na00696d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
Graphene-based nanoparticles are widely applied in many technology and science sectors, raising concerns about potential health risks. Emerging evidence suggests that graphene-based nanomaterials may interact with microorganisms, both pathogens and commensal bacteria, that dwell in the gut. This review aims to demonstrate the current state of knowledge on the interplay between graphene nanomaterials and the gut microbiome. In this study, we briefly overview nanomaterials, their usage and the characteristics of graphene-based nanoparticles. We present and discuss experimental data from in vitro studies, screening tests on small animals and rodent experiments related to exposure and the effects of graphene nanoparticles on gut microbiota. With this in mind, we highlight the reported crosstalk between graphene nanostructures, the gut microbial community and the host immune system in order to shed light on the perspective to bear on the biological interactions. The studies show that graphene-based material exposure is dosage and time-dependent, and different derivatives present various effects on host bacteria cells. Moreover, the route of graphene exposure might influence a shift in the gut microbiota composition, including the alteration of functions and diversity and abundance of specific phyla or genera. However, the mechanism of graphene-based nanomaterials' influence on gut microbiota is poorly understood. Accordingly, this review emphasises the importance of studies needed to establish the most desirable synthesis methods, types of derivatives, properties, and safety aspects mainly related to the routes of exposure and dosages of graphene-based nanomaterials.
Collapse
Affiliation(s)
- Olga Wojciechowska
- Department of Toxicology, Poznan University of Medical Sciences Rokietnicka 3 Poznan 60-806 Poland
| | - Adele Costabile
- School of Life and Health Sciences, University of Roehampton London SW15 4JD UK
| | - Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences Rokietnicka 3 Poznan 60-806 Poland
| |
Collapse
|
2
|
Cebadero-Domínguez Ó, Diez-Quijada L, López S, Sánchez-Ballester S, Puerto M, Cameán AM, Jos A. Impact of Gastrointestinal Digestion In Vitro Procedure on the Characterization and Cytotoxicity of Reduced Graphene Oxide. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2285. [PMID: 37630872 PMCID: PMC10457766 DOI: 10.3390/nano13162285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023]
Abstract
The growing interest in graphene derivatives is a result of their variety of applications in many fields. Due to their use, the oral route could be a potential way of entrance for the general population. This work assesses the biotransformation of reduced graphene oxide (rGO) after an in vitro digestion procedure (mouth, gastric, intestinal, and colon digestion), and its toxic effects in different cell models (HepG2, Caco-2, and 3D intestinal model). The characterization of rGO digestas evidenced the agglomeration of samples during the in vitro gastrointestinal (g.i.) digestion. Internalization of rGO was only evident in Caco-2 cells exposed to the colonic phase and no cellular defects were observed. Digestas of rGO did not produce remarkable cytotoxicity in any of the experimental models employed at the tested concentrations (up to 200 µg/mL), neither an inflammatory response. Undigested rGO has shown cytotoxic effects in Caco-2 cells, therefore these results suggest that the digestion process could prevent the systemic toxic effects of rGO. However, additional studies are necessary to clarify the interaction of rGO with the g.i. tract and its biocompatibility profile.
Collapse
Affiliation(s)
- Óscar Cebadero-Domínguez
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain; (Ó.C.-D.); (L.D.-Q.); (A.M.C.)
| | - Leticia Diez-Quijada
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain; (Ó.C.-D.); (L.D.-Q.); (A.M.C.)
| | - Sergio López
- Department of Cell Biology, Faculty of Biology, Universidad de Sevilla, 41012 Seville, Spain;
| | - Soraya Sánchez-Ballester
- Packaging, Transport and Logistic Research Institute, Albert Einstein, 1, Paterna, 46980 Valencia, Spain;
| | - María Puerto
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain; (Ó.C.-D.); (L.D.-Q.); (A.M.C.)
| | - Ana M. Cameán
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain; (Ó.C.-D.); (L.D.-Q.); (A.M.C.)
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain; (Ó.C.-D.); (L.D.-Q.); (A.M.C.)
| |
Collapse
|
3
|
Couvillion SP, Danczak RE, Cao X, Yang Q, Keerthisinghe TP, McClure RS, Bitounis D, Burnet MC, Fansler SJ, Richardson RE, Fang M, Qian WJ, Demokritou P, Thrall BD. Graphene oxide exposure alters gut microbial community composition and metabolism in an in vitro human model. NANOIMPACT 2023; 30:100463. [PMID: 37060994 DOI: 10.1016/j.impact.2023.100463] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 05/12/2023]
Abstract
Graphene oxide (GO) nanomaterials have unique physicochemical properties that make them highly promising for biomedical, environmental, and agricultural applications. There is growing interest in the use of GO and extensive in vitro and in vivo studies have been conducted to assess its nanotoxicity. Although it is known that GO can alter the composition of the gut microbiota in mice and zebrafish, studies on the potential impacts of GO on the human gut microbiome are largely lacking. This study addresses an important knowledge gap by investigating the impact of GO exposure- at low (25 mg/L) and high (250 mg/L) doses under both fed (nutrient rich) and fasted (nutrient deplete) conditions- on the gut microbial communitys' structure and function, using an in vitro model. This model includes simulated oral, gastric, small intestinal phase digestion of GO followed by incubation in a colon bioreactor. 16S rRNA amplicon sequencing revealed that GO exposure resulted in a restructuring of community composition. 25 mg/L GO induced a marked decrease in the Bacteroidota phylum and increased the ratio of Firmicutes to Bacteroidota (F/B). Untargeted metabolomics on the supernatants indicated that 25 mg/L GO impaired microbial utilization and metabolism of substrates (amino acids, carbohydrate metabolites) and reduced production of beneficial microbial metabolites such as 5-hydroxyindole-3-acetic acid and GABA. Exposure to 250 mg/L GO resulted in community composition and metabolome profiles that were very similar to the controls that lacked both GO and digestive enzymes. Differential abundance analyses revealed that 3 genera from the phylum Bacteroidota (Bacteroides, Dysgonomonas, and Parabacteroides) were more abundant after 250 mg/L GO exposure, irrespective of feed state. Integrative correlation network analysis indicated that the phylum Bacteroidota showed strong positive correlations to multiple microbial metabolites including GABA and 3-indoleacetic acid, are much larger number of correlations compared to other phyla. These results show that GO exposure has a significant impact on gut microbial community composition and metabolism at both low and high GO concentrations.
Collapse
Affiliation(s)
- Sneha P Couvillion
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Robert E Danczak
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Xiaoqiong Cao
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, 655 Huntington Ave, Boston, MA 02115, USA
| | - Qin Yang
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore; Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Tharushi P Keerthisinghe
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore; Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Ryan S McClure
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Dimitrios Bitounis
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, 655 Huntington Ave, Boston, MA 02115, USA
| | - Meagan C Burnet
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Sarah J Fansler
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Rachel E Richardson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore; Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, 655 Huntington Ave, Boston, MA 02115, USA.
| | - Brian D Thrall
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
4
|
Svadlakova T, Holmannova D, Kolackova M, Malkova A, Krejsek J, Fiala Z. Immunotoxicity of Carbon-Based Nanomaterials, Starring Phagocytes. Int J Mol Sci 2022; 23:ijms23168889. [PMID: 36012161 PMCID: PMC9408998 DOI: 10.3390/ijms23168889] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
In the field of science, technology and medicine, carbon-based nanomaterials and nanoparticles (CNMs) are becoming attractive nanomaterials that are increasingly used. However, it is important to acknowledge the risk of nanotoxicity that comes with the widespread use of CNMs. CNMs can enter the body via inhalation, ingestion, intravenously or by any other route, spread through the bloodstream and penetrate tissues where (in both compartments) they interact with components of the immune system. Like invading pathogens, CNMs can be recognized by large numbers of receptors that are present on the surface of innate immune cells, notably monocytes and macrophages. Depending on the physicochemical properties of CNMs, i.e., shape, size, or adsorbed contamination, phagocytes try to engulf and process CNMs, which might induce pro/anti-inflammatory response or lead to modulation and disruption of basic immune activity. This review focuses on existing data on the immunotoxic potential of CNMs, particularly in professional phagocytes, as they play a central role in processing and eliminating foreign particles. The results of immunotoxic studies are also described in the context of the entry routes, impacts of contamination and means of possible elimination. Mechanisms of proinflammatory effect depending on endocytosis and intracellular distribution of CNMs are highlighted as well.
Collapse
Affiliation(s)
- Tereza Svadlakova
- Department of Clinical Immunology and Allergology, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, 50005 Hradec Kralove, Czech Republic
- Department of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic
- Correspondence:
| | - Drahomira Holmannova
- Department of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic
| | - Martina Kolackova
- Department of Clinical Immunology and Allergology, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, 50005 Hradec Kralove, Czech Republic
| | - Andrea Malkova
- Department of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic
| | - Jan Krejsek
- Department of Clinical Immunology and Allergology, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, 50005 Hradec Kralove, Czech Republic
| | - Zdenek Fiala
- Department of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic
| |
Collapse
|
5
|
Bantun F, Singh R, Alkhanani MF, Almalki AH, Alshammary F, Khan S, Haque S, Srivastava M. Gut microbiome interactions with graphene based nanomaterials: Challenges and opportunities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154789. [PMID: 35341865 DOI: 10.1016/j.scitotenv.2022.154789] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/14/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Rapid growth of nanotechnology has accelerated immense possibility of engineered nanomaterials (ENMs) exposure by human and living organisms. In this context, wide range applications of graphene based nanomaterials (GBNMs) may inevitably cause their release into the environment. Consequently, potential risks to the ecological system and human health is consistently increasing due to the probable ingestion of GBNMs by mean of contaminated water or food sources. Further, gut microbiome is known to play a profound impact on the health status of human being and has been recognized as the most exciting advancement in the biomedical science. Recent studies has shown vital role of ENMs to alter gut microbiome and thereby changed pathological status of organisms. Therefore, in this review results of numerous studies dedicated to explore the impact of GBNMs on gut microbiome and thereby various pathological status have been summarized. Dietary exposure of different types of GBNMs [e.g. graphene, graphene oxide (GO), partially reduced graphene oxide (PRGO), graphene quantum dots (GQDs)] have been evaluated on the gut microbiome through numerous in vitro and in vivo models. Moreover, emphasis has been made to evaluate different physiological responses with the short/long-term exposure of GBNMs, particularly in gastrointestinal tract (GIT) and its correlation with gut microbiome and the health status. It is reviewed that exposure of GBNMs can exert significant impact which alter the composition, diversity and function of gut microbiome. This may further appear in terms of enteric disorder along with numerous pathological changes e.g. IEC (intestinal epithelial cells) colitis, lysosomal dysfunction, inflammation, shortened colon, resorbed embryo, retardation in skeletal development, low weight of fetus, early or late dead of fetus and IBD (inflammatory bowel disease) like symptoms. Finally, potential health risks due to the exposure of GBNMs have been discussed with future perspective.
Collapse
Affiliation(s)
- Farkad Bantun
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah - 24382, Saudi Arabia
| | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi 110052, India.
| | - Mustfa F Alkhanani
- Emergency Medical Service Department, College of Applied Sciences, AlMaarefa University, Riyadh 11597, Saudi Arabia
| | - Atiah H Almalki
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; Addiction and Neuroscience Research Unit, College of Pharmacy, Taif University, Al-Hawiah, Taif 21944, Saudi Arabia
| | - Freah Alshammary
- Department of Preventive Dental Sciences, College of Dentistry, Hail University, Hail 2440, Saudi Arabia
| | - Saif Khan
- Department of Basic Dental and Medical Sciences, College of Dentistry, Hail University, Hail 2440, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Bursa Uludağ University Faculty of Medicine, Görükle Campus, 16059 Nilüfer, Bursa, Turkey
| | - Manish Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India.
| |
Collapse
|
6
|
Cebadero-Domínguez Ó, Jos A, Cameán AM, Cătunescu GM. Hazard characterization of graphene nanomaterials in the frame of their food risk assessment: A review. Food Chem Toxicol 2022; 164:113014. [PMID: 35430331 DOI: 10.1016/j.fct.2022.113014] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022]
Abstract
Different applications have been suggested for graphene nanomaterials (GFNs) in the food and feed chain. However, it is necessary to perform a risk assessment before they become market-ready, and when consumer exposure is demonstrated. For this purpose, the European Food Safety Authority (EFSA) has published a guidance that has been recently updated. In this sense, the aim of this study is to identify and characterise toxicological hazards related to GFNs after oral exposure. Thus, existing scientific literature in relation to in vitro degradation studies, in vitro and in vivo genotoxicity, toxicokinetics data, in vivo oral studies, and other in-depth studies such as effects on the microbiome has been revised. The obtained results showed that the investigations performed up to now did not follow internationally agreed-upon test guidelines. Moreover, GFNs seemed to resist gastrointestinal digestion and were able to be absorbed, distributed, and excreted, inducing toxic effects at different levels, including genotoxicity. Also, dose has an important role as it has been reported that low doses are more toxic than high doses because GFNs tend to aggregate in the digestive system, changing the internal exposure scenario. Thus, further studies including a thorough toxicological evaluation are required to protect consumer's safety.
Collapse
Affiliation(s)
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Spain.
| | - Ana M Cameán
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Spain
| | - Giorgiana M Cătunescu
- University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Calea Mănăștur 3-5, 400372, Cluj-Napoca, Romania
| |
Collapse
|
7
|
Ex Vivo Human Colon Tissue Exposure to Pristine Graphene Activates Genes Involved in the Binding, Adhesion and Proliferation of Epithelial Cells. Int J Mol Sci 2021; 22:ijms222111443. [PMID: 34768873 PMCID: PMC8584180 DOI: 10.3390/ijms222111443] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
Toxicology studies on pristine graphene are limited and lack significant correlations with actual human response. The goal of the current study was to determine the response of total colonic human tissue to pristine graphene exposure. Biopsy punches of colon tissues from healthy human were used to assess the biological response after ex vivo exposure to graphene at three different concentrations (1, 10, and 100 µg/mL). mRNA expression of specific genes or intestinal cytokine abundance was assessed using real-time PCR or multiplex immunoassays, respectively. Pristine graphene-activated genes that are related to binding and adhesion (GTPase and KRAS) within 2 h of exposure. Furthermore, the PCNA (proliferating cell nuclear antigen) gene was upregulated after exposure to graphene at all concentrations. Ingenuity pathway analysis revealed that STAT3 and VEGF signaling pathways (known to be involved in cell proliferation and growth) were upregulated. Graphene exposure (10 µg/mL) for 24 h significantly increased levels of pro-inflammatory cytokines IFNγ, IL-8, IL-17, IL-6, IL-9, MIP-1α, and Eotaxin. Collectively, these results indicated that graphene may activate the STAT3-IL23-IL17 response axis. The findings in this study provide information on toxicity evaluation using a human-relevant ex vivo colon model and serve as a basis for further exploration of its bio-applications.
Collapse
|
8
|
Tang M, Li S, Wei L, Hou Z, Qu J, Li L. Do Engineered Nanomaterials Affect Immune Responses by Interacting With Gut Microbiota? Front Immunol 2021; 12:684605. [PMID: 34594323 PMCID: PMC8476765 DOI: 10.3389/fimmu.2021.684605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/26/2021] [Indexed: 12/30/2022] Open
Abstract
Engineered nanomaterials (ENMs) have been widely exploited in several industrial domains as well as our daily life, raising concern over their potential adverse effects. While in general ENMs do not seem to have detrimental effects on immunity or induce severe inflammation, their indirect effects on immunity are less known. In particular, since the gut microbiota has been tightly associated with human health and immunity, it is possible that ingested ENMs could affect intestinal immunity indirectly by modulating the microbial community composition and functions. In this perspective, we provide a few pieces of evidence and discuss a possible link connecting ENM exposure, gut microbiota and host immune response. Some experimental works suggest that excessive exposure to ENMs could reshape the gut microbiota, thereby modulating the epithelium integrity and the inflammatory state in the intestine. Within such microenvironment, numerous microbiota-derived components, including but not limited to SCFAs and LPS, may serve as important effectors responsible of the ENM effect on intestinal immunity. Therefore, the gut microbiota is implicated as a crucial regulator of the intestinal immunity upon ENM exposure. This calls for including gut microbiota analysis within future work to assess ENM biocompatibility and immunosafety. This also calls for refinement of future studies that should be designed more elaborately and realistically to mimic the human exposure situation.
Collapse
Affiliation(s)
- Mingxing Tang
- Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China.,Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Shuo Li
- Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China.,The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Lan Wei
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,School of Biomedical Science and Pharmacy, Faculty of Health and Medicine, Hunter Medical Research Institute, University of Newcastle, New Lambton Heights, NSW, Australia
| | - Zhaohua Hou
- Department of Surgery, Sloan Kettering Institute Z427-D, Mortimer B. Zuckerman Research Center, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jing Qu
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Liang Li
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
9
|
Magne TM, de Oliveira Vieira T, Costa B, Alencar LMR, Ricci-Junior E, Hu R, Qu J, Zamora-Ledezma C, Alexis F, Santos-Oliveira R. Factors affecting the biological response of Graphene. Colloids Surf B Biointerfaces 2021; 203:111767. [PMID: 33878553 DOI: 10.1016/j.colsurfb.2021.111767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/26/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022]
Abstract
Nanotechnology has gained significant importance in different fields of medical, electronic, and environmental science. This technology is founded on the use of materials at the nanoscale scale (1-100 nanometers) for various purposes, particularly in the biomedical area, where its application is growing daily due to the need of materials with advanced properties. Over the past few years, there has been a growing use for graphene and its derivative composite materials. However, different physico-chemical properties influence its biological response; therefore, further studies to explain the interactions of these nanomaterials with biological systems are critical. This review presents the current advances in the applications of graphene in biomedicine with a focus on the physico-chemical characteristics of the graphene family and their influences on biological interactions.
Collapse
Affiliation(s)
- Tais Monteiro Magne
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Novel Radiopharmaceuticals and Nanoradiopharmacy, R. Helio de Almeida, 75, Rio de Janeiro, 21941906, Brazil
| | - Thamires de Oliveira Vieira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Novel Radiopharmaceuticals and Nanoradiopharmacy, R. Helio de Almeida, 75, Rio de Janeiro, 21941906, Brazil
| | - Bianca Costa
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Novel Radiopharmaceuticals and Nanoradiopharmacy, R. Helio de Almeida, 75, Rio de Janeiro, 21941906, Brazil
| | | | - Eduardo Ricci-Junior
- Federal University of Rio de Janeiro, Laboratory of Nanomedicine, Av. Carlos Chagas Filho, 373, Cidade Universitária da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-170, Brazil
| | - Rui Hu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Camilo Zamora-Ledezma
- Tissue Regeneration and Repair: Orthobiology, Biomaterials & Tissue Engineering Group. UCAM - Universidad Católica de Murcia, Avda. Los Jerónimos 135, Guadalupe, 30107, Murcia, Spain
| | - Frank Alexis
- School of Physical Sciences and Nanotechnology, Yachay Tech University, 100119, Urcuquí, Ecuador
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Novel Radiopharmaceuticals and Nanoradiopharmacy, R. Helio de Almeida, 75, Rio de Janeiro, 21941906, Brazil; Zona Oeste State University, Laboratory of Nanoradiopharmacy and Synthesis of Radiopharmaceuticals, Av Manuel caldeira de Alvarenga, 200, Campo Grande, Rio de Janeiro, 2100000, Brazil.
| |
Collapse
|
10
|
Zhou Y, Wang Y, Quan M, Zhao H, Jia J. Gut Microbiota Changes and Their Correlation with Cognitive and Neuropsychiatric Symptoms in Alzheimer's Disease. J Alzheimers Dis 2021; 81:583-595. [PMID: 33814442 DOI: 10.3233/jad-201497] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Gut microbiota can influence human brain function and behavior. Recent studies showed that gut microbiota might play an important role in the pathogenesis of Alzheimer's disease (AD). OBJECTIVE To investigate the composition of gut microbiota in AD patients and their association with cognitive function and neuropsychiatric symptoms (NPS). METHODS The fecal samples from 60 AD patients (30 with NPS and 30 without NPS) and 32 healthy control subjects (HC) were collected and analyzed by 16S ribosomal RNA sequencing. The functional variations of gut microbiota were predicted using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States. The correlation between different bacterial taxa and cognitive (Mini-Mental State Examination (MMSE), Clinical Dementia Rating (CDR)), and NPS measures were analyzed. RESULTS The fecal microbial composition of AD patients was quite distinct from HC. Bifidobacterium, Sphingomonas, Lactobacillus, and Blautia were enriched, while Odoribacter, Anaerobacterium, and Papillibacter were reduced. AD patients with NPS showed decreased Chitinophagaceae, Taibaiella, and Anaerobacterium compared with those without NPS. Functional pathways were different between AD and HC, and between AD patients with and without NPS. Correlation analysis showed that Sphingomonas correlated negatively with MMSE; Anaerobacterium and Papillibacter correlated positively with MMSE and negatively with CDR. Cytophagia, Rhodospirillaceae, and Cellvibrio correlated positively with NPS, while Chitinophagaceae, Taibaiella, and Anaerobacterium correlated negatively with NPS. CONCLUSION AD patients have gut microbiota alterations related to cognition, and differential taxa between AD patients with and without NPS associated differently with NPS domains, which helps further understand the pathogenesis of AD and explore potential therapeutic targets.
Collapse
Affiliation(s)
- Yunzhe Zhou
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, P.R. China
| | - Yan Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, P.R. China
| | - Meina Quan
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, P.R. China
| | - Huiying Zhao
- Department of Geriatrics, Shijiazhuang First Hospital, Shijiazhuang, China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, P.R. China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, P.R. China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, P.R. China.,Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, P.R. China
| |
Collapse
|
11
|
Park S, Choi KS, Kim S, Gwon Y, Kim J. Graphene Oxide-Assisted Promotion of Plant Growth and Stability. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E758. [PMID: 32326526 PMCID: PMC7221628 DOI: 10.3390/nano10040758] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022]
Abstract
The control and promotion of plant and crop growth are important challenges globally. In this study, we have developed a nanomaterial-assisted bionic strategy for accelerating plant growth. Although nanomaterials have been shown to be toxic to plants, we demonstrate herein that graphene oxide can be used as a regulator tool for enhancing plant growth and stability. Graphene oxide was added to the growth medium of Arabidopsis thaliana L. as well as injected into the stem of the watermelon plant. We showed that with an appropriate amount provided, graphene oxide had a positive effect on plant growth in terms of increasing the length of roots, the area of leaves, the number of leaves, and the formation of flower buds. In addition, graphene oxide affected the watermelon ripeness, increasing the perimeter and sugar content of the fruit. We believe that graphene oxide may be used as a strategy for enabling the acceleration of both plant growth and the fruit ripening process.
Collapse
Affiliation(s)
- Sunho Park
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Korea; (S.P.); (S.K.); (Y.G.)
| | - Kyoung Soon Choi
- National Research Facilities & Equipment center (NFEC), Korea Basic Science Institute (KBSI), 169-148, Gwahak-ro, Yuseong-gu, Daejeon 34133, Korea;
| | - Sujin Kim
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Korea; (S.P.); (S.K.); (Y.G.)
| | - Yonghyun Gwon
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Korea; (S.P.); (S.K.); (Y.G.)
| | - Jangho Kim
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Korea; (S.P.); (S.K.); (Y.G.)
| |
Collapse
|
12
|
Khare S, DeLoid GM, Molina RM, Gokulan K, Couvillion SP, Bloodsworth KJ, Eder EK, Wong AR, Hoyt DW, Bramer LM, Metz TO, Thrall BD, Brain JD, Demokritou P. Effects of ingested nanocellulose on intestinal microbiota and homeostasis in Wistar Han rats. NANOIMPACT 2020; 18:100216. [PMID: 32190784 PMCID: PMC7080203 DOI: 10.1016/j.impact.2020.100216] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Micron scale cellulose materials are "generally regarded as safe" (GRAS) as binders and thickeners in food products. However, nanocellulose materials, which have unique properties that can improve food quality and safety, have not received US-Food and Drug Administration (FDA) approval as food ingredients. In vitro and in vivo toxicological studies of ingested nanocellulose revealed minimal cytotoxicity, and no subacute in vivo toxicity. However, ingested materials may modulate gut microbial populations, or alter aspects of intestinal function not elucidated by toxicity testing, which could have important health implications. Here, we report the results of studies conducted in a rat gavage model to assess the effects of ingested cellulose nanofibrils (CNF) on the fecal microbiome and metabolome, intestinal epithelial expression of cell junction genes, and ileal cytokine production. Feces, plasma, and ilea were collected from Wistar Han rats before and after five weeks of biweekly gavages with water or cream, with or without 1% CNF. CNF altered microbial diversity, and diminished specific species that produce short chain fatty acids, and that are associated with increased serum insulin and IgA production. CNF had few effects on the fecal metabolome, with significant changes in only ten metabolites of 366 measured. Exposure to CNF also altered expression of epithelial cell junction genes, and increased production of cytokines that modulate proliferation of CD8 T cells. These perturbations likely represent initiation of an adaptive immune response, however, no associated pathology was seen within the duration of the study. Additional studies are needed to better understand the health implications of these changes in long term.
Collapse
Affiliation(s)
- Sangeeta Khare
- Division of Microbiology, National Center for Toxicological Research, U.S. Food & Drug Administration, Jefferson, AR 72079, USA
| | - Glen M. DeLoid
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Ramon M. Molina
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Kuppan Gokulan
- Division of Microbiology, National Center for Toxicological Research, U.S. Food & Drug Administration, Jefferson, AR 72079, USA
| | - Sneha P. Couvillion
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Kent J. Bloodsworth
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Elizabeth K. Eder
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Allison R. Wong
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - David W. Hoyt
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Lisa M. Bramer
- Computing & Analytics Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99352, USA
| | - Thomas O. Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Brian D. Thrall
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Joseph D. Brain
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
- corresponding author: Philip Demokritou,
| |
Collapse
|