1
|
Ehrnst Y, Alijani H, Bentley C, Sherrell PC, Murdoch BJ, Yeo LY, Rezk AR. UNLEASH: Ultralow Nanocluster Loading of Pt via Electro-Acoustic Seasoning of Heterocatalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2409495. [PMID: 39588884 DOI: 10.1002/adma.202409495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/15/2024] [Indexed: 11/27/2024]
Abstract
The shift toward sustainable energy has fueled the development of advanced electrocatalysts to enable green fuel production and chemical synthesis. To date, no material outperforms Pt-group catalysts for key electrocatalytic reactions, necessitating advanced catalysts that minimize use of these rare and expensive constituents (i.e., Pt) to reduce cost without sacrificing activity. Whilst a myriad of routes involving co-synthesis of Pt with other elements have been reported, the Pt is often buried within the bulk of the composite, rendering a large proportion of it inaccessible to the interfacial electrocatalytic reaction. Surface decoration of Pt on arbitrary substrates is therefore desirable to maximize catalytic activity; nevertheless, Pt electrodeposition suffers from clustering and ripening effects that result in large (⌀ 0.1 - 1 μ m $\diameter \ \!0.1-1\ \umu{\rm m}$ ) aggregates that hinder electrocatalytic activity. Herein, an unconventional synthesis method is reported that utilizes high-frequency (10 MHz) acoustic waves to electrochemically 'season' a gold working electrode with an ultralow loading of Pt nanoclusters. The UNLEASH platform is shown to facilitate high-density dispersion of nanometer-order clusters at the bimetallic interface to enable superior atomic utilization of Pt. This is exemplified by its utility for methanol oxidation reaction (MOR), wherein a mass activity of 5.28 Amg Pt - 1 ${\rm mg}_{\rm Pt}^{-1}$ is obtained, outperforming all other Au/Pt bimetallic electrocatalysts reported to date.
Collapse
Affiliation(s)
- Yemima Ehrnst
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia
| | - Hossein Alijani
- University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Cameron Bentley
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| | - Peter C Sherrell
- School of Science, RMIT University, Melbourne, VIC, 3001, Australia
| | - Billy J Murdoch
- RMIT Microscopy and Microanalysis Facility, RMIT University, Melbourne, VIC, 3001, Australia
| | - Leslie Y Yeo
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia
| | - Amgad R Rezk
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC, 3001, Australia
| |
Collapse
|
2
|
Liu L, Jin L, Xiao Z, Fang N, Lin X, Ji Y, Wang Y, Li Y, Huang X, Bu L. Heterostructured Pt-PbS Nanobelt Achieves Remarkable Direct Formic Acid Oxidation Catalysis. NANO LETTERS 2024; 24:8162-8170. [PMID: 38904300 DOI: 10.1021/acs.nanolett.4c02133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Developing efficient and CO-tolerant platinum (Pt)-based anodic catalysts is challenging for a direct formic acid fuel cell (DFAFC). Herein, we report heterostructured Pt-lead-sulfur (PtPbS)-based nanomaterials with gradual phase regulation as efficient formic acid oxidation reaction (FAOR) catalysts. The optimized Pt-PbS nanobelts (Pt-PbS NBs/C) display the mass and specific activities of 5.90 A mgPt-1 and 21.4 mA cm-2, 2.2/1.2, 1.5/1.1, and 36.9/79.3 times greater than those of PtPb-PbS NBs/C, Pt-PbSO4 NBs/C, and commercial Pt/C, respectively. Simultaneously, it exhibits a higher membrane electrode assembly (MEA) power density (183.5 mW cm-2) than commercial Pt/C (40.3 mW cm-2). This MEA stably operates at 0.4 V for 25 h, demonstrating a competitive potential of device application. The distinctive heterostructure endows the Pt-PbS NBs/C with optimized dehydrogenation steps and resisting the CO poisoning, thus presenting the remarkable FAOR performance. This work paves an effective avenue for creating high-performance anodic catalysts for fuel cells and beyond.
Collapse
Affiliation(s)
- Liangbin Liu
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lujie Jin
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Zhengyi Xiao
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Nan Fang
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xin Lin
- College of Energy, Xiamen University, Xiamen 361102, China
| | - Yujin Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Yucheng Wang
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Xiaoqing Huang
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lingzheng Bu
- College of Energy, Xiamen University, Xiamen 361102, China
| |
Collapse
|
3
|
Wang P, Yan Y, Qin B, Zheng X, Cai W, Qi J. Rational Construction of Pt Incorporated Co 3O 4 as High-Performance Electrocatalyst for Hydrogen Evolution Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:898. [PMID: 38869523 PMCID: PMC11173378 DOI: 10.3390/nano14110898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/14/2024]
Abstract
Electrocatalysts in alkaline electrocatalytic water splitting are required to efficiently produce hydrogen while posing a challenge to show excellent performances. Herein, we have successfully synthesized platinum nanoparticles incorporated in a Co3O4 nanostructure (denoted as Pt-Co3O4) that show superior HER activity and stability in alkaline solutions (the overpotentials of 37 mV to reach 10 mA cm-2). The outstanding electrocatalytic activity originates from synergistic effects between Pt and Co3O4 and increased electron conduction. Theoretical calculations show a significant decrease in the ΔGH* of Co active sites and a remarkable increase in electron transport. Our work puts forward a special and simple synthesized way of adjusting the H* adsorption energy of an inert site for application in HER.
Collapse
Affiliation(s)
- Peijia Wang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China; (P.W.)
| | - Yaotian Yan
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China; (P.W.)
| | - Bin Qin
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030031, China
| | - Xiaohang Zheng
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China; (P.W.)
| | - Wei Cai
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China; (P.W.)
| | - Junlei Qi
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China; (P.W.)
| |
Collapse
|
4
|
Yang FK, Fang Y, Li FF, Qu WL, Deng C. Sn-doped PdCu alloy nanosheet assemblies as an efficient electrocatalyst for formic acid oxidation. Dalton Trans 2023; 52:14428-14434. [PMID: 37771290 DOI: 10.1039/d3dt01095c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
A ternary alloy catalyst has been confirmed to be an effective catalyst for anode catalysis in direct formic acid fuel cells, which can improve the electrocatalytic performance of the fuel cell by introducing commonly used metal elements to change the Pd electronic structure and can reduce the use of precious metals and the cost of catalyst production. In this study, PdCuSn Ns/C with a special 3D structure was synthesized by a simple two-step wet chemical method. The PdCuSn Ns/C catalyst prepared exhibits excellent catalytic activity and stability for the formic acid oxidation reaction (FAOR). The mass activity of 2420.1 mA mg-1Pd is 3.94 times that of the Pd/C catalyst. The improvement in the electrocatalytic performance stems from the introduction of Cu and Sn atoms and the unique 3D nanosheet structure, which changes the electronic structure of Pd to increase the reactive active site and accelerates the reaction mass transfer rate, and also reduces the content of precious metals, while improving the electrocatalytic performance. Therefore, the PdCuSn Ns/C catalyst has a promising future in the field of electrocatalysis.
Collapse
Affiliation(s)
- Fu-Kai Yang
- College of Chemistry and Chemical Engineering, Harbin Normal University, No. 1 Normal University South Road, Harbin, 150025, China.
| | - Yue Fang
- College of Chemistry and Chemical Engineering, Harbin Normal University, No. 1 Normal University South Road, Harbin, 150025, China.
| | - Fang-Fang Li
- College of Chemistry and Chemical Engineering, Harbin Normal University, No. 1 Normal University South Road, Harbin, 150025, China.
| | - Wei-Li Qu
- College of Chemistry and Chemical Engineering, Harbin Normal University, No. 1 Normal University South Road, Harbin, 150025, China.
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, China
| | - Chao Deng
- College of Chemistry and Chemical Engineering, Harbin Normal University, No. 1 Normal University South Road, Harbin, 150025, China.
| |
Collapse
|
5
|
Abstract
A significant challenge in the development of functional materials is understanding the growth and transformations of anisotropic colloidal metal nanocrystals. Theory and simulations can aid in the development and understanding of anisotropic nanocrystal syntheses. The focus of this review is on how results from first-principles calculations and classical techniques, such as Monte Carlo and molecular dynamics simulations, have been integrated into multiscale theoretical predictions useful in understanding shape-selective nanocrystal syntheses. Also, examples are discussed in which machine learning has been useful in this field. There are many areas at the frontier in condensed matter theory and simulation that are or could be beneficial in this area and these prospects for future progress are discussed.
Collapse
Affiliation(s)
- Kristen A Fichthorn
- Department of Chemical Engineering and Department of Physics The Pennsylvania State University University Park, Pennsylvania 16803 United States
| |
Collapse
|
6
|
Cyanogel-Induced Synthesis of RuPd Alloy Networks for High-Efficiency Formic Acid Oxidation. Catalysts 2022. [DOI: 10.3390/catal12101136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
For direct formic acid fuel cells (DFAFC), palladium (Pd)-based alloy catalysts with competitive morphology and elemental composition are essential to boost the performance of the formic acid oxidation reaction (FAOR) in the anode zone. Herein, we design and synthesize RuPdx alloy nano-network structures (ANs) via the facile wet-chemical reduction of Pd-Ru cyanogel (Pdx [Ru(CN)6]y·aH2O) as an effective electrocatalyst for the FAOR. The formation of Pd-Ru cyanogel depends on the facile coordination of K2PdCl4 and K3 [Ru(CN)6]. The unique structure of cyanogel ensures the presentation of a three-dimensional mesoporous morphology and the homogeneity of the elemental components. The as-prepared RuPd3 ANs exhibit good electrocatalytic activity and stability for the FAOR. Notably, the RuPd3 ANs achieve a mass-specific activity of 2068.4 mA mg−1 in FAOR, which shows an improvement of approximately 16.9 times compared to Pd black. Such a competitive FAOR performance of RuPd3 ANs can be attributed to the advantages of structure and composition, which facilitate the exposure of more active sites, accelerate mass/electron transfer rates, and promote gas escape from the catalyst layer, as well as enhance chemical stability.
Collapse
|
7
|
Synergistic enhancement of formic acid electro−oxidation on PtxCuy Co-electrodeposited binary catalyst. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101437] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
8
|
Guo J, Zhang M, Xu J, Fang J, Luo S, Yang C. Core-shell Pd-P@Pt-Ni nanoparticles with enhanced activity and durability as anode electrocatalyst for methanol oxidation reaction. RSC Adv 2022; 12:2246-2252. [PMID: 35425232 PMCID: PMC8979267 DOI: 10.1039/d1ra07998k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/07/2022] [Indexed: 12/17/2022] Open
Abstract
Pd-P@Pt-Ni core-shell nanoparticles, which consisted of a Pd-P alloy as a core and Pt-Ni thin layer as a shell, were explored as electrocatalysts for methanol oxidation reaction. The crystallographic information and the electronic properties were fully investigated by X-ray diffraction and X-ray photoelectron spectroscopy. In the methanol electrooxidation reaction, the particles showed high catalytic activity and strong resistance to the poisoning carbonaceous species in comparison with those of commercial Pt/C and the as-prepared Pt/C catalysts. The excellent durability was demonstrated by electrochemically active surface area loss and chronoamperometric measurements. These results would be due to the enhanced catalytic properties of Pt by the double synergistic effects from the core part and the nickel species in the shell part.
Collapse
Affiliation(s)
- Jiangbin Guo
- College of Chemical Engineering and Materials Science, Quanzhou Normal University Quanzhou 362000 P. R. China
| | - Man Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200433 P. R. China
| | - Jing Xu
- College of Chemical Engineering and Materials Science, Quanzhou Normal University Quanzhou 362000 P. R. China
| | - Jun Fang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University Quanzhou 362000 P. R. China
| | - Shuiyuan Luo
- College of Chemical Engineering and Materials Science, Quanzhou Normal University Quanzhou 362000 P. R. China
| | - Chaolong Yang
- School of Materials Science and Engineering, Chongqing University of Technology Chongqing 400054 P. R. China
| |
Collapse
|
9
|
Pushpalatha N, Abraham EV, Saravanan G. Pt–Cu nanoalloy catalysts: compositional dependence and selectivity for direct electrochemical oxidation of formic acid. NEW J CHEM 2022. [DOI: 10.1039/d2nj01871c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A PtCu3 nanoalloy catalyst showed much enhanced catalytic activity for the direct electrochemical oxidation of formic acid compared to a commercial platinum catalyst.
Collapse
Affiliation(s)
- Nataraj Pushpalatha
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), CSIR, Madras Complex, Taramani, Chennai, 600 113, India
| | - Elezabeth V. Abraham
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), CSIR, Madras Complex, Taramani, Chennai, 600 113, India
| | - Govindachetty Saravanan
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), CSIR, Madras Complex, Taramani, Chennai, 600 113, India
| |
Collapse
|
10
|
Zhao R, Yue X, Li Q, Fu G, Lee JM, Huang S. Recent Advances in Electrocatalysts for Alkaline Hydrogen Oxidation Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100391. [PMID: 34159714 DOI: 10.1002/smll.202100391] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/18/2021] [Indexed: 06/13/2023]
Abstract
With the rapid development of anion-exchange membrane technology and adequate supply of high-performance non-noble metal oxygen reduction reaction (ORR) catalysts in alkaline media, the commercialization of anion exchange membrane fuel cells (AEMFCs) become possible. However, the kinetics of the anodic hydrogen oxidation reaction (HOR) in AEMFCs is significantly decreased compared to the HOR in proton exchange membrane fuel cells (PEMFCs). Therefore, it is urgent to develop HOR catalysts with low price, high activity, and robust stability. However, comprehensive timely reviews on this specific subject do not exist enough yet and it is necessary to update reported major achievements and to point out future investigation directions. In this review, the current reaction mechanisms on HOR are summarized and deeply understood. The debates between the mechanisms are greatly harmonized. Recent advances in developing highly active and stable electrocatalysts for the HOR are reviewed. Moreover, the side reaction control is for the first time systematically introduced. Finally, the challenges and future opportunities in the field of HOR catalysis are outlined.
Collapse
Affiliation(s)
- Ruopeng Zhao
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
- School of Chemical and Biomedical Engineering, Nanyang Technology University, Singapore, 637459, Singapore
| | - Xin Yue
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Qinghua Li
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Gengtao Fu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation, Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering, Nanyang Technology University, Singapore, 637459, Singapore
| | - Shaoming Huang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
11
|
Ding C, Dong F, Tang Z. Controllable synthesis of core-shell PtOx/CoOy@C catalysts with enriched oxygen functional groups for electrocatalytic oxidation of methanol. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Zhao W, Ma L, Gan M, Li X, Zhang Y, Hua X, Wang L. Engineering intermetallic-metal oxide interface with low platinum loading for efficient methanol electrooxidation. J Colloid Interface Sci 2021; 604:52-60. [PMID: 34261019 DOI: 10.1016/j.jcis.2021.06.177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022]
Abstract
Constructing a distinctive electrochemical interface with low platinum content to boost the sluggish methanol electrooxidation kinetics is critical for commercializing the direct methanol fuel cells. Herein, we have synthesized highly active electrocatalysts with unique intermetallic-metal oxide interfaces through a facile pyrolysis method. Physical characterizations demonstrate that the obtained PtFe(1:2)@a-FeOx/NC-C catalyst with low platinum content of 7.2 wt% possesses an interfacial structure composed of face-centered tetragonal (L10) PtFe intermetallic nanoparticles accompanied with amorphous iron oxide. Electrochemical measurements show that the synthesized PtFe(1:2)@a-FeOx/NC-C catalyst not only exhibits excellent methanol electrooxidation activities with a mass activity of 1.48 A mg-1Pt and a specific activity of 2.34 mA cm-2Pt in acid medium, but also possesses better CO-tolerant performance and faster methanol oxidation kinetics compared with commercial Pt/C. The improved electrochemical performances may ascribe to the modified electronic structure by alloying platinum with iron and the special PtFe@a-FeOx interface, which render strong synergistic interactions between bimetallic PtFe nanoparticles and amorphous iron oxide. Consequently, the presented strategy offers new prospects into the construction of low-cost electrocatalysts with unique electrochemical interface for enhancing catalytic performances.
Collapse
Affiliation(s)
- Wei Zhao
- College of Chemistry & Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Li Ma
- College of Chemistry & Chemical Engineering, Chongqing University, Chongqing 400044, PR China.
| | - Mengyu Gan
- College of Chemistry & Chemical Engineering, Chongqing University, Chongqing 400044, PR China.
| | - Xudong Li
- College of Chemistry & Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Yuchao Zhang
- College of Chemistry & Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Xuelian Hua
- College of Chemistry & Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| | - Ling Wang
- College of Chemistry & Chemical Engineering, Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
13
|
Yang B, Zhang W, Hu S, Liu C, Wang X, Fan Y, Jiang Z, Yang J, Chen W. Bidirectional controlling synthesis of branched PdCu nanoalloys for efficient and robust formic acid oxidation electrocatalysis. J Colloid Interface Sci 2021; 600:503-512. [PMID: 34023708 DOI: 10.1016/j.jcis.2021.05.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 11/15/2022]
Abstract
Through a two-way control of hexadecyl trimethyl ammonium bromide (CTAB) and hydrochloric acid (HCl), the PdCu nanoalloys with branched structures are synthesized in one step by hydrothermal reduction and used as electrocatalysts for formic acid oxidation reaction (FAOR). In this two-way control strategy, the CTAB is used as a structure-oriented surfactant, while a certain amount of HCl is used to control the reaction kinetics for achieving gradual growth of multi-dendritic structures. The characterizations including scanning transmission electron microscope (STEM), X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) suggest that PdCu nanoalloys with unique multi-dendritic branches have favorable electronic structure and lattice strain for electrocatalyzing the oxidation of formic acid. In specific, among the electrocatalysts with different Pd/Cu ratios, the Pd1Cu1 branched nanoalloys have the largest electrochemically active surface area (ECSA) and the best performance for the FAOR. The catalytic activity of the Pd1Cu1 branched nanoalloys is 2.4 times that of commercial Pd black. After the chronoamperometry test, the Pd1Cu1 branched nanoalloys still maintain their original morphologies and higher current density than that of the commercial Pd black. In addition, in the CO-stripping tests, the initial oxidation potential and the oxidation peak potential of the PdCu branched nanoalloys for CO adsorption are lower than those of commercial Pd balck, evincing their better anti-poisoning performance.
Collapse
Affiliation(s)
- Bo Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Wanqing Zhang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shenglan Hu
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Chengzhou Liu
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xiaoqu Wang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Youjun Fan
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Zhe Jiang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Jun Yang
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No.19A.Yuquan.Road Beijing 100049, China; Nanjing IPE Institute of Green Manufacturing Industry, Nanjing, Jiangsu 211100, China.
| | - Wei Chen
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
14
|
Li Z, Li M, Wang X, Fu G, Tang Y. The use of amino-based functional molecules for the controllable synthesis of noble-metal nanocrystals: a minireview. NANOSCALE ADVANCES 2021; 3:1813-1829. [PMID: 36133100 PMCID: PMC9416890 DOI: 10.1039/d1na00006c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/06/2021] [Indexed: 06/14/2023]
Abstract
Controlling the morphologies and structures of noble-metal nanocrystals has always been a frontier field in electrocatalysis. Functional molecules such as capping agents, surfactants and additives are indispensable in shape-control synthesis. Amino-based functional molecules have strong coordination abilities with metal ions, and they are widely used in the morphology control of nanocrystals. In this minireview, we pay close attention to recent advances in the use of amino-based functional molecules for the controllable synthesis of noble-metal nanocrystals. The effects of various amino-based molecules on differently shaped noble-metal nanocrystals, including zero-, one-, two-, and three-dimensional nanocrystals, are reviewed and summarized. The roles and mechanisms of amino-based small molecules and long-chain ammonium salts relating to the morphology-control synthesis of noble-metal nanocrystals are highlighted. Relationships between shape and electrocatalytic properties are also described. Finally, some key prospects and challenges relating to the controllable synthesis of noble-metal nanocrystals and their electrocatalytic applications are proposed.
Collapse
Affiliation(s)
- Zhijuan Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 China
| | - Meng Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 China
| | - Xuan Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 China
| | - Gengtao Fu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 China
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 China
| |
Collapse
|
15
|
Li M, Li Z, Fu G, Tang Y. Recent Advances in Amino-Based Molecules Assisted Control of Noble-Metal Electrocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007179. [PMID: 33709573 DOI: 10.1002/smll.202007179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Morphology-control synthesis is an effective means to tailor surface structure of noble-metal nanocrystals, which offers a sensitive knob for tuning their electrocatalytic properties. The functional molecules are often indispensable in the morphology-control synthesis through preferential adsorption on specific crystal facets, or controlling certain crystal growth directions. In this review, the recent progress in morphology-control synthesis of noble-metal nanocrystals assisted by amino-based functional molecules for electrocatalytic applications are focused on. Although a mass of noble-metal nanocrystals with different morphologies have been reported, few review studies have been published related to amino-based molecules assisted control strategy. A full understanding for the key roles of amino-based molecules in the morphology-control synthesis is still necessary. As a result, the explicit roles and mechanisms of various types of amino-based molecules, including amino-based small molecules and amino-based polymers, in morphology-control of noble-metal nanocrystals are summarized and discussed in detail. Also presented in this progress are unique electrocatalytic properties of various shaped noble-metal nanocrystals. Particularly, the optimization of electrocatalytic selectivity induced by specific amino-based functional molecules (e.g., polyallylamine and polyethyleneimine) is highlighted. At the end, some critical prospects, and challenges in terms of amino-based molecules-controlled synthesis and electrocatalytic applications are proposed.
Collapse
Affiliation(s)
- Meng Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Zhijuan Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Gengtao Fu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, TX, 79407, USA
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
16
|
Ashraf G, Asif M, Aziz A, Iftikhar T, Liu H. Rice-Spikelet-like Copper Oxide Decorated with Platinum Stranded in the CNT Network for Electrochemical In Vitro Detection of Serotonin. ACS APPLIED MATERIALS & INTERFACES 2021; 13:6023-6033. [PMID: 33496593 DOI: 10.1021/acsami.0c20645] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The specific monitoring of serotonin (ST) has provoked massive interest in therapeutic and biological science since it has been recognized as the third most significant endogenous gastrointestinal neurotransmitter. Hence, there is a great need to develop a sensitive and low-cost sensing platform for the detection of a clinically relevant ST level in biological matrices. Herein, we develop a simple two-step approach for an ultrasensitive electrochemical (EC) sensor with the Cu2O metal oxide (MO)-incorporated CNT core that has been further deposited with a transitional amount of platinum nanoparticles (Pt NPs). We presented, for the first time, the deposition of Pt NPs on the (CNTs-Cu2O-CuO) nanopetal composite via the galvanic replacement method, where copper not only acts as a reductant but a sacrificial template as well. The electrocatalytic aptitude of the fabricated EC sensing platform has been assessed for the sensitive detection of ST as a proficient biomarker in early disease diagnostics. The synergy of improved active surface area, remarkable conductivity, polarization effect induced by Pt NPs on CNTs-Cu2O-CuO nanopetals, fast electron transfer, and mixed-valence states of copper boost up the redox processes at the electrode-analyte junction. The CNTs-Cu2O-CuO@Pt-modified electrode has unveiled outstanding electrocatalytic capabilities toward ST oxidation in terms of a low detection limit of 3 nM (S/N = 3), wide linear concentration range, reproducibility, and incredible durability. Owing to the amazing proficiency, the proposed EC sensor based on the CNTs-Cu2O-CuO@Pt heterostructure has been applied for ST detection in biotic fluids and real-time tracking of ST efflux released from various cell lines as early disease diagnostic approaches.
Collapse
Affiliation(s)
- Ghazala Ashraf
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Muhammad Asif
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Ayesha Aziz
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Tayyaba Iftikhar
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Hongfang Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
17
|
PdAgPt Corner-Satellite Nanocrystals in Well-Controlled Morphologies and the Structure-Related Electrocatalytic Properties. NANOMATERIALS 2021; 11:nano11020340. [PMID: 33572848 PMCID: PMC7911664 DOI: 10.3390/nano11020340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 11/17/2022]
Abstract
The functions of heterogeneous metallic nanocrystals (HMNCs) can be undoubtedly tuned by controlling their morphologies and compositions. As a less-studied kind of HMNCs, corner-satellite multi-metallic nanocrystals (CSMNCs) have great research value in structure-related electrocatalytic performance. In this work, PdAgPt corner-satellite nanocrystals with well-controlled morphologies and compositions have been developed by temperature regulation of a seed-mediated growth process. Through the seed-mediated growth, the morphology of PdAgPt products evolves from Pd@Ag cubes to PdAgPt corner-satellite cubes, and eventually to truncated hollow octahedra, as a result of the expansion of {111} facets in AgPt satellites. The growth of AgPt satellites exclusively on the corners of central cubes is realized with the joint help of Ag shell and moderate bromide, and hollow structures form only at higher reaction temperatures on account of galvanic displacement promoted by the Pd core. In view of the different performances of Pd and Pt toward formic acid oxidation (FAO), this structure-sensitive reaction is chosen to measure electrocatalytic properties of PdAgPt HMNCs. It is proven that PdAgPt CSMNCs display greatly improved activity toward FAO in direct oxidation pathway. In addition, with the help of AgPt heterogeneous shells, all PdAgPt HMNCs exhibit better durability than Pd cubes and commercial Pt.
Collapse
|
18
|
Wan J, Ma J, Zhang Y, Xia Y, Hong L, Yang C. Improved antioxidative performance of a water-soluble copper nanoparticle@fullerenol composite formed via photochemical reduction. NEW J CHEM 2021. [DOI: 10.1039/d1nj03132e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We synthesized a water-soluble nanocomposite consisting of ultrasmall copper nanoparticles and fullerenol, which showed excellent radical scavenging ability (IC50 = 14.5 μg mL−1).
Collapse
Affiliation(s)
- Jie Wan
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jiaxin Ma
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yuyuan Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yuxuan Xia
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Liu Hong
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Cheng Yang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
19
|
Li Z, Wang X, Zhang Z, Hu J, Liu Z, Sun D, Tang Y. Concave PtCo nanooctahedra with high-energy {110} facets for the oxygen reduction reaction. CrystEngComm 2020. [DOI: 10.1039/c9ce01488h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
For the first time, iminodiacetic acid serves as a morphology control agent for the synthesis of concave PtCo nanooctahedra.
Collapse
Affiliation(s)
- Zhijuan Li
- Jiangsu Key Laboratory of New Power Batteries
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
| | - Xiaoru Wang
- Jiangsu Key Laboratory of New Power Batteries
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
| | - Zhenbo Zhang
- Jiangsu Key Laboratory of New Power Batteries
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
| | - Jinrui Hu
- Jiangsu Key Laboratory of New Power Batteries
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
| | - Zhenyuan Liu
- Jiangsu Key Laboratory of New Power Batteries
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
| | - Dongmei Sun
- Jiangsu Key Laboratory of New Power Batteries
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- School of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
| |
Collapse
|