1
|
Xie X, Liu J, Zhao H, Yan L, Wu Y, Miao Y, Wang H. Donor engineering to regulate fluorescence of a symmetrical structure based on a fluorene bridge for white light emission. RSC Adv 2024; 14:34311-34319. [PMID: 39469011 PMCID: PMC11514728 DOI: 10.1039/d4ra05803h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
A white organic light-emitting device (WOLED) obtained using blue and yellow complementary colors possesses extremely high optical efficiency. We designed and prepared a completely symmetric D-π-D type efficient blue light small molecule FFA based on octylfluorene as a π bridge, where the undoped device showed efficient blue organic light-emitting device (OLED) performance with a maximum emission wavelength of 428 nm, Commission Internationale de l'Eclairage (CIE) coordinates of (0.17, 0.11) and one of the narrowest full width at half maximum (FWHM) of 35 nm. To improve the matching measure of complementary color materials for achieving white light emission, a yellow light small molecule FCzA was prepared by adjusting the conjugation degree of peripheral electron-donating groups based on the same fluorene-based π bridge with FFA. Undoped devices based on FCzA demonstrated an electroluminescence (EL) emission peak at 576 nm with CIE coordinates of (0.43, 0.49) and a relatively wide FWHM of 130 nm. Ultimately, the white OLED device was modulated with CIE coordinates located at (0.33, 0.38) via proportional regulation with a mixture of FFA and FCzA in a ratio of 10 : 3 as the light-emitting layer.
Collapse
Affiliation(s)
- Xiaoling Xie
- Shanxi University of Electronic Science and Technology Linfen 041000 China
- College of Materials Science and Engineering, Taiyuan University of Technology Taiyuan 030024 China
| | - Jingjing Liu
- College of Materials Science and Engineering, Taiyuan University of Technology Taiyuan 030024 China
| | - Haocheng Zhao
- Department of Mechanical and Electrical Engineering, Shanxi Institute of Energy Jinzhong 030600 China
| | - Lei Yan
- College of Materials Science and Engineering, Taiyuan University of Technology Taiyuan 030024 China
| | - Yuling Wu
- College of Materials Science and Engineering, Taiyuan University of Technology Taiyuan 030024 China
| | - Yanqin Miao
- College of Materials Science and Engineering, Taiyuan University of Technology Taiyuan 030024 China
| | - Hua Wang
- College of Materials Science and Engineering, Taiyuan University of Technology Taiyuan 030024 China
| |
Collapse
|
2
|
Masimukku N, Mahmoudi M, Volyniuk D, Dabuliene A, Macionis S, Matulis V, Lyakhov D, Grazulevicius JV. Molecular glasses based on 1,8-naphthalimide and triphenylamine moieties as bipolar red fluorescent OLED emitters with conventional versus TADF hosting. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 288:122185. [PMID: 36481536 DOI: 10.1016/j.saa.2022.122185] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Three new donor-acceptor molecular glasses were designed and synthesized linking 1,8-naphthalimide and triphenylamino groups though the different bridges. The comprehensive characterization of the compounds was carried out using theoretical and experimental approaches. The compounds showed efficient orange-red emission in solid state with photoluminescence intensity maxima in the range of 584-654 nm. The compounds showed extremely high thermal stability with 5 % weight loss temperatures up to 477 °C. They formed molecular glasses with glass-transition temperatures in the range of 161-186 °C. The fabricated organic light-emitting diodes (OLEDs) based on the developed emitters and conventional host showed maximum external quantum efficiency of 2.5 % in the best case. This value was increased up to 4.7 % by the usage of the host exhibiting thermally activated delayed fluorescence (TADF). OLED containing the TADF host displayed orange emission peaking at 589 nm with colour coordinates x of 0.53 and y of 0.45 combined with power efficiency of 6.7 lm·W-1 and current efficiency of 11.8 cd·A-1. Time-resolved electroluminescence technique was used to study the effect of the different guest-host systems on exciton utilization efficiency in devices based on the same emitter exhibiting prompt fluorescence and on the conventional or TADF hosts.
Collapse
Affiliation(s)
- Naveen Masimukku
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, K. Baršausko g. 59, Kaunas 51423, Lithuania
| | - Malek Mahmoudi
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, K. Baršausko g. 59, Kaunas 51423, Lithuania
| | - Dmytro Volyniuk
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, K. Baršausko g. 59, Kaunas 51423, Lithuania
| | - Asta Dabuliene
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, K. Baršausko g. 59, Kaunas 51423, Lithuania
| | - Simas Macionis
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, K. Baršausko g. 59, Kaunas 51423, Lithuania
| | | | - Dmitry Lyakhov
- Computer, Electrical and Mathematical Science and Engineering Division, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Juozas V Grazulevicius
- Department of Polymer Chemistry and Technology, Kaunas University of Technology, K. Baršausko g. 59, Kaunas 51423, Lithuania.
| |
Collapse
|
3
|
Kothavale S, Kim SC, Cheong K, Zeng S, Wang Y, Lee JY. Solution-Processed Pure Red TADF Organic Light-Emitting Diodes With High External Quantum Efficiency and Saturated Red Emission Color. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208602. [PMID: 36653735 DOI: 10.1002/adma.202208602] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/29/2022] [Indexed: 06/17/2023]
Abstract
In spite of recent research progress in red thermally activated delayed fluorescence (TADF) emitters, highly efficient solution-processable pure red TADF emitters are rarely reported. Most of the red TADF emitters reported to date are designed using a rigid acceptor unit which renders them insoluble and unsuitable for solution-processed organic light-emitting diodes (OLEDs). To resolve this issue, a novel TADF emitter, 6,7-bis(4-(bis(4-(tert-butyl)phenyl)amino)phenyl)-2,3-bis(4-(tert-butyl)phenyl)quinoxaline-5,8-dicarbonitrile (tBuTPA-CNQx) is designed and synthesized. The highly twisted donor-acceptor architecture and appropriate highest occupied molecular orbital/lowest unoccupied molecular orbital distribution lead to a very small singlet-triplet energy gap of 0.07 eV, high photoluminescence quantum yield of 92%, and short delayed fluorescence lifetime of 52.4 µs. The peripheral t-butyl phenyl decorated quinoxaline acceptor unit and t-butyl protected triphenylamine donor unit are proven to be useful building blocks to improve solubility and minimize the intermolecular interaction. The solution-processed OLED based on tBuTPA-CNQx achieves a high external quantum efficiency (EQE) of 16.7% with a pure red emission peak at 662 nm, which is one of the highest EQE values reported till date in the solution-processed pure red TADF OLEDs. Additionally, vacuum-processable OLED based on tBuTPA-CNQx exhibits a high EQE of 22.2% and negligible efficiency roll-off.
Collapse
Affiliation(s)
- Shantaram Kothavale
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Seung Chan Kim
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Kiun Cheong
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Songkun Zeng
- School of Materials Science & Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou, 213164, P. R. China
| | - Yafei Wang
- School of Materials Science & Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou, 213164, P. R. China
| | - Jun Yeob Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Republic of Korea
- SKKU Advanced Institute of Nano Technology, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Republic of Korea
- SKKU Institute of Energy Science and Technology, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Republic of Korea
| |
Collapse
|
4
|
Cai X, Xu Y, Pan Y, Li L, Pu Y, Zhuang X, Li C, Wang Y. Solution-Processable Pure-Red Multiple Resonance-induced Thermally Activated Delayed Fluorescence Emitter for Organic Light-Emitting Diode with External Quantum Efficiency over 20 . Angew Chem Int Ed Engl 2023; 62:e202216473. [PMID: 36511099 DOI: 10.1002/anie.202216473] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Developing solution-processable red organic light-emitting diodes (OLEDs) with high color purity and efficiency based on multiple resonance thermally activated delayed fluorescence (MR-TADF) is a formidable challenge. Herein, by introducing auxiliary electron donor and acceptor moieties into the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) distributed positions of multiple resonance skeleton simultaneously, an effective strategy to obtain red MR-TADF emitters was represented. The proof-of-the-concept molecule BN-R exhibits a narrowband pure-red emission at 624 nm, with a high luminous efficiency of 94 % and a narrow bandwidth of 46 nm. Notably, the fabricated solution-processable pure-red OLED based on BN-R exhibits a state-of-the-art external quantum efficiency over 20 % with the Commission Internationale de I'Éclairage coordinates of (0.663, 0.337) and a long operational lifetime (LT50 ) of 1088 hours at an initial luminance of 1000 cd m-2 .
Collapse
Affiliation(s)
- Xinliang Cai
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yincai Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yue Pan
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, P. R. China
| | - Linjie Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yexuan Pu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xuming Zhuang
- Jihua Laboratory, 28 Huandao South Road, Foshan, 528200, Guangdong Province, P. R. China
| | - Chenglong Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.,Chongqing Research Institute, Jilin University, Chongqing, 401120, P. R. China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.,Jihua Laboratory, 28 Huandao South Road, Foshan, 528200, Guangdong Province, P. R. China.,Jihua Hengye Electronic Materials CO. LTD., Foshan, 528200, Guangdong Province, P. R. China
| |
Collapse
|
5
|
Liao XJ, Pu D, Yuan L, Tong J, Xing S, Tu ZL, Zuo JL, Zheng WH, Zheng YX. Planar Chiral Multiple Resonance Thermally Activated Delayed Fluorescence Materials for Efficient Circularly Polarized Electroluminescence. Angew Chem Int Ed Engl 2023; 62:e202217045. [PMID: 36517419 DOI: 10.1002/anie.202217045] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Chiral boron/nitrogen doped multiple resonance thermally activated delayed fluorescence (MR-TADF) emitters are promising for highly efficient and color-pure circularly polarized organic light-emitting diodes (CP-OLEDs). Herein, we report two pairs of MR-TADF materials (Czp-tBuCzB, Czp-POAB) based on planar chiral paracyclophane with photoluminescence quantum yields of up to 98 %. The enantiomers showed symmetric circularly polarized photoluminescence spectra with dissymmetry factors |gPL | of up to 1.6×10-3 in doped films. Meanwhile, the sky-blue CP-OLEDs with (R/S)-Czp-tBuCzB showed an external quantum efficiency of 32.1 % with the narrowest full-width at half-maximum of 24 nm among the reported CP-OLEDs, while the devices with (R/S)-Czp-POAB displayed the first nearly pure green CP electroluminescence with |gEL | factors at the 10-3 level. These results demonstrate the incorporation of planar chirality into MR-TADF emitter is a reliable strategy for constructing of efficient CP-OLEDs.
Collapse
Affiliation(s)
- Xiang-Ji Liao
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Dongdong Pu
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Li Yuan
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jingjing Tong
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Shuai Xing
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhen-Long Tu
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jing-Lin Zuo
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.,Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Wen-Hua Zheng
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - You-Xuan Zheng
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.,Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
6
|
Constructing high-efficiency orange-red thermally activated delayed fluorescence emitters by three-dimension molecular engineering. Nat Commun 2022; 13:7828. [PMID: 36535962 PMCID: PMC9763412 DOI: 10.1038/s41467-022-35591-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Preparing high-efficiency solution-processable orange-red thermally activated delayed fluorescence (TADF) emitters remains challenging. Herein, we design a series of emitters consisting of trinaphtho[3,3,3]propellane (TNP) core derivatized with different TADF units. Benefiting from the unique hexagonal stacking architecture of TNPs, TADF units are thus kept in the cavities between two TNPs, which decrease concentration quenching and annihilation of long-lived triplet excitons. According to the molecular engineering of TADF and host units, the excited states can further be regulated to effectively enhance spin-orbit coupling (SOC) processes. We observe a high-efficiency orange-red emission at 604 nm in one instance with high SOC value of 0.862 cm-1 and high photoluminescence quantum yield of 70.9%. Solution-processable organic light-emitting diodes exhibit a maximum external quantum efficiency of 24.74%. This study provides a universal strategy for designing high-performance TADF emitters through molecular packing and excited state regulation.
Collapse
|
7
|
Rebollar E, Bañuelos J, de la Moya S, Eng J, Penfold T, Garcia-Moreno I. A Computational-Experimental Approach to Unravel the Excited State Landscape in Heavy-Atom Free BODIPY-Related Dyes. Molecules 2022; 27:4683. [PMID: 35897859 PMCID: PMC9330419 DOI: 10.3390/molecules27154683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
We performed a time-gated laser-spectroscopy study in a set of heavy-atom free single BODIPY fluorophores, supported by accurate, excited-state computational simulations of the key low-lying excited states in these chromophores. Despite the strong fluorescence of these emitters, we observed a significant fraction of time-delayed (microseconds scale) emission associated with processes that involved passage through the triplet manifold. The accuracy of the predictions of the energy arrangement and electronic nature of the low-lying singlet and triplet excited states meant that an unambiguous assignment of the main deactivation pathways, including thermally activated delayed fluorescence and/or room temperature phosphorescence, was possible. The observation of triplet state formation indicates a breakthrough in the "classic" interpretation of the photophysical properties of the renowned BODIPY and its derivatives.
Collapse
Affiliation(s)
- Esther Rebollar
- Departamento Química-Física de Materiales, Instituto de Química Física “Rocasolano”, CSIC, Serrano 119, 28006 Madrid, Spain;
| | - Jorge Bañuelos
- Departamento de Química Física, Universidad del País Vasco-EHU, Apartado 644, 48080 Bilbao, Spain
| | - Santiago de la Moya
- Departamento Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain;
| | - Julien Eng
- Chemistry Department, School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon-Tyne NE1 7RU, UK; (J.E.); (T.P.)
| | - Thomas Penfold
- Chemistry Department, School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon-Tyne NE1 7RU, UK; (J.E.); (T.P.)
| | - Inmaculada Garcia-Moreno
- Departamento Química-Física de Materiales, Instituto de Química Física “Rocasolano”, CSIC, Serrano 119, 28006 Madrid, Spain;
| |
Collapse
|
8
|
Asymmetric Thermally Activated Delayed Fluorescence Materials Rendering High-performance OLEDs Through both Thermal Evaporation and Solution-processing. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2111-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Locally twisted donor-π-acceptor fluorophore based on phenanthroimidazole-phenoxazine hybrid for electroluminescence. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Francese T, Kundu A, Gygi F, Galli G. Quantum simulations of thermally activated delayed fluorescence in an all-organic emitter. Phys Chem Chem Phys 2022; 24:10101-10113. [PMID: 35416814 DOI: 10.1039/d2cp01147f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigate the prototypical NAI-DMAC thermally activated delayed fluorescence (TADF) emitter in the gas phase- and high-packing fraction limits at finite temperature, by combining first principles molecular dynamics with a quantum thermostat to account for nuclear quantum effects (NQE). We find a weak dependence of the singlet-triplet energy gap (ΔEST) on temperature in both the solid and the molecule, and a substantial effect of packing. While the ΔEST vanishes in the perfect crystal, it is of the order of ∼0.3 eV in the molecule, with fluctuations ranging from 0.1 to 0.4 eV at 300 K. The transition probability between the HOMOs and LUMOs has a stronger dependence on temperature than the singlet-triplet gap, with a desirable effect for thermally activated fluorescence; such temperature effect is weaker in the condensed phase than in the molecule. Our results on ΔEST and oscillator strengths, together with our estimates of direct and reverse intersystem crossing rates, show that optimization of packing and geometrical conformation is critical to increase the efficiency of TADF compounds. Our findings highlight the importance of considering thermal fluctuations and NQE to obtain robust predictions of the electronic properties of NAI-DMAC.
Collapse
Affiliation(s)
- Tommaso Francese
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.
| | - Arpan Kundu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.
| | - Francois Gygi
- Department of Computer Science, University of California, Davis, CA 95616, USA
| | - Giulia Galli
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA. .,Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL 60439, USA.,Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
11
|
Xiong W, He K, Zhang D, Yang J, Peng M, Niu Z, Li G, Zhu W. Synthesis and optoelectronic properties of a dinuclear iridium (III) complex containing a picolinic acid derivative by nonconjugated linkage with a D-A-D core. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2021.122202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Yang H, Zhang M, Zhao J, Pu C, Lin H, Tao S, Zheng C, Zhang X. Improving Efficiency of Red Thermally Activated Delayed Fluorescence Emitter by Introducing
Quasi‐Degenerate
Orbital Distribution. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100776] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hao‐Yu Yang
- School of Optoelectronic Science and Engineering University of Electronic Science and Technology of China Chengdu Sichuan 610054 China
| | - Ming Zhang
- School of Optoelectronic Science and Engineering University of Electronic Science and Technology of China Chengdu Sichuan 610054 China
- Institute of Functional Nano & Soft Materials (FUNSOM) Soochow University Suzhou Jiangsu 215123 China
| | - Jue‐Wen Zhao
- School of Optoelectronic Science and Engineering University of Electronic Science and Technology of China Chengdu Sichuan 610054 China
| | - Chun‐Peng Pu
- School of Optoelectronic Science and Engineering University of Electronic Science and Technology of China Chengdu Sichuan 610054 China
| | - Hui Lin
- School of Optoelectronic Science and Engineering University of Electronic Science and Technology of China Chengdu Sichuan 610054 China
| | - Si‐Lu Tao
- School of Optoelectronic Science and Engineering University of Electronic Science and Technology of China Chengdu Sichuan 610054 China
| | - Cai‐Jun Zheng
- School of Optoelectronic Science and Engineering University of Electronic Science and Technology of China Chengdu Sichuan 610054 China
| | - Xiao‐Hong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM) Soochow University Suzhou Jiangsu 215123 China
| |
Collapse
|
13
|
Wu X, Huang JW, Su BK, Wang S, Yuan L, Zheng WQ, Zhang H, Zheng YX, Zhu W, Chou PT. Fabrication of Circularly Polarized MR-TADF Emitters with Asymmetrical Peripheral-Lock Enhancing Helical B/N-Doped Nanographenes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105080. [PMID: 34693564 DOI: 10.1002/adma.202105080] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Circularly polarized thermally activated delayed fluorescence (CP-TADF) and multiple-resonance thermally activated delayed fluorescence (MR-TADF), which exhibit novel circularly polarized luminescence and excellent color fidelity, respectively, have gained immense popularity. In this study, integrated CP-TADF and MR-TADF (CPMR-TADF) are prepared by strategic design and synthesis of asymmetrical peripherally locked enantiomers, which are separated and denoted as (P,P″,P″)-/(M,M″,M″)-BN4 and (P,P″,P″)-/(M,M″,M″)-BN5 and exhibit TADF and circularly polarized light (CPL) properties. As the entire molecular frame participates in the frontier molecular orbitals, the resulting helical chirality of (+)/(-)-BN4- and (+)/(-)-BN5-based solution-processed organic light-emitting diodes (OLEDs) helps in achieving a narrow full width at half maximum (FWHM) of 49/49 and 48/48 nm and a high maximum external quantum efficiency (EQE) of 20.6%/19.0% and 22.0%/26.5%, respectively. Importantly, unambiguous circularly polarized electroluminescence signals with dissymmetry factors (gEL ) of +3.7 × 10-3 /-3.1 × 10-3 (BN4) and +1.9 × 10-3 /-1.6 × 10-3 (BN5) are obtained. The results indicate successful exploitation of CPMR-TADF-emitter-based OLEDs to exhibit three characteristics: high efficiency, color purity, and circularly polarized light.
Collapse
Affiliation(s)
- Xiugang Wu
- School of Materials Science and Engineering, Jiangsu Collaboration Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Jing-Wei Huang
- School of Materials Science and Engineering, Jiangsu Collaboration Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Bo-Kang Su
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Sai Wang
- School of Materials Science and Engineering, Jiangsu Collaboration Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Li Yuan
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wei-Qiong Zheng
- School of Materials Science and Engineering, Jiangsu Collaboration Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Hu Zhang
- School of Materials Science and Engineering, Jiangsu Collaboration Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - You-Xuan Zheng
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Weiguo Zhu
- School of Materials Science and Engineering, Jiangsu Collaboration Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
14
|
Naveen KR, Prabhu Cp K, Braveenth R, Kwon JH. Molecular Design Strategy for Orange-red Thermally Activated Delayed Fluorescence Emitters in OLEDs. Chemistry 2021; 28:e202103532. [PMID: 34918399 DOI: 10.1002/chem.202103532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Indexed: 11/12/2022]
Abstract
Pure organic molecules based thermally activated delayed fluorescence (TADF) emitters have been successfully developed in recent years for their propitious application in highly efficient organic light emitting diodes (OLEDs). In case of orange-red emitters, the non-radiative process is known to be a serious issue due to its lower lying singlet energy level. However, recent studies indicate that there are tremendous efforts put to develop efficient orange-red TADF emitters. And the external quantum efficiency (EQE) of heteroaromatic based orange-red TADF OLEDs surpassed 30%. Such heteroaromatic type emitters showed wide emission spectra, therefore more attention is being paid to develop highly efficient orange-red TADF emitters along with good color purity. Herein, we reviewed the recent progress of orange-red TADF emitters based on molecular structures such as cyano benzene, heteroaromatic, naphthalimide, and boron based acceptors. Further, our insight on these acceptors has been provided by their photophysical studies and device performances. Future perspectives of orange-red TADF emitters for real practical applications are discussed.
Collapse
Affiliation(s)
| | | | | | - Jang Hyuk Kwon
- Kyung Hee University, Department of Information Display, 26 Kyunghee-daero, Dongdaemun-gu, 130-701, Seoul, KOREA, REPUBLIC OF
| |
Collapse
|
15
|
Hole Injection Role of p-Type Conjugated Polymer Nanolayers in Phosphorescent Organic Light-Emitting Devices. ELECTRONICS 2021. [DOI: 10.3390/electronics10182283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Here, we report the hole injection role of p-type conjugated polymer layer in phosphorescent organic light-emitting devices (OLEDs). Poly(3-hexylthiophene) (P3HT) nanolayers (thickness = ~1 nm thick), which were subjected to thermal annealing at 140 °C by varying annealing time, were inserted between indium tin oxide (ITO) anodes and hole transport layers (N,N′-bis(naphthalen-1-yl)-N,N′-bis(phenyl)-benzidine, NPB). The 1 nm-thick P3HT layers showed very weak absorption in the visible light range of 500~650 nm. The device results disclosed that the presence of P3HT layers were just able to improve the charge injection of OLEDs leading to an enhanced luminance irrespective of thermal annealing condition. The highest luminance and efficiency were achieved for the OLEDs with the P3HT layers annealed at 140 °C for 10 min. Further annealing for 30 min resulted in turn-down of device performances. The emission color was almost unchanged by the presence of P3HT layers even though the color coordinates were marginally fluctuated according to the annealing time. The present result delivers the possibility to use p-type conjugated polymers (i.e., P3HT) as a hole injection layer in OLEDs.
Collapse
|
16
|
Karthik D, Jung YH, Lee H, Hwang S, Seo BM, Kim JY, Han CW, Kwon JH. Acceptor-Donor-Acceptor-Type Orange-Red Thermally Activated Delayed Fluorescence Materials Realizing External Quantum Efficiency Over 30% with Low Efficiency Roll-Off. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007724. [PMID: 33792077 DOI: 10.1002/adma.202007724] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Two new orange-red thermally activated delayed fluorescence (TADF) materials, PzTDBA and PzDBA, are reported. These materials are designed based on the acceptor-donor-acceptor (A-D-A) configuration, containing rigid boron acceptors and dihydrophenazine donor moieties. These materials exhibit a small ΔEST of 0.05-0.06 eV, photoluminescence quantum yield (PLQY) as high as near unity, and short delayed exciton lifetime (τd ) of less than 2.63 µs in 5 wt% doped film. Further, these materials show a high reverse intersystem crossing rate (krisc ) on the order of 106 s-1 . The TADF devices fabricated with 5 wt% PzTDBA and PzDBA as emitting dopants show maximum EQE of 30.3% and 21.8% with extremely low roll-off of 3.6% and 3.2% at 1000 cd m-2 and electroluminescence (EL) maxima at 576 nm and 595 nm, respectively. The low roll-off character of these materials is analyzed by using a roll-off model and the exciton annihilation quenching rates are found to be suppressed by the fast krisc and short delayed exciton lifetime. These devices show operating device lifetimes (LT50 ) of 159 and 193 h at 1000 cd m-2 for PzTDBA and PzDBA, respectively. The high efficiency and low roll-off of these materials are attributed to the good electronic properties originatng from the A-D-A molecular configuration.
Collapse
Affiliation(s)
- Durai Karthik
- Organic Optoelectronic Device Lab. (OODL), Department of Information Display, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Young Hun Jung
- Organic Optoelectronic Device Lab. (OODL), Department of Information Display, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Hyuna Lee
- Organic Optoelectronic Device Lab. (OODL), Department of Information Display, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Soonjae Hwang
- Organic Optoelectronic Device Lab. (OODL), Department of Information Display, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Bo-Min Seo
- LG Display R & D center, LG Science park, 30, Magokjungang 10-ro, Gangseo-gu, Seoul, 07796, Republic of Korea
| | - Jun-Yun Kim
- LG Display R & D center, LG Science park, 30, Magokjungang 10-ro, Gangseo-gu, Seoul, 07796, Republic of Korea
| | - Chang Wook Han
- LG Display R & D center, LG Science park, 30, Magokjungang 10-ro, Gangseo-gu, Seoul, 07796, Republic of Korea
| | - Jang Hyuk Kwon
- Organic Optoelectronic Device Lab. (OODL), Department of Information Display, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| |
Collapse
|
17
|
Chen T, Lu CH, Chen Z, Gong X, Wu CC, Yang C. Modulating the Electron-Donating Ability of Acridine Donor Units for Orange-Red Thermally Activated Delayed Fluorescence Emitters. Chemistry 2021; 27:3151-3158. [PMID: 33241622 DOI: 10.1002/chem.202004719] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/16/2020] [Indexed: 12/11/2022]
Abstract
The development of thermally activated delayed fluorescence (TADF) emitters with orange-red emission still lags behind that of their blue, green, and yellow counterparts. Recent research to address this problem mainly focused on developing new acceptor units. There were few donor units designed especially for orange-red emitters. Herein, with benzothiophene fused to a diphenylacridine donor unit, a new donor moiety, namely, 5,5-diphenyl-5,13-dihydrobenzo[4,5]thieno[3,2-c]acridine (BTDPAc), was designed and synthesized. Benefiting from the strong electron-donating ability of the new donor moiety, a new TADF emitter, 2-[4'-(tert-butyl)(1,1'-biphenyl)-4-yl]-6-[5,5-diphenylbenzo[4,5]thieno[3,2-c]acridin-13(5H)-yl]-1H-benzo[de]isoquinoline-1,3(2H)-dione (BTDPAc-PhNAI), shows an orange-red emission with a maximum at 610 nm in dilute toluene solution. Also, with the help of the diphenyl rings of the donor unit, high photoluminescence quantum yields were achieved for BTDPAc-PhNAI over a wide concentration range. Consequently, an orange-red organic light-emitting diode based on BTDPAc-PhNAI achieved a high external quantum efficiency of nearly 20 %, which was comparable to state-of-the-art device performances with similar emission spectra.
Collapse
Affiliation(s)
- Tianheng Chen
- Renmin Hospital of Wuhan University, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, P.R. China.,College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Chen-Han Lu
- Department of Electrical Engineering, Graduate Institute of Electronics Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, 10617, Taiwan
| | - Zhanxiang Chen
- Renmin Hospital of Wuhan University, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, P.R. China
| | - Xu Gong
- Renmin Hospital of Wuhan University, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, P.R. China
| | - Chung-Chih Wu
- Department of Electrical Engineering, Graduate Institute of Electronics Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, 10617, Taiwan
| | - Chuluo Yang
- Renmin Hospital of Wuhan University, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, P.R. China.,College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| |
Collapse
|
18
|
Lugovik KI, Kanaa A, Benassi E, Belskaya NP. Fluorescent Assembles of 2‐Amino‐3‐cyanothiophenes with Azoles. Design and Peculiar Properties of Absorption and Emission. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kseniya I. Lugovik
- Ural Federal University 19 Mira Str. Yekaterinburg 620002 Russian Federation
| | - Ali Kanaa
- Ural Federal University 19 Mira Str. Yekaterinburg 620002 Russian Federation
| | - Enrico Benassi
- Shihezi University 280 N 4th Rd Shihezi Xinjiang 832000 P. R. China
| | | |
Collapse
|
19
|
Puttock EV, Ranasinghe CSK, Babazadeh M, Jang J, Huang DM, Tsuchiya Y, Adachi C, Burn PL, Shaw PE. Solution-Processed Dendrimer-Based TADF Materials for Deep-Red OLEDs. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02235] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Emma V. Puttock
- Centre for Organic Photonics & Electronics (COPE), School of Chemistry & Molecular Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Chandana Sampath Kumara Ranasinghe
- Centre for Organic Photonics & Electronics (COPE), School of Chemistry & Molecular Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Mohammad Babazadeh
- Centre for Organic Photonics & Electronics (COPE), School of Chemistry & Molecular Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Junhyuk Jang
- Centre for Organic Photonics & Electronics (COPE), School of Chemistry & Molecular Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - David M. Huang
- Department of Chemistry, School of Physical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Youichi Tsuchiya
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan
| | - Paul L. Burn
- Centre for Organic Photonics & Electronics (COPE), School of Chemistry & Molecular Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Paul E. Shaw
- Centre for Organic Photonics & Electronics (COPE), School of Chemistry & Molecular Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
20
|
Avellanal‐Zaballa E, Prieto‐Castañeda A, García‐Garrido F, Agarrabeitia AR, Rebollar E, Bañuelos J, García‐Moreno I, Ortiz MJ. Red/NIR Thermally Activated Delayed Fluorescence from Aza‐BODIPYs. Chemistry 2020; 26:16080-16088. [DOI: 10.1002/chem.202002916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/19/2020] [Indexed: 11/10/2022]
Affiliation(s)
| | | | | | | | - Esther Rebollar
- Dpto, de Sistemas de Baja Dimensionalidad, Superficies y Materia Condensada Instituto Química-Física “Rocasolano”, IQFR-CSIC Serrano 119 28006 Madrid Spain
| | - Jorge Bañuelos
- Dpto. Química Física Universidad del País Vasco (UPV/EHU) Aptdo 644 48080 Bilbao Spain
| | - Inmaculada García‐Moreno
- Dpto, de Sistemas de Baja Dimensionalidad, Superficies y Materia Condensada Instituto Química-Física “Rocasolano”, IQFR-CSIC Serrano 119 28006 Madrid Spain
| | - María J. Ortiz
- Dpto. Química Orgánica Universidad Complutense Ciudad Universitaria s/n 28006 Madrid Spain
| |
Collapse
|
21
|
Liu Y, Chen Y, Li H, Wang S, Wu X, Tong H, Wang L. High-Performance Solution-Processed Red Thermally Activated Delayed Fluorescence OLEDs Employing Aggregation-Induced Emission-Active Triazatruxene-Based Emitters. ACS APPLIED MATERIALS & INTERFACES 2020; 12:30652-30658. [PMID: 32538076 DOI: 10.1021/acsami.0c07906] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Two novel red thermally activated delayed fluorescence (TADF) emitters [triazatruxene (TAT)-dibenzo[a,c]phenazine (DBPZ) and TAT-fluorine-substituted dibenzo[a,c]phenazine (FDBPZ)] were developed by incorporating TAT as the electron donor (D) and DBPZ or FDBPZ as the electron acceptor (A). Both compounds showed aggregation-induced emission behaviors and bright red emission in neat films. Benefited from the rigid and large planar conjugated structure of TAT and DBPZ, TAT-DBPZ and TAT-FDBPZ realized high photoluminescence quantum yields in solid states. Meanwhile, the large steric hindrance between TAT and DBPZ segments produced small singlet-triplet energy splitting (ΔEST), leading to short delayed fluorescence lifetimes and high reverse intersystem crossing (RISC) rate (>106 s-1) for both compounds. The solution-processable doped organic light-emitting diodes (OLEDs) based on TAT-DBPZ achieved a high external quantum efficiency (EQE) of 15.4% with a red emission peak at 604 nm, which was one of the highly efficient solution-processable red TADF OLEDs. TAT-FDBPZ-based doped devices also showed a red emission peak at 611 nm with a maximum EQE of 9.2% and low-efficiency roll-off ratios of 1.0% at 100 cd m-2 and 19% at 1000 cd m-2. Furthermore, their solution-processable nondoped devices displayed EQEs of 5.6 and 2.9% with the red-shifted emission peaks at 626 and 641 nm, respectively. These results indicate the huge potential of utilization of TAT as the donor unit to achieve highly efficient and low-efficiency roll-off solution-processable red TADF OLEDs.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yonghong Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Hua Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Shuai Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xiaofu Wu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Hui Tong
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
22
|
Hsieh CM, Wu TL, Jayakumar J, Wang YC, Ko CL, Hung WY, Lin TC, Wu HH, Lin KH, Lin CH, Hsieh S, Cheng CH. Diboron-Based Delayed Fluorescent Emitters with Orange-to-Red Emission and Superior Organic Light-Emitting Diode Efficiency. ACS APPLIED MATERIALS & INTERFACES 2020; 12:23199-23206. [PMID: 32326694 DOI: 10.1021/acsami.0c03711] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
For the application of organic light-emitting diodes (OLEDs) in lighting and panels, the basic requirement is to include a full spectrum color range. Compared with the development of blue and green luminophores in thermally activated delayed fluorescence (TADF) technology, the progress of orange-to-red materials is slow and needs further investigation. In this study, three diboron compound-based materials, dPhADBA, dmAcDBA, and SpAcDBA, were designed and synthesized by nucleophilic arylation of three amine donors on 9,10-diboraanthracene (DBA) in a two-step reaction. With increasing electron-donating ability, they show orange-to-red emission with TADF characteristics. The electroluminescence of these diboron compounds exhibits emissions λmax at 613, 583, and 567 nm for dPhADBA, dmAcDBA, and SpAcDBA, respectively. It is noteworthy that the rod-like D-A-D structures can achieve high horizontal ratios (84-86%) and outstanding device performance for orange-to-red TADF OLEDs: the highest external quantum efficiencies for dPhADBA, dmAcDBA, and SpAcDBA are 11.1 ± 0.5, 24.9 ± 0.5, and 30.0 ± 0.8%, respectively. Therefore, these diboron-based molecules offer a promising avenue for the design of orange-to-red TADF emitters and the development of highly efficient orange-to-red OLEDs.
Collapse
Affiliation(s)
- Chia-Min Hsieh
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tien-Lin Wu
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | | | - Ying-Chun Wang
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chang-Lun Ko
- Institute of Optoelectronic Sciences, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Wen-Yi Hung
- Institute of Optoelectronic Sciences, National Taiwan Ocean University, Keelung 20224, Taiwan
| | | | - Hsin-Hui Wu
- AU Optronics Corporation, Hsinchu 30078, Taiwan
| | | | | | - Shuchen Hsieh
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Chien-Hong Cheng
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
23
|
Zhou X, Xiang Y, Gong S, Chen Z, Ni F, Xie G, Yang C. Simple construction of deep-red hexaazatrinaphthylene-based thermally activated delayed fluorescence emitters for efficient solution-processed OLEDs with a peak at 692 nm. Chem Commun (Camb) 2019; 55:14190-14193. [PMID: 31701968 DOI: 10.1039/c9cc06804j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Two solution-processable deep-red thermally activated delayed fluorescence emitters based on a 5,6,11,12,17,18-hexaazatrinaphthylene acceptor core were developed through a simple and catalyst-free nucleophilic substitution reaction. The solution-processed OLEDs using these emitters achieved a peak external quantum efficiency of 4.8% with the emission peak at 692 nm.
Collapse
Affiliation(s)
- Xue Zhou
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China. and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Yepeng Xiang
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Shaolong Gong
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Zhanxiang Chen
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Fan Ni
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China.
| | - Guohua Xie
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Chuluo Yang
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China. and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
24
|
Congrave DG, Drummond BH, Conaghan PJ, Francis H, Jones STE, Grey CP, Greenham NC, Credgington D, Bronstein H. A Simple Molecular Design Strategy for Delayed Fluorescence toward 1000 nm. J Am Chem Soc 2019; 141:18390-18394. [PMID: 31661267 PMCID: PMC6890363 DOI: 10.1021/jacs.9b09323] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
![]()
Harnessing the near-infrared
(NIR) region of the electromagnetic
spectrum is exceedingly important for photovoltaics, telecommunications,
and the biomedical sciences. While thermally activated delayed fluorescent
(TADF) materials have attracted much interest due to their intense
luminescence and narrow exchange energies (ΔEST), they are still greatly inferior to conventional fluorescent
dyes in the NIR, which precludes their application. This is because
securing a sufficiently strong donor–acceptor (D–A)
interaction for NIR emission alongside the narrow ΔEST required for TADF is highly challenging. Here, we demonstrate
that by abandoning the common polydonor model in favor of a D–A
dyad structure, a sufficiently strong D–A interaction can be
obtained to realize a TADF emitter capable of photoluminescence (PL)
close to 1000 nm. Electroluminescence (EL) at a peak wavelength of
904 nm is also reported. This strategy is both conceptually and synthetically
simple and offers a new approach to the development of future NIR
TADF materials.
Collapse
Affiliation(s)
- Daniel G Congrave
- Department of Chemistry , University of Cambridge , Cambridge , CB2 1EW , U.K
| | | | - Patrick J Conaghan
- Cavendish Laboratory , University of Cambridge , Cambridge , CB3 0HE , U.K
| | - Haydn Francis
- Department of Chemistry , University of Cambridge , Cambridge , CB2 1EW , U.K
| | - Saul T E Jones
- Cavendish Laboratory , University of Cambridge , Cambridge , CB3 0HE , U.K
| | - Clare P Grey
- Department of Chemistry , University of Cambridge , Cambridge , CB2 1EW , U.K
| | - Neil C Greenham
- Cavendish Laboratory , University of Cambridge , Cambridge , CB3 0HE , U.K
| | - Dan Credgington
- Cavendish Laboratory , University of Cambridge , Cambridge , CB3 0HE , U.K
| | - Hugo Bronstein
- Department of Chemistry , University of Cambridge , Cambridge , CB2 1EW , U.K.,Cavendish Laboratory , University of Cambridge , Cambridge , CB3 0HE , U.K
| |
Collapse
|