1
|
Liu Y, Xu M, Long H, Vasiliev RB, Li S, Meng H, Chang S. Alternating current electroluminescence devices: recent advances and functional applications. MATERIALS HORIZONS 2024; 11:5147-5180. [PMID: 39034868 DOI: 10.1039/d4mh00309h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Wearable smart devices and visualisation sensors based on alternating current electroluminescence (ACEL) have received considerable attention in recent years. Due to the unique properties of ACEL devices, such as high mechanical strength, adaptability to complex environments, and no need for energy level matching, ACEL is suitable for multifunctional applications and visualisation sensing platforms. This review comprehensively outlines the latest developments in ACEL devices, starting with an analysis of the mechanism, classification, and optimisation strategies of ACEL. It introduces the functional applications of ACEL in multicolour displays, high-durability displays, stretchable and wearable displays, and autonomous function displays. Particularly, it emphasises the research progress of ACEL in sensory displays under interactive conditions such as liquid sensing, environmental factor sensing, kinetic energy sensing, and biosensing. Finally, it forecasts the challenges and new opportunities faced by future functional and interactive ACEL devices in fields such as artificial intelligence, smart robotics, and human-computer interaction.
Collapse
Affiliation(s)
- Yibin Liu
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
- Faculty of Materials Science, Shenzhen MSU-BIT University, Shenzhen 518115, China.
- Platform for Applied Nanophotonics, Institute of Advanced Interdisciplinary Technology, Shenzhen MSU-BIT University, Shenzhen 518115, China
| | - Meili Xu
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Hui Long
- Faculty of Materials Science, Shenzhen MSU-BIT University, Shenzhen 518115, China.
- Department of Materials Science, Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Roman B Vasiliev
- Department of Materials Science, Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Shukui Li
- Faculty of Materials Science, Shenzhen MSU-BIT University, Shenzhen 518115, China.
| | - Hong Meng
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Shuai Chang
- Faculty of Materials Science, Shenzhen MSU-BIT University, Shenzhen 518115, China.
- Platform for Applied Nanophotonics, Institute of Advanced Interdisciplinary Technology, Shenzhen MSU-BIT University, Shenzhen 518115, China
| |
Collapse
|
2
|
Ma H, Liu C, Yang Z, Wu S, Jiao Y, Feng X, Xu B, Ou R, Mei C, Xu Z, Lyu J, Xie Y, Fu Q. Programmable and flexible wood-based origami electronics. Nat Commun 2024; 15:9272. [PMID: 39468092 PMCID: PMC11519615 DOI: 10.1038/s41467-024-53708-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024] Open
Abstract
Natural polymer substrates are gaining attention as substitutes for plastic substrates in electronics, aiming to combine high performance, intricate shape deformation, and environmental sustainability. Herein, natural wood veneer is converted into a transparent wood film (TWF) substrate. The combination of 3D printing and origami technique is established to create programmable wood-based origami electronics, which exhibit superior flexibility with high tensile strength (393 MPa) due to the highly aligned cellulose fibers and the formation of numerous intermolecular hydrogen bonds between them. Moreover, the flexible TWF electronics exhibit editable multiplexed configurations and maintain stable conductivity. This is attributed to the strong adhesion between the cellulose-based ink and TWF substrate by non-covalent bonds. Benefiting from its anisotropic structure, the programmability of TWF electronics is achieved through sequentially folding into predesigned shapes. This design not only promotes environmental sustainability but also introduces its customizable shapes with potential applications in sensors, microfluidics, and wearable electronics.
Collapse
Affiliation(s)
- Huashuo Ma
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, PR China
| | - Chaozheng Liu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, PR China
| | - Zhi Yang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, PR China
| | - Shuai Wu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, PR China
| | - Yue Jiao
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, PR China
| | - Xinhao Feng
- College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing, PR China
| | - Bo Xu
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, PR China
| | - Rongxian Ou
- Institute of Biomass Engineering, South China Agricultural University, Guangzhou, PR China
| | - Changtong Mei
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, PR China
| | - Zhaoyang Xu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, PR China
| | - Jianxiong Lyu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, PR China
| | - Yanjun Xie
- Engineering and Engineering Research Center of Advanced Wooden Materials, College of Materials Science and Engineering, Northeast Forestry University, Harbin, PR China.
| | - Qiliang Fu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, PR China.
- Scion, Te Papa Tipu Innovation Park, Rotorua, New Zealand.
| |
Collapse
|
3
|
Ritter M, Stricker L, Burgert I, Panzarasa G. Chemiluminescent wood. Carbohydr Polym 2024; 339:122166. [PMID: 38823895 DOI: 10.1016/j.carbpol.2024.122166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 06/03/2024]
Abstract
Wood materials incorporating new properties are of great interest, especially for advanced applications such as sustainable optics and photonics. In this work we describe a wood functionalization approach, comprising the incorporation of artificial chemiluminescent systems (phenyl oxalate ester‑hydrogen peroxide-fluorophore, and luminol-ferricyanide), resulting in light-emitting wood. By a detailed characterisation of the light emission features we point out the complex interaction between wood scaffold and chemiluminescent systems, especially the quenching effect of wood extractives (for the TCPO-H2O2-fluorophore system) and lignin (for the luminol-ferricyanide system). Moreover, we take advantage of the intrinsic anisotropic porosity and capillarity of wood tissue to study the chemiluminescent front propagation. Our results may inspire the development of novel light-emitting wood materials for a variety of applications, from fundamental studies of water uptake in wood to sensors and even design elements.
Collapse
Affiliation(s)
- Maximilian Ritter
- Wood Materials Science, Institute for Building Materials, ETH Zürich, 8093 Zürich, Switzerland; WoodTec group, Cellulose and Wood Materials, Empa - Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Laura Stricker
- Wood Materials Science, Institute for Building Materials, ETH Zürich, 8093 Zürich, Switzerland
| | - Ingo Burgert
- Wood Materials Science, Institute for Building Materials, ETH Zürich, 8093 Zürich, Switzerland; WoodTec group, Cellulose and Wood Materials, Empa - Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Guido Panzarasa
- Wood Materials Science, Institute for Building Materials, ETH Zürich, 8093 Zürich, Switzerland.
| |
Collapse
|
4
|
Du J, Wang X, Sun S, Wu Y, Jiang K, Li S, Lin H. Pushing Trap-Controlled Persistent Luminescence Materials toward Multi-Responsive Smart Platforms: Recent Advances, Mechanism, and Frontier Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314083. [PMID: 39003611 DOI: 10.1002/adma.202314083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/19/2024] [Indexed: 07/15/2024]
Abstract
Smart stimuli-responsive persistent luminescence materials, combining the various advantages and frontier applications prospects, have gained booming progress in recent years. The trap-controlled property and energy storage capability to respond to external multi-stimulations through diverse luminescence pathways make them attractive in emerging multi-responsive smart platforms. This review aims at the recent advances in trap-controlled luminescence materials for advanced multi-stimuli-responsive smart platforms. The design principles, luminescence mechanisms, and representative stimulations, i.e., thermo-, photo-, mechano-, and X-rays responsiveness, are comprehensively summarized. Various emerging multi-responsive hybrid systems containing trap-controlled luminescence materials are highlighted. Specifically, temperature dependent trapping and de-trapping performance is discussed, from extreme-low temperature to ultra-high temperature conditions. Emerging applications and future perspectives are briefly presented. It is hoped that this review would provide new insights and guidelines for the rational design and performance manipulation of multi-responsive materials for advanced smart platforms.
Collapse
Affiliation(s)
- Jiaren Du
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xiaomeng Wang
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Shan Sun
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Yongjian Wu
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Kai Jiang
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Si Li
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Hengwei Lin
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| |
Collapse
|
5
|
Wang S, He J, Tao X, Yin C, Liu H, Guo J, Zhang Y, Yao W, Zeng Z, Xie S, Tang BZ. Design and Construction of Highly Luminescent Transparent Woody Materials Exhibiting Unique Fluorescence-Enhanced Staining Effects for Visualization of Intrinsic Microporous Networks. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45447-45458. [PMID: 39138882 DOI: 10.1021/acsami.4c08138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Luminescent wood materials are an emerging class of biomass hybrid host materials owing to the hierarchical porous structure and functionalization versatility. The fluorescence properties are largely dependent on exogenous fluorophores, which are, however, often plagued by notorious aggregation effects. In this work, an efficient strategy for the preparation of luminescent transparent wood materials is developed by incorporating tetraphenylethylene-derived aggregation-induced emission (AIE)-active fluorophores during a delignification-backfill transparency process. These wood hybrids showed unexpected luminescence enhancement that significantly increased the fluorescence quantum yield of the fluorophores up to 99%, much higher than that of the fluorophores in other states such as crystalline solids or doped in a polymer substrate. Mechanistic investigations reveal that in situ polymerization of prepolymerized methyl methacrylate in delignified microporous wood frames produces high molecular weight ordered PMMA polymers, resulting in a rigid molecular environment that improves the luminescence efficiency of TPE-based fluorophores at the interfaces of PMMA polymer and cell walls. By confocal laser scanning microscopy (CLSM), this excellent fluorescence staining capability was furthermore utilized to visualize the intrinsic porous network of wood in three dimensions over a large volume with submicrometer resolution, thus providing an alternative approach to the study of structure-function relationships in such wood hybrids.
Collapse
Affiliation(s)
- Shuodong Wang
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen 518000; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jinzhi He
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen 518000; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiaomou Tao
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen 518000; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Chunguang Yin
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen 518000; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Haohao Liu
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen 518000; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jing Guo
- Furong College, Hunan University of Arts and Science, Changde 415000, China
| | - Yang Zhang
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen 518000; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Wenhuan Yao
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Zebing Zeng
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen 518000; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Sheng Xie
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen 518000; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- AIE Institute, Guangzhou Development District, Huangpu, Guangzhou 510530, China
| | - Ben Zhong Tang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| |
Collapse
|
6
|
Jiang W, Lee S, Zan G, Zhao K, Park C. Alternating Current Electroluminescence for Human-Interactive Sensing Displays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304053. [PMID: 37696051 DOI: 10.1002/adma.202304053] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/04/2023] [Indexed: 09/13/2023]
Abstract
The development of stimuli-interactive displays based on alternating current (AC)-driven electroluminescence (EL) is of great interest, owing to their simple device architectures suitable for wearable applications requiring resilient mechanical flexibility and stretchability. AC-EL displays can serve as emerging platforms for various human-interactive sensing displays (HISDs) where human information is electrically detected and directly visualized using EL, promoting the development of the interaction of human-machine technologies. This review provides a holistic overview of the latest developments in AC-EL displays with an emphasis on their applications for HISDs. AC-EL displays based on exciton recombination or impact excitations of hot electrons are classified into four representative groups depending upon their device architecture: 1) displays without insulating layers, 2) displays with single insulating layers, 3) displays with double insulating layers, and 4) displays with EL materials embedded in an insulating matrix. State-of-the-art AC HISDs are discussed. Furthermore, emerging stimuli-interactive AC-EL displays are described, followed by a discussion of scientific and engineering challenges and perspectives for future stimuli-interactive AC-EL displays serving as photo-electronic human-machine interfaces.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seokyeong Lee
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Guangtao Zan
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kaiying Zhao
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Cheolmin Park
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Spin Convergence Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02791, Republic of Korea
| |
Collapse
|
7
|
Luo J, Ren B, Zhang X, Zhu M, Liang T, Huang Z, Zheng Y, Li X, Li J, Zheng Z, Chen B, Fu Y, Tu D, Wang Y, Jia Y, Peng D. Modulating Smart Mechanoluminescent Phosphors for Multistimuli Responsive Optical Wood. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305066. [PMID: 37939290 PMCID: PMC10767394 DOI: 10.1002/advs.202305066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/28/2023] [Indexed: 11/10/2023]
Abstract
Mechanoluminescence is a smart light-emitting phenomenon in which applied mechanical energy is directly converted into photon emissions. In particular, mechanoluminescent materials have shown considerable potential for applications in the fields of energy and sensing. This study thoroughly investigates the mechanoluminescence and long afterglow properties of singly doped and codoped Sr2 MgSi2 O7 (SMSO) with varying concentrations of Eu2+ and Dy3+ ions. Subsequently, a comprehensive analysis of its multimode luminescence properties, including photoluminescence, mechanoluminescence, long afterglow, and X-ray-induced luminescence, is conducted. In addition, the density of states mapping is acquired through first-principles calculations, confirming that the enhanced mechanoluminescence properties of SMSO primarily stem from the deep trap introduced by Dy3+ . In contrast to traditional mixing with Polydimethylsiloxane, in this study, the powders are incorporated into optically transparent wood to produce a multiresponse with mechanoluminescence, long afterglow, and X-ray-excited luminescence. This structure is achieved by pretreating natural wood, eliminating lignin, and subsequently modifying the wood to overall modification using various smart phosphors and epoxy resin composites. After natural drying, a multifunctional composite wood structure with diverse luminescence properties is obtained. Owing to its environmental friendliness, sustainability, self-power, and cost-effectiveness, this smart mechanoluminescence wood is anticipated to find extensive applications in construction materials and energy-efficient displays.
Collapse
Affiliation(s)
- Jiangcheng Luo
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Biyun Ren
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Xianhui Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Mingju Zhu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Tianlong Liang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Zefeng Huang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Yuantian Zheng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Xu Li
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Jianwei Li
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Zitong Zheng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Bing Chen
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Yu Fu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Dong Tu
- Faculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074China
| | - Yu Wang
- SZU‐NUS Collaborative Innovation Center for Optoelectronic Science & TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoelectronicsShenzhen UniversityShenzhen518060China
- School of Physics and Information TechnologyShaanxi Normal UniversityXi'an710062China
| | - Yanmin Jia
- School of Physics and Information TechnologyShaanxi Normal UniversityXi'an710062China
| | - Dengfeng Peng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| |
Collapse
|
8
|
Ding Y, Pang Z, Lan K, Yao Y, Panzarasa G, Xu L, Lo Ricco M, Rammer DR, Zhu JY, Hu M, Pan X, Li T, Burgert I, Hu L. Emerging Engineered Wood for Building Applications. Chem Rev 2023; 123:1843-1888. [PMID: 36260771 DOI: 10.1021/acs.chemrev.2c00450] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The building sector, including building operations and materials, was responsible for the emission of ∼11.9 gigatons of global energy-related CO2 in 2020, accounting for 37% of the total CO2 emissions, the largest share among different sectors. Lowering the carbon footprint of buildings requires the development of carbon-storage materials as well as novel designs that could enable multifunctional components to achieve widespread applications. Wood is one of the most abundant biomaterials on Earth and has been used for construction historically. Recent research breakthroughs on advanced engineered wood products epitomize this material's tremendous yet largely untapped potential for addressing global sustainability challenges. In this review, we explore recent developments in chemically modified wood that will produce a new generation of engineered wood products for building applications. Traditionally, engineered wood products have primarily had a structural purpose, but this review broadens the classification to encompass more aspects of building performance. We begin by providing multiscale design principles of wood products from a computational point of view, followed by discussion of the chemical modifications and structural engineering methods used to modify wood in terms of its mechanical, thermal, optical, and energy-related performance. Additionally, we explore life cycle assessment and techno-economic analysis tools for guiding future research toward environmentally friendly and economically feasible directions for engineered wood products. Finally, this review highlights the current challenges and perspectives on future directions in this research field. By leveraging these new wood-based technologies and analysis tools for the fabrication of carbon-storage materials, it is possible to design sustainable and carbon-negative buildings, which could have a significant impact on mitigating climate change.
Collapse
Affiliation(s)
- Yu Ding
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland20742, United States
| | - Zhenqian Pang
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland20742, United States
| | - Kai Lan
- Center for Industrial Ecology, Yale School of the Environment, Yale University, New Haven, Connecticut06511, United States
| | - Yuan Yao
- Center for Industrial Ecology, Yale School of the Environment, Yale University, New Haven, Connecticut06511, United States
| | - Guido Panzarasa
- Wood Materials Science, Institute for Building Materials, ETH Zürich, 8093Zürich, Switzerland.,WoodTec Group, Cellulose & Wood Materials, Empa, 8600Dübendorf, Switzerland
| | - Lin Xu
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland20742, United States
| | - Marco Lo Ricco
- US Department of Agriculture (USDA) Forest Products Laboratory, Madison, Wisconsin53726, United States
| | - Douglas R Rammer
- US Department of Agriculture (USDA) Forest Products Laboratory, Madison, Wisconsin53726, United States
| | - J Y Zhu
- US Department of Agriculture (USDA) Forest Products Laboratory, Madison, Wisconsin53726, United States
| | - Ming Hu
- School of Architecture, Planning and Preservation, University of Maryland, College Park, Maryland20742, United States
| | - Xuejun Pan
- Department of Biological Systems Engineering, University of Wisconsin─Madison, Madison, Wisconsin53706, United States
| | - Teng Li
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland20742, United States
| | - Ingo Burgert
- Wood Materials Science, Institute for Building Materials, ETH Zürich, 8093Zürich, Switzerland.,WoodTec Group, Cellulose & Wood Materials, Empa, 8600Dübendorf, Switzerland
| | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland20742, United States.,Center for Materials Innovation, University of Maryland, College Park, Maryland20742, United States
| |
Collapse
|
9
|
Han X, Ding L, Tian Z, Song Y, Xiong R, Zhang C, Han J, Jiang S. Potential new material for optical fiber: Preparation and characterization of transparent fiber based on natural cellulosic fiber and epoxy. Int J Biol Macromol 2023; 224:1236-1243. [PMID: 36550788 DOI: 10.1016/j.ijbiomac.2022.10.209] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 11/05/2022]
Abstract
In order to reduce the dependence on fossil energy products, natural fiber/polymer hybrid composites have been increasingly researched. The high price of the quartz optical fibers and glass optical fibers has greatly inspired researchers to engage in the research on polymer optical fibers. Herein, transparent fibers based on plant fibers were innovatively prepared for the first time by delignification and impregnating epoxy diluted with acetone. The epoxy improved the thermal stability of the fiber without deteriorating its mechanical properties, and also endowed the fiber with the property of transparency. The tensile strength of transparent fibers of three diameters were 34.5, 58.6 and 100.3 MPa, respectively and the corresponding Young's modulus reached 1.1, 1.7 and 2.3 GPa, respectively. In addition, the light-conducting properties of transparent fibers were displayed with a green laser and the fibers displayed good light transmission along the fiber growth direction. Transparent fibers are expected to be used in optical fibers because of their high thermal stability, good mechanical properties and light-conducting properties.
Collapse
Affiliation(s)
- Xiaoshuai Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Linhu Ding
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhiwei Tian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yuanyuan Song
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China.
| | - Ranhua Xiong
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China.
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Jingquan Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Shaohua Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
10
|
Double-Network Hydrogel for Stretchable Triboelectric Nanogenerator and Integrated Electroluminescent Skin with Self-Powered Rapid Visual Sensing. ELECTRONICS 2022. [DOI: 10.3390/electronics11131928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bio-inspired design plays a very significant role in adapting biological models to technical applications of flexible electronics. The flexible, stretchable, and portable electrode is one of the key technical challenges in the field. Inspired by the responses to mechanical stimuli of natural plants, we designed a highly transparent (over 95%), stretchable (over 1500%), and biocompatible electrode material by using polymerized double-network hydrogel for fabricating a triboelectric nanogenerator (SH-TENG). The SH-TENG can convert tiny mechanical stretching from human movements directly into electrical energy, and is capable of lighting up to 50 LEDs. Benefiting from bio-inspired design, the coplanar, non-overlapping electrode structure breaks through the limitations of conventional electrodes in wearable devices and overcomes the bottleneck of transparent materials. Furthermore, a self-powered raindrop visual sensing system was realized, which can perform quasi-real-time rainfall information monitoring and increase rainfall recognition ability of vehicle automatic driving systems. This study provides a novel strategy for making next-generation stretchable electronic devices and flexible visual sensing systems.
Collapse
|
11
|
Bisht P, Pandey KK, Barshilia HC. Photostable transparent wood composite functionalized with an UV-absorber. Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2021.109600] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Wachter I, Štefko T, Rantuch P, Martinka J, Pastierová A. Effect of UV Radiation on Optical Properties and Hardness of Transparent Wood. Polymers (Basel) 2021; 13:polym13132067. [PMID: 34201886 PMCID: PMC8271824 DOI: 10.3390/polym13132067] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Optically transparent wood is a type of composite material, combining wood as a renewable resource with the optical and mechanical properties of synthetic polymers. During this study, the effect of monochromatic UV-C (λ—250 nm) radiation on transparent wood was evaluated. Samples of basswood were treated using a lignin modification method, to preserve most of the lignin, and subsequently impregnated with refractive-index-matched types of acrylic polymers (methyl methacrylate, 2-hydroxyethyl methacrylate). Optical (transmittance, colour) and mechanical (shore D hardness) properties were measured to describe the degradation process over 35 days. The transmittance of the samples was significantly decreased during the first seven days (12% EMA, 15% MMA). The average lightness of both materials decreased by 10% (EMA) and 17% (MMA), and the colour shifted towards a red and yellow area of CIE L*a*b* space coordinates. The influence of UV-C radiation on the hardness of the samples was statistically insignificant (W+MMA 84.98 ± 2.05; W+EMA 84.89 ± 2.46), therefore the hardness mainly depends on the hardness of used acrylic polymer. The obtained results can be used to assess the effect of disinfection of transparent wood surfaces with UV-C radiation (e.g., due to inactivation of SARS-CoV-2 virus) on the change of its aesthetic and mechanical properties.
Collapse
|
13
|
Höglund M, Johansson M, Sychugov I, Berglund LA. Transparent Wood Biocomposites by Fast UV-Curing for Reduced Light-Scattering through Wood/Thiol-ene Interface Design. ACS APPLIED MATERIALS & INTERFACES 2020; 12:46914-46922. [PMID: 32996762 PMCID: PMC7564099 DOI: 10.1021/acsami.0c12505] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Transparent wood (TW) is an interesting polymer biocomposite with potential for buildings and photonics applications. TW materials need to be eco-friendly and readily processed with few defects, for high optical transmittance and low transmission scattering at wide angles (haze). Two wood templates with different lignin-content are impregnated with a new thiol-ene thermoset system. The more eco-friendly bleached wood template results in transparent wood with high optical transmission and much reduced transmission haze, due to strong reduction of interfacial air gaps. Characterization includes template composition, thiol-ene distribution, and polymerization in wood cell wall by EDX and confocal Raman microscopy, also NMR and DSC, tensile testing and FE-SEM fractography for morphology and wood/thiol-ene interface adhesion assessment. The wood template is a true nanocomposite with thiol-ene polymer located inside the nanoporous wood cell wall. Advanced TW applications require not only appropriate wood template modification and careful polymer matrix selection but also tailoring of the process to impregnation and polymerization mechanisms, in order to reduce optical defects.
Collapse
Affiliation(s)
- Martin Höglund
- Department of Fibre
and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Mats Johansson
- Department of Fibre
and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Ilya Sychugov
- Department of Applied Physics, KTH Royal Institute of Technology, 114 19 Stockholm, Sweden
| | - Lars A. Berglund
- Department of Fibre
and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- E-mail:
| |
Collapse
|
14
|
Nie B, Li X, Wang C, Liu H, Tian H, Chen X, Shao J. Flexible Double-Sided Light-Emitting Devices Based on Transparent Embedded Interdigital Electrodes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:43892-43900. [PMID: 32790278 DOI: 10.1021/acsami.0c10132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the areas of flexible displays and wearable devices, double-sided light-emitting devices have huge commercial applications. Here, we provide a novel form of flexible double-sided light-emitting devices by designing and manufacturing different transparent interdigital electrodes for lighting the structural areas of composite emitting layers. The transparent interdigital electrodes are fabricated by embedding multiwalled carbon nanotubes in interdigital mesh-structured microcavities using a doctor-blading process, and the emitting layers are fabricated by mixing copper-doped zinc sulfide (ZnS/Cu) phosphor particles with the transparent polydimethylsiloxane polymer. The fabricated double-sided light-emitting devices could be in the crimp state, exhibiting excellent flexibility. By designing the structure of the interdigital electrodes and the thickness of the emitting layers, the double-sided emission intensity of the light-emitting devices can be adjusted. Furthermore, based on the flexible double-sided light-emitting devices, various patterns can be successfully programed, such as the digital, grayscale, and ancient Chinese walls. The flexible and programmable double-sided light-emitting films provide a promising strategy for the next generation of customized flexible displays.
Collapse
Affiliation(s)
- Bangbang Nie
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiangming Li
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Chunhui Wang
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Haoran Liu
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Hongmiao Tian
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiaoliang Chen
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jinyou Shao
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
15
|
Wang M, Li R, Feng X, Dang C, Dai F, Yin X, He M, Liu D, Qi H. Cellulose Nanofiber-Reinforced Ionic Conductors for Multifunctional Sensors and Devices. ACS APPLIED MATERIALS & INTERFACES 2020; 12:27545-27554. [PMID: 32458678 DOI: 10.1021/acsami.0c04907] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ionic conductors are normally prepared from water-based materials in the solid form and feature a combination of intrinsic transparency and stretchability. The sensitivity toward humidity inevitably leads to dehydration or deliquescence issues, which will limit the long-term use of ionic conductors. Here, a novel ionic conductor based on natural bacterial cellulose (BC) and polymerizable deep eutectic solvents (PDESs) is developed for addressing the abovementioned drawbacks. The superstrong three-dimensional nanofiber network and strong interfacial interaction endow the BC-PDES ionic conductor with significantly enhanced mechanical properties (tensile strength of 8 × 105 Pa and compressive strength of 6.68 × 106 Pa). Furthermore, compared to deliquescent PDESs, BC-PDES composites showed obvious mechanical stability, which maintain good mechanical properties even when exposed to high humidity for 120 days. These materials were demonstrated to possess multiple sensitivity to external stimulus, such as strain, pressure, bend, and temperature. Thus, they can easily serve as supersensitive sensors to recognize physical activity of humans such as limb movements, throat vibrations, and handwriting. Moreover, the BC-PDES ionic conductors can be used in flexible, patterned electroluminescent devices. This work provides an efficient strategy for making cellulose-based sustainable and functional ionic conductors which have broad application in artificial flexible electronics and other products.
Collapse
Affiliation(s)
- Ming Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Renai Li
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xiao Feng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Chao Dang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Fanglin Dai
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xueqiong Yin
- Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou, Hainan 570228, P. R. China
| | - Minghui He
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Detao Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Haisong Qi
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Engineering Research Center for Green Fine Chemicals, Guangzhou 510640, China
| |
Collapse
|
16
|
Kim W, Lee JS, Jang J. Aptamer-Functionalized Three-Dimensional Carbon Nanowebs for Ultrasensitive and Free-Standing PDGF Biosensor. ACS APPLIED MATERIALS & INTERFACES 2020; 12:20882-20890. [PMID: 32315526 DOI: 10.1021/acsami.0c03709] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Research on flexible biosensors is mostly focused on their use in obtaining information on physical signals (such as temperature, heart rate, pH, and intraocular pressure). Consequently, there are hardly any studies on using flexible electronics for detecting biomolecules and biomarkers that cause diseases. In this study, we propose a flexible, three-dimensional carbon nanoweb (3DCNW)-based aptamer sensor to detect the platelet-induced growth factor (PDGF), which is an oncogenic biomarker. As a template for the 3D structure, poly(acrylonitrile) (PAN) nanowebs were synthesized using a facile electrospinning process. The PAN nanowebs were then subjected to chemical vapor deposition with copper powder. This was followed by Cu etching to generate carbon protrusions on the web surface. As an active site, PDGF-B binding aptamer was introduced on the 3DCNW surface to form biosensor electrodes. The 3DCNW-based aptasensor exhibited excellent sensitivity (down to 1.78 fM), with high selectivity, reversibility, and stability to PDGF-BB.
Collapse
Affiliation(s)
- Wooyoung Kim
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Jun Seop Lee
- Department of Materials Science and Engineering, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-Si, Gyeonggi-Do 13120, Republic of Korea
| | - Jyongsik Jang
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| |
Collapse
|